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Abstract. We study dense, frictional, polydisperse 3D granular assemblies under uniaxial deformation with Discrete Element
Method (DEM) simulations. The overall goal – beyond the scope of the present study – is to link microscopic parameters and
observations with the macroscopic behavior, for different elementary deformation modes.

At present, we focus on the behavior of the force/contact network during uniaxial deformation, for different coefficients of
friction. We discuss the stress and structural anisotropy and the relationship between force intensity weighted by contact state
(sticking or sliding, at the Coulomb limit) or force strength. Furthermore, we study the orientational distribution of contacts
and forces and the contribution of friction to structural anisotropy. We find that initial isotropic states are irrecoverable, since
the structural anisotropy is independent of the deviatoric stress behavior both with and without friction. Contacts display an
interesting anisotropy of order four in the presence of friction.
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INTRODUCTION

Granular materials are omnipresent in nature and widely
used in various industries ranging from food, pharmaceu-
tical, agriculture and mining – among others. In many
granular systems, interesting phenomena like dilatancy,
anisotropy, shear-band localization, history-dependence,
jamming and yield have attracted significant scientific in-
terest over the past decade [1]. The bulk behavior of these
materials depends on the behavior of their constituents
(particles) interacting through contact forces. To under-
stand the deformation behavior of these materials, vari-
ous laboratory element tests can be performed [2, 3]. El-
ement tests are (ideally homogeneous) macroscopic tests
in which one can control the stress and/or strain path.
Such macroscopic experiments are important ingredients
in developing constitutive relations, but they provide lit-
tle information on the microscopic origin of the bulk
flow behavior. As an alternative, the Discrete Element
Method (DEM) [4] – which provides information about
the micro-structure beyond what is experimentally acces-
sible – can be used. In this study, we focus on one specific
element test, namely uniaxial deformation.

Besides the contact network and the probability dis-
tribution of normal contact forces, another interesting is-
sue is the distribution and orientation of contacts during
the deformation of dense frictional packings [5, 6, 7]. In
early, two-dimensional studies on frictional avalanching
[5], it has been observed that the friction is mobilized
mostly from weak contacts, whereas strong contacts re-
sist friction mobilization.

The final goal is to investigate and understand the de-
pendencies between the microscopic observations pre-
sented hereafter and the evolution of macroscopic quan-
tities as pressure and deviatoric stress – and to further ex-
tend this to explain the evolution of the structural/contact
and force/stress anisotropies. We first describe the sim-
ulation method and model parameters before both the
stress and structure anisotropies are reported. Where
given, anisotropy refers to not only the deviatoric stress,
but also to the direction-dependence and inhomogeneity
of forces, i.e., its microscopic origin. Then we classify
the sliding/non-sliding contacts at the Coulomb limit ac-
cording to their normal force, and finally examine the
polar orientation of the contacts.

SIMULATION PROCEDURE

We use the Discrete Element Method (DEM) [4] with
a simple linear visco-elastic normal contact force law
f nn̂ = (kδ + γδ̇ )n̂, where k is the spring stiffness, γ is
the contact viscosity parameter and δ or δ̇ are the over-
lap or the relative velocity in the normal direction n̂. The
normal force is complemented by a tangential force law
[4], such that the total force at contact c is: fc = fnn̂+ ft t̂,
where n̂ · t̂ = 0. A summary of the values of the param-
eters used is shown in Table 1, with sliding and sticking
friction µ = µsl = µst and rolling– and torsion–torques
inactive (µr = µt = 0). An artificial viscous dissipation
force proportional to the velocity of the particle is added
for both translational and rotational degrees of freedom,



TABLE 1. Summary and numerical values of particle param-
eters used in the DEM simulations, where µ = 0, 0.01, and 0.1
are presented here; for details see Ref. [4].

Value Unit Description

N 9261 [–] Number of particles
〈r〉 1 [mm] Average radius
w 1.5 [–] Polydispersity w = rmax/rmin

ρ 2000 [kg/m3] Particle density
kn 105 [kg/s2] Normal spring stiffness
kt 2.104 [kg/s2] Tangential spring stiffness
µ vary [–] Coefficient of friction
γn 100 [kg/s] Viscosity–normal direction
γt 20 [kg/s] Viscosity –tang. direction
γbt 100 [kg/s] Background damping–trans.
γbr 20 [kg/s] Background damping–rotational
τc 0.64 [µs] Contact duration (average)

resembling the damping due to a background medium, as
e.g. a fluid.

The simulation set-up is a cuboid volume [8], triaxial
box, with periodic boundaries on all sides. Since care-
ful, well-defined sample preparation is essential to ob-
tain reproducible results [9], we follow a three-step pro-
cedure: (i) Spherical particles are randomly generated in
the 3D box with low volume fraction and rather large ran-
dom velocities, such that they have sufficient space and
time to exchange places and to randomize themselves.
(ii) This granular gas is then isotropically compressed
to a target volume fraction ν0. The goal is to approach
a direction independent, isotropic configuration slightly
above the jamming volume fraction νc, i.e. the transi-
tion point from fluid-like behavior to solid-like behavior
[10]. (iii) This is followed by a relaxation period at con-
stant volume fraction to allow the particles to dissipate
their kinetic energy and to achieve a static configuration
in mechanical equilibrium.

