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The influence of contact friction on the behavior of dense, polydisperse granular assemblies under
uniaxial (oedometric) loading and unloading deformation is studied using discrete element simula-
tions. Even though the uniaxial deformation protocol is one of the “simplest” element tests possible,
the evolution of the structural anisotropy necessitates its careful analysis and understanding, since
it is the source of interesting and unexpected observations.

On the macroscopic, homogenized, continuum scale, the deviatoric stress ratio and the deviatoric
fabric behave in a different fashion during uniaxial loading and unloading. The maximal stress
ratio and strain increase with increasing contact friction. In contrast, the deviatoric fabric reaches
its maximum at a unique strain level independent of friction. For unloading, the reversal of stress
displays a friction-dependent delay, while the reversal of fabric is found to occur also with delay,
but slightly earlier.

On the micro-level, a friction-dependent non-symmetry of the proportion of weak/strong and
sliding/sticking contacts with respect to the total contacts during loading and unloading is observed.
Coupled to this, from the directional probability distribution, the “memory” and history-dependent
behavior of granular systems is confirmed. Surprisingly, while a rank-2 tensor is sufficient to describe
the evolution of the normal force directions, a sixth order harmonic approximation is necessary to
describe the contact probability distribution, the tangential force and the mobilized friction.

We conclude that the simple uniaxial deformation activates microscopic phenomena not only in the
active Cartesian directions, but also at intermediate orientations, with the tilt angle being dependent
on friction, so that the microstructure and forces cause the interesting macroscopic behavior.

PACS numbers: 45.70.Cc, 81.05.Rm, 81.20.Ev

I. INTRODUCTION AND BACKGROUND

Granular materials are omnipresent in nature and
widely used in various industries ranging from food,
pharmaceutical, agriculture and mining – among others.
In many granular systems, interesting phenomena like
dilatancy, anisotropy, shear-band localization, history-
dependence, jamming and yield have attracted significant
scientific interest over the past decade [1, 17, 28]. The
bulk behavior of these materials depends on the behav-
ior of their constituents (particles) interacting through
contact forces. To understand their deformation behav-
ior, various laboratory element tests can be performed
[34, 40]. Element tests are (ideally homogeneous) macro-
scopic tests in which one can control the stress and/or
strain path. Such macroscopic experiments are impor-
tant ingredients in developing and calibrating constitu-
tive relations, but they provide little information on the
microscopic origin of the bulk flow behavior. An alterna-
tive is the Discrete Element Method (DEM) [28], since it
provides information about the micro-structure beyond
what is experimentally accessible.

One element test which can easily be realized (experi-
mentally or numerically) is the uniaxial (or oedometric)
compression (in a cylindrical or box geometry) involving
an axial deformation of a bulk sample while the lateral
boundaries of the system are fixed. This test is partic-
ularly suited for determining the poroelastic properties

of granular materials. During uniaxial loading, isotropic
compression and non-isotropic deformation (pure shear)
are superposed, so that pressure and shear stress build
up. After reversal, pressure and shear stress decay and
the latter changes sign after a finite strain, which de-
pends on friction. When a granular material is sheared,
along with the shear stress, also anisotropy of the contact
network begins to develop.
It is known that besides density and stress, geometric

anisotropy (contact fabric) is an important ingredient to
fully understand the micro-macro-mechanics of granular
materials. In addition, the effects of contact friction be-
tween the constituent grains influences the micromechan-
ical response under uniaxial loading, such that a rather
simple element test begins to reveal interesting features.
Several studies have numerically investigated the extent
to which the response of granular media is affected by
friction [2–4, 42], especially in the triaxial geometry but
not many studies exist on uniaxial loading and unloading
of frictional systems [8].
Also, the transmission of stress between grain contacts

is relevant, as detailed in this study. Experimental visu-
alizations of the distribution of forces using photo-elastic
particles in 2D is about the only way to access this infor-
mation – see [33, 56] and references therein – even though
3D photoelasticity and other neutron diffraction methods
[54] have also been employed. Earlier numerical stud-
ies have highlighted the particular character of the con-
tact force network, showing that strong contacts carry-
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ing force larger than the average, are oriented anisotropi-
cally, with preferred direction parallel to the axis of com-
pression, while those originating from weak contacts are
isotropic or have a weak orientation orthogonal to the
compression axis [38]. Another interesting issue is the
distribution and orientation of tangential forces during
the deformation of dense frictional packings [37, 46, 47].
In early, two-dimensional studies on frictional avalanch-
ing [37], it has been observed that friction is mobilized
mostly from weak contacts, whereas strong contacts re-
sist friction mobilization.
In the present study, we use discrete element simula-

tions to investigate and relate the dependencies between
the microscopic observations presented hereafter with the
evolution of macroscopic quantities such as pressure and
deviatoric stress – and to further extend this to explain
the evolution of the structural/contact and force/stress
anisotropies.
We first describe the simulation method and model pa-

rameters along with the preparation and test procedures
in II. The definitions of averaged micro-macro quanti-
ties including strain, stress and structural anisotropies
are presented in III. Where given, anisotropy refers to
not only the deviatoric stress, but also to the direction-
dependence and inhomogeneity of forces, i.e., its micro-
scopic origin. Next, we discuss the results of the current
study by presenting the evolution of the stress and struc-
tural anisotropies during uniaxial loading and unloading
in IVA followed by the magnitude and orientation of
their respective eigenvalues in IVB. Furthermore, we
discuss friction mobilization in Section IVC followed by
the probability density functions of the normal and tan-
gential forces in IVD and the classification of weak and
strong forces in IVD. In Section V, we discuss the po-
lar representation of the contact distribution based on
the constant surface and constant bin width method and
extract the structural anisotropy parameters using a 6th
order Legendre spherical harmonic approximation in sec-
tion VA. Finally, the summary, conclusions and outlook
are presented in Section VI.

II. SIMULATION DETAILS

We use the Discrete Element Method (DEM) [28] with
a simple linear visco-elastic normal contact force law
fn

n̂ = (kδ + γδ̇)n̂, where k is the spring stiffness, γn
is the contact viscosity parameter and δ or δ̇ are the
overlap or the relative velocity in the normal direction
n̂. The normal force is complemented by a tangential
force law [28], such that the total force at contact c is:
fc = fnn̂ + ftt̂, where n̂ · t̂ = 0, with tangential force
unit vector t̂. A summary of the values of the parame-
ters used is shown in Table I, with sliding and sticking
friction µ = µsl = µst and rolling– and torsion–torques
inactive (µr = µt = 0). An artificial viscous dissipation
force proportional to the velocity of the particle is added
for both translational and rotational degrees of freedom,

Value Unit Description

N 9261 [–] Number of particles

〈r〉 1 [mm] Average radius

w 1.5 [–] Polydispersity w = rmax/rmin

ρ 2000 [kg/m3] Particle density

kn 105 [kg/s2] Normal spring stiffness

kt 2.104 [kg/s2] Tangential spring stiffness

µ vary [–] Coefficient of friction

γn 1000 [kg/s] Viscosity – normal direction

γt 200 [kg/s] Viscosity – tangential direction

γbt 100 [kg/s] Background damping – translational

γbr 20 [kg/s] Background damping – rotational

tc 0.64 [µs] Contact duration (average)

TABLE I: Summary and numerical values of particle
parameters used in the DEM simulations, where µ, the
contact coefficient of friction is varied in the following.

For more details, see Ref. [28].

resembling the damping due to a background medium,
as e.g. a fluid.

A. Simulation set-up and boundary conditions

The simulation set-up is a cuboid volume [16], triaxial
box, with periodic boundaries on all sides. Since careful,
well-defined sample preparation is essential, to obtain re-
producible results [13], we follow a three-step procedure
where friction is active in all the preparation stages:
(i) Spherical particles are randomly generated in the

3D box with low volume fraction and rather large random
velocities, such that they have sufficient space and time
to exchange places and to randomize themselves.
(ii) This granular gas is then isotropically compressed

to a target volume fraction ν0. The goal is to approach
a direction independent, isotropic configuration slightly
below the jamming volume fraction νc, i.e. the transition
point from fluid-like behavior to solid-like behavior [50].
(iii) This is followed by a relaxation period at constant

volume fraction to allow the particles to dissipate their
kinetic energy and to achieve a static configuration in
mechanical equilibrium, before further preparation or the
actual element test is initiated.

B. Isotropic Compression Methods

After the three-step preparation, an isotropic compres-
sion test can be initiated to measure isotropic proper-
ties and to prepare further initial configurations at dif-
ferent volume fractions, with subsequent relaxation, so
that we have a series of different reference isotropic con-
figurations, achieved during loading and unloading, as
displayed in Fig. 1. Note that the initial packings for the
respective frictional configurations are inherently differ-
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ent since they are prepared with the different friction co-
efficients active from the beginning of the first isotropic
preparation stage (stage A in Fig. 1). We only keep as
control parameter the volume fraction which is identical
for the different configurations even though other micro-
macro quantities such as pressure and coordination num-
ber will be different at a given volume fraction.
In the current study, to obtain a homogeneous initial

isotropic configuration, several driving modes have been
compared and these modes are discussed briefly in the
following section. Later, for uniaxial tests, unless ex-
plicitly mentioned, the wall-driven uniaxial deformation
protocol is applied. We tested the wall-driven against
the strain-rate driven protocols for some quantities of in-
terest to this work and realize that they lead to mostly
the same results – besides some small details (see Sec.
II B 5). Note that particular attention must be placed on
the choice of the preparation protocol when other bound-
ary conditions or quantities are considered as this conclu-
sion may no longer hold. Even though strain-rate driven
produces more homogeneous systems, we use the wall-
driven mode since it more resembles the real experiment
therefore important for future experimental validation of
this work [9].

1. Wall-driven isotropic compression

In the first method, the periodic walls of the box are
subjected to a strain-controlled motion following a co-
sinusoidal law such that the position of e.g., the top wall
as function of time t is

z(t) = zf +
z0 − zf

2
(1 + cos 2πft) (1)

with engineering strain

ǫzz(t) = 1− z(t)

z0
, (2)

where z0 is the initial box length and zf is the box length
at maximum strain, respectively, and f = T−1 is the fre-
quency. The maximum deformation is reached after half
a period t = T/2, and the maximum strain-rate applied
during the deformation is ǫ̇max

zz = 2πf(z0 − zf)/(2z0) =
πf(z0−zf)/z0. The co-sinusoidal law allows for a smooth
start-up and finish of the motion so that shocks and in-
ertia effects are reduced. Also, the walls were driven in a
quasi-static manner such that the ratio of the kinetic and
potential energy (Ek/Ep ≤ 10−5). By performing slower
deformations, the energy ratio can be reduced even fur-
ther [16].

2. Pressure controlled isotropic deformation

In the pressure controlled mode, the (virtual) periodic
walls of the system are subjected to a co-sinusoidal peri-
odic pressure-control until the target pressure is achieved,

for details see [26]. To achieve this, we set the mass of
the virtual periodic walls of the system mw, to be of the
order of the total mass of the particles in the system,
leading to consistent behavior. The pressure controlled
motion of the walls is described by [26]:

mwẍw(t) = Fx(t)− pAx(t)− γwẋ(t), (3)

where Fx(t) is the force due to the bulk material, pAx(t)
is the force related to the external load and the last term
is a viscous force, which damps the motion of the wall so
that oscillations are reduced. Ax is the area of the wall
perpendicular to x where x can be replaced by y or z in
Eq. 3, for other walls. We find that large values of mw

generally lead to large energy fluctuations/oscillations
while the final pressure is more rapidly approached for
systems with smaller mw. In contrast, too small mw can
lead to violent motions and should be avoided. Addition-
ally, we must mention that for our simulations, the sensi-
tivity of the system to the wall dissipation is small since
the simulations are performed in the very slow, quasi-
static regime.