As element test, the uniaxial compression is then
achieved by moving the periodic walls in the z-direction
according to a prescribed co-sinusoidal strain path [8],
with diagonal strain-rate tensor ε̇u(0,0,−1), where posi-
tive ε̇zz denotes compression – while the other boundaries
x and y are non-mobile. During loading (compression)
the volume fraction increases from ν0 (at dimensionless
time τ = 0) to a maximum νmax = 0.820 (τ = 0.5) and
reverses back to the original ν0 at the end of the cycle
(τ = 1), after complete unloading. For more details on
preparation and other parameters, see Ref. [8].

RESULTS

Stress and Structure Anisotropy: Under uniaxial com-
pression, not only does shear stress build up, but also the
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FIGURE 1. Deviatoric stress ratio (Sdev = σdev/p) plotted
against deviatoric strain for uniaxial compression with µ given.
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FIGURE 2. Deviatoric fabric plotted against deviatoric
strain from the same simulations as in Fig. 1. Only the loading
half-cycle from τ = 0 to τ = 0.5 is shown.

anisotropy of the contact and force networks develops,
as it relates to the creation and destruction of new con-
tacts [8]. We term the deviatoric part of the stress tensor
the stress anisotropy, in parallel to the direction depen-
dency of the structural anisotropy. The deviatoric stress
ratio, Sdev = σdev/p, quantifies the stress anisotropy as
shown in Fig. 1 for a frictionless (µ = 0) and frictional
(µ = 0.01,0.1) systems under uniaxial loading - where p
is the pressure, and σdev =

√
3Jσ

2 is the deviatoric stress,
with Jσ

2 the second invariant of the deviatoric stress ten-
sor. The stress anisotropy initially grows with applied
strain until a maximum is reached, at different strains,
from where it decreases slightly. This “macroscopic fric-
tion coefficient”, µmacro := Sdev represents the mobilized
“friction”, i.e. shear resistance, along the loading path
and is higher than the microscopic coefficients of con-
tact friction – at least for the parameters used here [8].

Along with the stress, we introduce the fabric tensor as
defined in Ref. [8], in order to fully characterize the con-
tact network of the aggregate. The deviatoric fabric mag-



nitude, Fdev =
√

3JF
2 , (see Ref. [8]), quantifies the struc-

tural anisotropy, as shown in Fig. 2. It builds up from dif-
ferent (random, but small) initial values and reaches dif-
ferent maxima at the same level of ≈5 % deviatoric strain
(τm = 0.17). For larger strain, the structural anisotropy
is decreasing rapidly towards zero. Interestingly, for the
largest µ = 0.1, starting from τr = 0.35, further loading
in the axial direction leads to an increase of the deviatoric
fabric, until at maximum compression (τ = 0.5), the de-
viatoric fabric again reaches a local maximum. This in-
dicates that more contacts are created in the axial direc-
tion compared to the horizontal plane at the beginning
of the loading cycle. At τm however, the material behav-
ior changes such that the rate of contact creation in the
x− y plane becomes higher. The micromechanical ori-
gin of this surprising behavior is the motivation for the
current study and will be reported in more detail else-
where [11]. Unloading the system back to its initial vol-
ume fraction up to time τ = 1 (not shown), the initial
state is not recovered – a clear signature of history de-
pendence and structural anisotropy being independent of
(or decoupled from) the deviatoric stress behavior.
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FIGURE 3. Fraction of weak sliding (φwsl), strong sliding
(φssl), weak sticking (φwst ) and strong sticking (φsst ) contacts,
during a uniaxial loading- and unloading-cycle, with µ = 0.1.

Friction Mobilization: Mobilization of contact fric-
tion, during uniaxial deformation of the bulk material,
occurs when ft/µ fn → 1. The tangential forces grow to-
wards their limit and support larger shear stress; for tan-
gential forces at/above the Coulomb limit, i.e., at fully
mobilized friction, sliding sets in and rearrangements of
contacts can lead to new, more stable configurations. It
has been observed [12] that sliding is mostly active at
weak contacts, while stronger contacts stay in the stick-
ing regime and sustain larger friction forces [12] but are
less mobilized. Weak and strong contacts are defined rel-
ative to the average normal force; f ∗ = fn/〈 fn〉 < 1 are
termed weak and f ∗ > 1 are termed strong [12], with
dominating sliding and sticking, respectively. We find
that this friction mobilization rule is not strictly true

in the case µ = 0.1, as there may be a considerable
weak contacts with friction not fully mobilized (termed
weak sticking), as well as strong contacts fully mobilized
(termed strong sliding).