3. Homogeneous strain-rate controlled isotropic
deformation

In this method, we apply a homogeneous strain rate
to all particles in the ensemble and to the walls in each
time-step, such that each particle experiences an affine si-
multaneous displacement according to the diagonal strain
rate tensor:

Ė = ǫ̇v





−1 0 0
0 −1 0
0 0 −1



 ,

where ǫ̇v (> 0) is the rate amplitude applied until a tar-
get maximum volume fraction of e.g., νmax = 0.82 is
achieved. The DEM dynamics allows the particles to ap-
proach mechanical equilibrium by following the new un-
balanced forces that lead to non-affine displacements due
to the new forces at each time-step, or after a relaxation
period.

4. Swelling of Particles

An alternative isotropic deformation protocol is to
allow the particle radii r to slowly ‘grow’ at rate gr
from an initial volume fraction according to the relation
dr/dt = grr. The swelling of the particles leads to a
change in the volume fraction until the target volume
fraction is achieved [30, 36]. During the growth period,
the particle mass changes with the radius. Additionally,
the volume fraction also changes with time according to
the relation dν/dt = 3νgr, leading to the volume fraction
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ν = ν0 exp{3grt} as function of time t. The detailed form
of the growth law with time is not relevant here, since all
rates are very small.

5. Comparison of driving modes

In summary, comparing the preparation methods, we
find that isotropic quantities like pressure, coordination
number or isotropic fabric evolve in a similar fashion for
all driving modes. However, the strain-rate controlled
isotropic preparation leads to very homogeneous config-
urations especially when viewed in terms of the mobilized
friction. In the wall driven case, we find that friction is
more highly mobilized in the contacts closest to the vir-
tual periodic walls of the system leading to slight inho-
mogeneities. However, when the particles closest to the
wall (up to ≈ 30 % of the box length) are excluded from
the computation, the resulting probability distributions
as well as the field quantities show negligible differences
with respect to the data from the full sample analysis.
Due to this assessment, we choose here to focus on the
wall driven isotropic compression since this more resem-
bles experimental set-ups and is especially suitable for
the subsequent uniaxial compression mode. Additionally,
the cosinusoidal wall motion allows for a smooth start-up
and end of the compression cycle unlike the “kick” (even
though tiny) to each particle in the strain rate controlled
protocol. To be confident with our conclusions, some
data are checked by comparing them with simulations
performed with the strain-rate protocol, without coming
to different conclusions.

C. Uniaxial Loading and Unloading

After isotropic compression, initial states can be cho-
sen from the loading or unloading branch (after relax-
ation to allow for kinetic energy dissipation) from which
the uniaxial test is initiated.
As element test, uniaxial compression is achieved by

moving the periodic walls in the z-direction according to
a prescribed co-sinusoidal strain path [16], as shown in
Eq. (1), with diagonal strain-rate tensor

Ė = ǫ̇u





0 0 0
0 0 0
0 0 −1



 ,

where ǫ̇u is the strain-rate (compression > 0 and decom-
pression/tension < 0) amplitude applied in the uniax-

ial mode. The negative sign (convention) of Ėzz corre-
sponds to a reduction of length, so that tensile deforma-
tion is positive. During loading (compression) the vol-
ume fraction increases from ν0 (at dimensionless time
τ = t/Tmax = 0) to a maximum νmax = 0.820 (τ = 0.5)
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FIG. 1: Evolution of volume fraction as a function of
time. Region A represents the initial isotropic

compression below the jamming volume fraction. B
represents relaxation of the system to fully dissipate the
systems potential and kinetic energy and C represents
the subsequent isotropic compression up to νmax = 0.820

and then subsequent decompression. Cyan dots
represent some of the initial configurations, at different
νi, during the loading cycle; blue stars, for the same νi
are different configurations, since obtained during the
unloading cycle; both can be chosen for further study.

and reverses back to the original ν0 at the end of the cy-
cle (τ = 1), after complete unloading. For more details
on preparation and other parameters, see Ref. [16].

Even though the strain is imposed only on one mo-
bile periodic “wall” with normal in the z-direction, which
leads to an increase of compressive stress during com-
pression, also the non-mobile x and y directions experi-
ence some stress increase as expected for “solid” mate-
rials with non-zero Poisson ratio, as discussed in more
detail in the following sections.

However, during decompression the stress on the pas-
sive walls is typically smaller than that of the mobile,
active wall, as consistent with anisotropic materials and
findings from simulations and laboratory element tests
using the bi-axial tester [23, 55] or the so-called lamb-
dameter [24]. One of the main goals of this study is to
also understand the behavior of the packing when com-
pression is changed/reversed to tension.

III. DEFINITIONS OF AVERAGED
QUANTITIES

In this section, we present the general definitions of
averaged microscopic and macroscopic quantities.
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A. General Tensor Formulation

To describe and better understand the relationships
between macroscopic quantities, tensors are split up into
isotropic, deviatoric and antisymmetric parts. For a gen-
eral decomposition theorem, each tensor can be decom-
posed as:

T =
1

2
(T + T

T ) +
1

2
(T − T

T ) = T sym + T skew, (4)

where T sym and T skew are the symmetric and antisym-
metric parts of the tensor. Since we will focus on the sym-
metric part, we further decompose T sym uniquely into its
spherical and deviatoric parts as

T = TvI + TD (5)

with Tv = (1/3)tr(T ) and the traceless deviator TD =
T−TvI. The latter contains information about the eigen-
system of T , that is identical to the eigensystem of TD

itself.
Any (deviatoric) tensor can be transformed using a

transformation matrix R to obtain its diagonal form:

T
eig
D =







T
(1)
D 0 0

0 T
(2)
D 0

0 0 T
(3)
D






= R

T · TD ·R, (6)

TD = Ti − Tv/3, where Ti’s are eigenvalues of T . Also,

T
(1)
D , T

(2)
D and T

(3)
D are the eigenvalues sorted such that,

as convention, T
(1)
D ≥ T

(2)
D ≥ T

(3)
D . R = (n̂1, n̂2, n̂3) is

the orthogonal transformation matrix, composed of the
corresponding eigenvectors, which transforms TD to its
eigensystem. According to linear algebra, Eq. (6) can
also be expressed as:

TD · n̂α = Tα
Dn̂α (7)

with Tα
D and n̂α the α-eigenvalue and eigenvector of TD,

respectively. The symbol “·” represents the inner product
of the tensor TD and the vector n̂α which leads to a
vector parallel to n̂α.
In the following, we provide a consistent decomposition

for strain, stress and fabric tensors. We choose here to
describe each tensor in terms of its isotropic part (first
invariant) and the second (J2) and third (J3) invariant
of the deviator:

J2 =
1

2

[

(T
(1)
D )2 + (T

(2)
D )2 + (T

(3)
D )2

]

(8)

J3 = det(TD) = T
(1)
D T

(2)
D T

(3)
D (9)

J3 can further be decomposed as J3 =

T
(1)
D T

(2)
D (−T (1)

D − T
(2)
D ), since we are dealing with

deviators.

B. Strain

For any deformation, the isotropic part of the infinites-
imal strain tensor ǫv (in contrast to the true strain εv) is
defined as:

ǫv = ǫ̇vdt =
ǫxx + ǫyy + ǫzz

3
=

1

3
tr(E) =

1

3
tr(Ė)dt,

(10)
where ǫαα= ǫ̇ααdt with αα = xx, yy and zz as the di-
agonal elements of the strain tensor E in the Cartesian
x, y, z reference system. The integral of 3ǫv denoted

by εv = 3
∫ V

V0

ǫv, is the true or logarithmic strain, i.e.,

the volume change of the system, relative to the initial
reference volume, V0 [14].
Several definitions are available in literature [48] to de-

fine the deviatoric magnitude of the strain. Here, we use
the objective definition of the deviatoric strain in terms
of its eigenvalues ǫd

(1), ǫd
(2) and ǫd

(3) which is indepen-
dent of the sign convention.
The deviatoric strain is defined as:

ǫdev =

√

√

√

√

(

ǫ
(1)
d − ǫ

(2)
d

)2

+
(

ǫ
(2)
d − ǫ

(3)
d

)2

+
(

ǫ
(3)
d − ǫ

(1)
d

)2

2
,

(11)
where ǫdev ≥ 0 is the magnitude of the deviatoric strain.
Note that the wall motion is strain controlled and the

infinitesimal strain corresponds to the external applied
strain. Hence the eigenvalues for the strain tensor are in
the Cartesian coordinate system (thus no transformation
is needed). For the purely isotropic strain, ǫISO = ǫvI,
with ǫdev = 0, which is direction independent by defini-
tion. The corresponding shape factor for strain Λ(−ǫ), is

represented as the ratio Λ(−ǫ) := ǫ
(2)
d /ǫ

(1)
d .

C. Stress

From the simulations, one can determine the stress ten-
sor (compressive stress is positive as convention) compo-
nents:

σαβ =
1

V





∑

p∈V

mpvpαv
p
β −

∑

c∈V

f c
αl

c
β



 , (12)

with particle p, mass mp, velocity vp, contact c, force
f c and branch vector lc, while Greek letters represent
components x, y, and z [16, 27]. The first sum is the
kinetic energy density tensor while the second involves
the contact-force dyadic product with the branch vector.
Averaging, smoothing or coarse graining [52, 53] in the
vicinity of the averaging volume, V , weighted according
to the vicinity is not applied in this study, since aver-
ages are taken over the total volume. Furthermore, since
the data in this study are quasi-static, the first sum can
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mostly be neglected. The isotropic stress is denoted as
hydrostatic pressure:

p = σv =
1

3
tr(σ) (13)

As already mentioned, we will focus on the eigenvalues
of the deviatoric stress tensor λsi = σD

i = σi−p, as defined
in section III A, with the principal directions being the
same for σ and σ

D. The (scalar) deviatoric stress for our
3D uniaxial simulations is:

σdev =

√

(λs1 − λs2)
2 + (λs1 − λs3)

2 + (λs2 − λs3)
2

2
, (14)

The deviatoric stress ratio, sdev = σdev/p, quantifies
the “stress anisotropy” - where σdev =

√

3Jσ
2 , with Jσ

2

the second invariant of the deviatoric stress tensor. The
third stress invariant Jσ

3 = λs1λ
s
2λ

s
3 = λs1λ

s
2(−λs1 − λs2) =

λs1
3(−Λ1

σ − (Λ1
σ)2) can be replaced by the shape fac-

tor Λσ := λs2/λ
s
1, which switches from +1 at maximum

uniaxial loading to -1/2 after some unloading as will be
shown below.

D. Structural (Fabric) Anisotropy

Besides the stress of a static packing of powders and
grains, an important microscopic quantity of interest is
the fabric/structure tensor. For disordered media, the
concept of a fabric tensor naturally occurs when the sys-
tem consists of an elastic network or a packing of discrete
particles. A possible expression for the components of the
fabric tensor is provided in [27, 31]:

F ν
αβ = 〈F p〉 = 1

V

∑

p∈V

V p

N
∑

c=1

nc
αn

c
β , (15)

where V p is the particle volume of particle p which lies
inside the averaging volume V , and nc is the normal vec-
tor pointing from the center of particle p to contact c.
F ν
αβ are thus the components of a symmetric rank two

3 × 3 tensor. In a large volume with some distribution
of particle radii, the relationship between the trace of
fabric, volume fraction ν and the average coordination
number C is given by 3Fv