In Fig. 3, the fractions of strong and weak, sliding and
sticking contacts are plotted against time, where the φ
are defined as C/Ctot where C is the number of contacts
in the category and Ctot is the total number of contacts.
From this data, it is evident that most contacts are stick-
ing – with very few sliding contacts – irrespective of the
contact type. Interestingly, sticking (solid symbols) and
sliding (open symbols) contacts correlate well with each
other regardless of intensity (weak or strong). All data
are non-symmetric around stress reversal at τ = 0.5. Fo-
cusing on the sliding contacts, the weak sliding contacts
increase sharply compared to the stronger sliding con-
tacts at the beginning of loading and after strain reversal.
As compression progresses, the fraction of sliding con-
tacts decays at τ = 0.5 and τ = 1. Interestingly, a stronger
increase in the fraction of sliding contacts is also seen at
the beginning of the unloading branch compared to the
loading branch.

The fractions of strong and weak sticking contacts
both decay at the beginning of the compression cycle,
followed by an increase as compression progresses. At
maximum compression (τ = 0.5) almost all contacts are
weak sticking with ≈ 54 percent of the total contacts
weak sticking compared to ≈ 46 percent for contacts
with stronger forces that do not lead to complete friction
mobilization (strong sticking). From these maxima at
τ = 0.5, the fractions decrease and sharply increase just
before the end of unloading (τ = 1).

A reduction of µ leads to a significant increase in
fluctuations (data not shown). This is accompanied by
an increase in the total fraction of sliding contacts and a
considerable decrease in the fraction of sticking forces.

Polar Representation: To better understand the ori-
entation and arrangement of the contacts, we present the
polar representation of contacts, forces and the mobilized
friction. Given the three normal unit vector components
n̂x, n̂y, and n̂z for each contact pair, one needs the orien-
tation θ of the normal unit vector in the direction relative
to the active (axial) direction. To obtain this, we average
over the spherical azimuthal (vs. polar) (r,ϕ) coordinate
and calculate the polar angle as arccos(n̂z). We then di-
vide the vectors, based on their orientation into bins with
width ∆θ = 10◦. The fraction of contacts in a single bin
is defined as φ θ = Cθ

tot/Ctot , where Cθ
tot = ∑C∈b 1 and

b ∈ [θ −∆θ/2;θ +∆θ/2]. Furthermore, φ θ is normal-
ized with the surface of the spherical annulus for each
∆θ by the factor ∆θ sinθ to yield the azimuthal con-
tact probability density P(θ) = (φ θ/∆θ sinθ) such that∫ π

0 P(θ)sinθ∆θ = 1. The polar distribution of the nor-
mal forces and the mobilized friction are given respec-
tively, by (∑C∈b fn)/(Cθ

tot) and (∑C∈b( ft/µ fn))/(Cθ
tot),
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FIGURE 4. Polar distribution of the contacts C, normal force fn and mobilized friction ft/µ fn for µ = 0.1, at maximum
compression (τ = 0.5) and at the end of the decompression cycle (τ = 1). The inital states are not shown since they are isotropic,
and the vertical corresponds to the active axial compression/tension direction, θ = 0◦.

where the normalization with the number of contacts in
each bin has been introduced.

Fig. 4 shows the polar distribution of contacts C, nor-
mal forces fn, along with the distribution of the micro-
scopic mobilized friction ft/µ fn at different steps along
the uniaxial compression. Note that each polar represen-
tation is scaled by its maximum, so that only the shapes
can be compared - not the magnitudes of the polar plots.
The initial state (not shown) for the three parameters
is almost isotropic with contacts, forces and mobilized
friction evenly distributed along the polar surface. As
compression begins, anisotropy develops and more con-
tacts align along the main compressive vertical direction
θ = 0◦. Interestingly, at τ = 0.5, while the stronger con-
tacts are still aligned vertically, many more contacts ap-
peared in the horizontal plane, in agreement with the be-
havior of the deviatoric fabric in Fig. 2. During unload-
ing, a reorganization of the force network occurs so that
both the stronger forces and the contacts align horizon-
tally. At the end of the decompression cycle (τ = 1), the
initial (isotropic) state is not recovered, both for contacts
and normal forces.

The polar distribution of ft/µ fn is even more interest-
ing. Starting from an isotropic configuration at τ = 0 (not
shown), a change in the polar distribution can be seen at
maximum compression (τ = 0.5). At this point, friction
is mostly fully mobilized along the direction perpendicu-
lar to the axial (preferential direction of fn). At the end of
the unloading branch, the system is restored close to (but
not exactly) its initial isotropic mobilization. For lower
friction, the resistance to lateral dilation is reduced such
that the observations concerning the distribution of fn
and ft/µ fn are less/more pronounced, respectively (data
not shown, see Ref. [11]).

SUMMARY AND OUTLOOK

In this paper, we have used the discrete element method
to investigate the microscopic and macroscopic behavior
of frictional assemblies under uniaxial deformation. Slid-
ing and sticking contact evolution – regardless of inten-

sity – correlate well with few sliding and many sticking
contacts, for both weak and strong forces. The irrecover-
ability of the initial system state at the end of a full cycle
shows the independence of the structural anisotropy on
the deviatoric stress behavior.

Further studies will focus on understanding the in-
teresting reversal in structural anisotropy during loading
and a description of the polar representations for contacts
and forces by a low order harmonic approximation of a
Fourier expansion. Also the effects of different contact
models [4] on the findings will be investigated.
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