ν := F ν
αα = g3νC, as first re-

ported in [29] and also confirmed from our wider friction
(µ) data. The term g3 corrects for the fact that the co-
ordination number for different sized particles is propor-
tional to their surface area such that for a monodisperse
packing g3 = 1 and for a polydisperse packing g3 > 1
[14, 31, 41].
A different formulation for the fabric tensor considers

simply the orientation of contacts normalized with the
total number of contacts Nc, as follows [25, 35, 39]:

Fαβ =
1

Nc

N
∑

c=1

nc
αn

c
β , (16)

The relationship between Eq. (15) and Eq. (16) is:

Fαβ =
F ν
αβ

g3νC
=

3F ν
αβ

Fv
. (17)

We can define the deviatoric tensor FD and calculate
the eigenvalues λfi = Fi − Fv/3 with Fv = 1, and Fi the
eigenvalues of the deviatoric fabric based on Eq. (16).
We assume that the structural anisotropy in the system

is quantified (completely) by the anisotropy of fabric, i.e.,
the deviatoric fabric, with scalar magnitude similar to
Eqs. (11) and (14) as:

Fdev =

√

(λf1 − λf2 )
2 + (λf1 − λf3 )

2 + (λf2 − λf3 )
2

2
, (18)

proportional to the second invariant of F
D, Fdev =

√

3JF
2 , where λf1 , λ

f
2 and λf3 are the three eigenvalues

of the deviatoric fabric tensor.
Alternatively, a simpler definition of the deviatoric fab-

ric for an axial symmetric element test takes into account
the difference between the fabric eigenvalue of the main
compressive (axial) direction and the average values in
the isotropic plane as follows:

F ∗

dev = λf1 − λf2 + λf3
2

. (19)

Note that if λf2 = λf3 , Eqs. (18) and (19) coincide.
Analogous to the definitions in Eqs. (18) and (19), Fdev

and F ∗

dev can also be defined using the definition of the
fabric presented in Eq. (15).

E. Eigenvector Orientation

Due to the axial symmetry of the uniaxial compression
mode, the orientation of the eigenvectors of stress and
fabric can be defined with reference to the main com-
pressive z-direction as:

θα = arccos
(

n̂
(α) · ẑ

)

(20)

where ẑ is the unit vector in the z-direction. Addition-
ally, orientations are projected such that they lie within
the range to π/2.

IV. RESULTS AND OBSERVATIONS

In this section, as results of the current study, first
we will discuss the influence of friction on the evolution
of stress and structural anisotropy as functions of de-
viatoric strain during loading and unloading. To com-
plement these results, we investigate the magnitude and
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orientation of the eigenvalues of stress and fabric during
loading and unloading and their respective shape factors.
To gain an insight into the relationship between the nor-
mal and tangential force on the macroscopic stress and
structure, we report briefly their probability density func-
tions (pdfs) for different frictional systems, as well as the
force intensity weighted by the contact state. Finally, we
present a 6th order harmonic approximation of the po-
lar representation of contacts and forces to describe the
axial-symmetric structural anisotropy, relating fabric to
the pdfs.
Isotropic quantities during loading and unloading for

various deformation paths were presented in Ref. [16] for
frictionless particles and will not be detailed here. We
only note that the coordination number and the hydro-
static pressure have been shown to scale quantitatively
differently with isotropic strain but behave in a very sim-
ilar fashion irrespective of the deformation mode applied.
The pressure has also been shown to be coupled to the
deviatoric strain via the structural anisotropy. The ef-
fects of polydispersity on the evolution of the isotropic
quantities have also been extensively studied in Ref. [20]
for various deformation paths. The isotropic quantities,
namely pressure, coordination number and fraction of
rattlers show a systematic dependence on the deforma-
tion mode and polydispersity via the respective jamming
volume fractions.
In the current work, we will focus on the non-isotropic

quantities and their evolution with respect to the devia-
toric strain.

A. Deviatoric Stress and Fabric

Under uniaxial compression, not only does shear stress
build up, but also the anisotropy of the contact and
force networks develops, as it relates to the creation and
destruction of new contacts [16]. We term the devia-
toric part of the stress tensor and its microscopic force-
direction dependence as the “stress anisotropy”, in paral-
lel to the contact direction-dependency of the structural
anisotropy.
The deviatoric stress ratio, sdev = σdev/p is shown in

Figs. 2(a) and 2(b) for a frictionless (µ = 0) and sev-
eral frictional (µ = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5
and 1.0) systems during uniaxial loading and unloading,
respectively. As the deviatoric strain applied to the sys-
tem is increased during uniaxial loading, the deviatoric
stress ratio initially grows for all the friction coefficients
shown. In some cases (for small µ), the maximal sdev
is reached before the maximum deviatoric strain applied
(εmax

dev =0.1549) is reached. For some of the configura-
tions studied, an asymptote (or steady state) is observed
in which further application of deviatoric strain does not
lead to visible further increase/decrease in the deviatoric
stress. At the maximum applied deviatoric strain, we
observe that not all configurations (especially the high-
est friction coefficients) have reached full saturation. For

the systems with lower microscopic friction coefficients,
a slight decrease of the deviatoric stress ratio for larger
deviatoric strains is seen. The slope of the deviatoric
stress ratio, which represents its growth rate shows a de-
creasing trend with increasing friction. Recall that the
initial packings are different since they are prepared with
different friction coefficients. Due to this, the pressure
increases with increasing friction while the coordination
number decreases with friction. The slope of the devia-
toric stress ratio in Fig. 2(a), related to the initial shear
stiffness of the isotropic packing is proportional to these
two quantities [12, 32, 51].

The evolution of the deviatoric stress during unload-
ing (after strain reversal) is presented in Fig. 2(b). Note
that due to the square-root definition used in Eq. (14),
the deviatoric stress remains positive [57]. During devi-
atoric unloading, sdev begins to decrease until the sys-
tem approaches an isotropic stress configuration, where
sdev = 0. The εdev values where sdev ≈ 0 consistently
decrease with increasing friction – as consistent with the
trend of the maximum sdev values reached during uniax-
ial loading at larger εdev for stronger friction. For systems
with large friction coefficients (µ = 0.3, 0.5 and 1.0), the
εdev values at which sdev = 0 are closer to each other
than for weakly frictional systems – see Fig. 8 below.

Along with the deviatoric stress ratio, for a character-
ization of the contact network of the particles, we plot
the deviatoric fabric magnitudes Fdev of the systems dis-
cussed above as function of the deviatoric strain during
uniaxial loading and unloading in Figs. 2(c) and 2(d), re-
spectively. In Fig. 2(c), the deviatoric fabric magnitude
builds up from different (random, but small) initial val-
ues and reaches different maxima within the same range
of deviatoric strain (εdev ≈ 4−6%). For larger strains, we
observe a decrease in the structural anisotropy towards
zero. Interestingly, for systems with higher friction coef-
ficients (µ = 0.3, 0.5 and 1.0), after the decrease in the
structural anisotropy, further loading in the axial direc-
tion leads to a (small) second increase of the deviatoric
fabric, until at maximum compression, the deviatoric fab-
ric again reaches a local maximum. This indicates that
more contacts are created in the axial compressive direc-
tion compared to the horizontal plane at the beginning
of the loading cycle. At the first maximum (εdev ≈ 0.06),
the material behavior changes such that the number of
contacts created in the horizontal plane becomes higher
with respect to the vertical plane. This trend reverses
again as maximum compression is reached for systems
with higher friction coefficients. This interesting behav-
ior will be further discussed when we analyze the mag-
nitude and orientation of the respective eigenvectors in
Section IVB.

After strain reversal, as presented in Fig. 2(d), the ini-
tial isotropic state is not recovered – a clear signature of
history dependence and structural anisotropy being in-
dependent of (or decoupled from) the deviatoric stress
ratio. Additionally, a strong difference can be seen in the
fabric response of systems with lower and higher friction,
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FIG. 2: The deviatoric stress ratio plotted as function of deviatoric strain during uniaxial (a) loading and (b)
unloading. The corresponding plots of the deviatoric fabric plotted during uniaxial (c) loading and (d) unloading,

for different microscopic friction coefficients.

respectively. As we will see later, the orientation of the
eigenvalues of these systems provide interesting insights
into these observations.

In general, comparing the evolution of deviatoric stress
ratio and deviatoric fabric, we observe a strongly decou-
pled and non-linear qualitative behavior with the linear
contact model used in this study. This confirms that the
non-linearity observed is a peculiarity of the deformation
mode and the structure of the packing.
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FIG. 3: Trend of the peak deviatoric stress and peak
deviatoric fabric with increasing microscopic friction
coefficient µ under uniaxial loading, given a maximal
strain εmax

dev = 0.1549. smax
dev values for µ > 0.1 are taken

at εmax
dev since no clear maximum is achieved. Dashed

line indicates µmacro = µ.

In Fig. 3, we plot the maximum deviatoric stress ratio
and maximum deviatoric fabric reached from Figs. 2(a)
and 2(c) for the respective friction coefficients. Inter-
estingly, the maximum deviatoric stress ratios increase
with increasing friction coefficient until µ ≈ 0.25, where
it peaks at smax

dev ≈ 0.43 and subsequently decrease for
higher friction coefficients. This maximum reached is
termed the “macroscopic friction coefficient”, µmacro :=
smax
dev [16], representing the macroscopic mobilized fric-
tion, i.e. shear resistance of the material. We note that
the maxima reached are higher than the microscopic fric-
tion coefficient for systems with low friction, between µ
= 0 and 0.4, while for higher friction, the maxima are
lower [49].
In Fig. 3, we also show the trend of the maximum

structural anisotropy reached, Fmax
dev , with increasing fric-

tion. Besides the increase between, µ = 0 and 0.01,
the maximum deviatoric fabric shows a decreasing trend
with increasing friction and saturates at Fmax

dev ≈0.025
for the highest friction coefficients. In comparison, the
structural anisotropy is much smaller than the deviatoric
stress ratio and it is reached at comparable εdev, whereas
the extreme stress anisotropy is reached much later for
higher µ.

B. Eigenvalues and Eigenvectors of Stress and
Fabric

In this section, we will discuss the magnitude of the
eigenvalues of deviatoric stress and deviatoric fabric dur-
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FIG. 5: Eigenvalues of the deviatoric fabric for µ = 0.1 plotted as functions of the deviatoric strain for (a) loading
and (b) unloading along with their corresponding orientations with respect to the compressive direction during

uniaxial (c) loading and (d) unloading.

ing uniaxial loading and unloading as well as the orienta-
tion of the eigenvectors. As reference and representative
example, we will show the data for only one of the co-
efficients of friction (µ = 0.1) and discuss in words the

interesting trends for the others. Finally, we will couple
the observations to the evolution of stress and structural
anisotropies presented in section IVA.

In Figs. 4(a) and 4(b), we plot the eigenvalues of the
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deviatoric stress for the frictional system with µ = 0.1
during loading and unloading against deviatoric strain
εdev. During loading λs1 which corresponds to the stress
eigenvalue of the axial compression direction increases
linearly from 0 and remains positive while the eigenval-
ues λs2 and λs3 of the two non-mobile direction are neg-
ative and very similar in magnitude. During unloading,
λs1 decreases but remains positive; at εdev ≈ 0.075, all
eigenvalues become zero and then switch order, so that
the axial direction eigenvalue is becoming increasingly
negative. The intermediate λs2 then gets identical to λs1,
both growing to positive values. The orientation of the
corresponding eigenvectors during loading and unload-
ing are shown in Figs. 4(c) and 4(d). At εdev = 0, the
orientations are different and random which is an indi-
cation of the almost isotropic initial configuration. With
increasing strain, θs1, which corresponds to the orienta-
tion of the compressive stress eigenvalue, converges to
θs= 0◦ and remains until the end of the loading path.
During this period, the stress and strain eigenvectors are
said to be colinear with respect to each other. On the
other hand, the orientation θs2 and θs3 of the other eigen-
values also drops to θs= 90◦ showing a perpendicular
alignment with respect to the compression direction. Af-
ter strain reversal, the eigendirections of stress do not
instantaneously respond to the directional change until
at εdev ≈ 0.10 where θs1 begins to increase to 90◦ and
finally reaches at εdev ≈ 0.03. Accordingly, θs3 drops to
0◦, while θs2 remains close to 90◦ all the time.
The corresponding eigenvalue and eigenvector orienta-

tions of the deviatoric fabric for µ = 0.1 are presented
in Figs. 5(a) and 5(b) during uniaxial loading and un-
loading. Similar to the eigenvalues of stress, the major

eigenvalue λf1 , remains positive while the two lower eigen-

values are negative. In contrast to stress, λf1 increases
and reaches a peak at εdev ≈ 0.05 after which it begins
to decrease towards zero as the maximum strain is ap-

proached. Also, λf2 and λf3 are not identical, i.e., λf3 has a

slightly higher magnitude than λf2 . This is an indication
of the existence of anisotropy in the plane perpendicu-

lar to λf1 even though the stress picture shows isotropy.
At maximum deviatoric strain, however, the magnitudes
of all the eigenvalues are close to zero. After strain re-

versal, λf1 and λf2 show an increasingly positive trend
from εdev ≈ 0.08 but are not exactly identical in magni-

tude while λf1 is negative and consistently decreases from
εdev ≈ 0.08 until the end of the decompression cycle.
Similar to the stress, the orientations of the fabric com-

ponents are interesting. Starting from random values, θf1
decreases and is close but distinct from 0◦ during load-

ing, while θf2 and θf3 are close to 90◦ during the same pe-

riod. This indicates that θf1 is not fully aligned with the
strain eigenvector with the deviation showing the non-
colinearity. After strain reversal, a delay can be seen be-

fore θf1 and θf3 transit to 90◦ and 0◦, respectively, while

θf2 remains close to 90◦.
Additionally, to fully describe the tensors, one can cal-

Shape factor τ ≈ 0 τ ≈ 0.5 τ ≈ 1
Λσ = λs

2/λ
s
1 Random -1/2 1

Λf = λf
2/λ

f
1 Random -1/2 1

Λ(−ǫ) = ǫ
(2)
d /ǫ

(1)
d Undefined -1/2 1

TABLE II: Shape-factors of stress and fabric in the
respective tensor eigensystem at the beginning,
maximum and end of uniaxial compression.

culate the respective shape factors for stress and fabric,
respectively, as the ratio of the eigenvalues as shown in
Table II at the initial, maximum and end of the uniaxial
compression–decompression cycle.

In the following analysis, we will investigate how the
orientation changes with increasing the microscopic fric-
tion coefficient and the relationships with the force net-
work.

In Figs. 6(a) and 6(b), we plot the orientations of the

first eigenvectors of stress θs1 and fabric θf1 for all contacts
and different friction coefficients, respectively. The initial
value of θs1 is random at the beginning of the loading path
for the different friction coefficients. As loading begins,
θs1 decreases and at εdev ≈ 0.02, θs1 ≈ 0◦ for all friction.
The relaxation rate (data scaled with the initial value of
the respective θs1), shown as an inset on a log-scale is non-
systematic for the different friction coefficients possibly
due to the initial isotropic configuration. Note that since
the angle θs1 does not exactly decrease to zero since θs1
is always positive even though it fluctuates around zero.
Observing the behavior of the eigenvectors n̂x and n̂y of
the largest eigenvalue, we find that during loading, they
approach zero (aligned with the compression direction)
and remain until maximum compression. After strain re-
versal, a slight delay is seen before the vectors finally flip
back to the plane [15]. After strain reversal at εdev =
0.16, the response of θ1(s) is slow and it only begins to
increase at εdev ≈ 0.12 for µ = 0. It is interesting to
note that the delay time increases with friction and pos-
sibly due to the higher maximum deviatoric stress val-
ues reported with increasing friction. The corresponding
orientation of the major eigenvector of fabric θ1(f) for
all contacts and different friction coefficients also starts
from different random values before decreasing to 0◦ with
increasing loading. Surprisingly at εdev = 0.08, for the
configurations with lower friction (µ =0, 0.01, 0.02 and
0.05), θ1(f) remains close to 0◦ while those with higher
friction (µ =0.2, 0.3, 0.5 and 1.0) begin to increase to-
wards 90◦ as we approach maximum compression. This
indicates that the orientations and build-up of contacts
for systems with lower/higher friction behave in opposite
fashion to each other and makes clear the reason for the
decrease seen in the deviatoric fabric evolution in Fig.
5(a). At the lower friction case, with increasing loading,
contacts are mostly built along the main compression di-
rection. However with increasing friction, a ‘saturation’
of contact build-up in the vertical direction sets in and
an increasing number of contacts begin to build-up in the
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horizontal direction. As strain is reversed, the eigenvec-
tor orientation for systems with low friction increases to
90◦ while a decrease before an increase to 90◦ is seen for
systems with higher friction.

To further understand this interesting observation we
sub-divide the respective systems into strong and weak
contacts and we plot the orientation of the stress and
fabric eigenvector corresponding to the compression di-
rection for the two sub-divisions. Strong contacts are
termed as those whose normal force intensity is greater
than the mean normal force while those with lower in-
tensity with respect to the mean normal force are termed
weak.

We plot the orientation of the major direction eigen-
vector of stress and fabric respectively in Figs. 6(c) and
6(d) for strong contacts. From Fig. 6(c), the orientation
of the strong contact main eigenvector of stress and fab-
ric behaves in a similar fashion as the total contact in
the ensemble. This is consistent with earlier findings [47]
where the strong contacts have been observed to carry
most of the load during deformation. Interestingly and
in contrast to the observation for all contacts, the fabric
eigenvalue for systems with both low and high friction all
stay close to 0◦ during loading and initial unloading.

Next, the orientation of the main eigenvector of stress
and fabric for weak contacts is shown in Figs. 6(e) and
6(f). Similar to the strong contacts, the stress and fabric
orientation of weak contacts behave in a similar fashion
but in contrast are mostly oriented at 90◦ during loading.
During unloading, the orientation tends towards 0◦.

Comparing Figs. 6(b), 6(d) and 6(f), it can be seen
that strong contacts predominate for the system with
very low friction while for higher friction, the orientation
of the weak contacts play a much significant role.

We also plot the respective shape factors as ratio of
the eigenvalues of stress and fabric for some exemplary
friction coefficients during uniaxial loading and unload-
ing in Fig. 7. For stress, shown in Fig. 7(a), beginning
from random values, Λσ decreases to -1/2 during loading
and reverses to 1 at the end of the unloading cycle. The
rates of change during loading and unloading are almost
identical, for different µ while during unloading, the devi-
atoric strain at which the increase occurs decreases with
increasing friction. As with the stress, the shape factor
of fabric Λf , shown in Fig. 7(b), also begins from random
values and during loading approaches Λf ≈ −1/2 with
stronger fluctuations for higher friction coefficients. At
the end of unloading however Λf approach unity.

In Fig. 8, we plot the deviatoric strains at which the
major eigenvalues θs1 cross 45◦ during unloading for dif-
ferent friction coefficients. Additionally, we also plot the
deviatoric strains at which the deviatoric stress ratio,
deviatoric fabric and the stress shape factor cross zero
from Figs. 2(b), 2(d) and 7(a), respectively. As shown,
the transition point decreases non-linearly with increas-
ing friction. All data originating from the stress tensor,
namely the major eigenvalue of stress, its orientation and
the stress shape factor all collapse on each other. On the

other hand, it is not surprising that the transition points
for the fabric quantities are slightly off since the fabric
behaves differently from the stress. The definition of the
fabric tensor takes into account only the normal direc-
tions and does not include the strong tangential contribu-
tions to the contacts. Therefore, as friction is increased,
the deviations can be stronger.
In the following section, we will investigate in more

detail the fraction of weak and strong contacts in these
systems and discuss their interplay and relation to the
observations on the orientations of the strong and weak
contacts. For clarity and to better view the evolution of
the quantities, instead of the deviatoric strain ǫdev, we
will study the evolution of the quantities against dimen-
sionless time τ = t/T – where T is the simulation time.

C. Friction Mobilization

Mobilization of contact friction, during uniaxial defor-
mation of the bulk material, is quantified by the factor
ft/µfn ≤ 1 for each contact. The tangential forces grow
towards their limit and support larger shear stress; for
tangential forces at/above the Coulomb limit, i.e., at fully
mobilized friction, sliding sets in and rearrangements of
contacts can lead to new, more stable configurations. It
has been observed [44] that sliding is mostly active at
weak contacts (termed weak sliding, wsl), while stronger
contacts stay in the sticking regime and sustain larger
friction forces while being less mobilized (termed strong
sticking sst). We refer to this as the ws–rule. Weak and
strong contacts are defined relative to the average normal
force at each timestep;

f∗ = fn/〈fn〉 < 1 (21)

are termed weak and

f∗ = fn/〈fn〉 > 1 (22)

are termed strong [44], with dominating sliding and stick-
ing, respectively.
As we will see shortly, we find that this friction mo-

bilization rule may not strictly hold in certain cases, as
there may be a considerable number of weak contacts
with friction not fully mobilized (termed weak sticking,
wst), as well as strong contacts fully mobilized (termed
strong sliding, sst).
As representative examples, in Fig. 9, we track two

different contacting pairs during uniaxial loading and un-
loading of the system with µ = 0.1 and study the force
intensity and friction mobilization as they evolve as func-
tion of the dimensionless time τ . For the first contact
pair shown in Fig. 9(a), during the first stages of load-
ing, the contact is weak since f∗ < 1; friction is fully
mobilized and sliding occurs at the contact, i.e. weak
contacts tend to full friction mobilization. For a short pe-
riod at τ ≈ 0.2, the contact becomes stronger and ft/µfn
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FIG. 6: Orientation of the largest positive (a) Stress eigenvector for all contacts (b) fabric eigenvector for all
contacts (c) Stress eigenvector for strong contacts (d) Fabric eigenvector for strong contacts (e) Stress eigenvector
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FIG. 7: Shape factors of (a) stress and (b) fabric as
function of the deviatoric strain for some exemplary

friction coefficients.

correspondingly reduces (with strong fluctuations) indi-
cating a strong contact where sticking predominates. At
τ ≈ 0.36, the contact between this particle pair is lost
(opened) and is only recovered at τ ≈ 0.7, where it can
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stress ratio, deviatoric fabric and the stress shape factor
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0.5 and 1.0.

again be classified as weak sliding (wsl) contact. As the
end of the compression cycle is reached, the contact in-
tensity increases and ft/µfn decreases, with strong fluc-
tuations again, and sometimes sliding. In general, the
ws–rule is mostly true for this contact pair except during
the transition from weak to strong where some fluctua-
tions in ft/µfn can be seen, transitions from sliding to
sticking can happen for weak contacts (wst) well below
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f∗ = 1 during increase of f∗, but also sliding can happen
for strong contacts (ssl).

The second contact pair shown in Fig. 9(b) is even
more interesting. Like the first particle pair, the second
pair also begin as a weak sliding contact and f∗ grows
until τ ≈ 0.15, where it becomes strong. Interestingly,
while the contact remains very strong for almost all of
the loading–unloading cycle, friction is highly mobilized
ft/µfn remains close to 1.

Since studying just two contact pairs within an en-
semble containing tens of thousands of contacts provides
very little information, we first extract the total fraction
of weak and strong contacts in the system. In Fig. 10(a),
we plot the total proportion of weak contacts with ref-
erence to the total number of contacts for the different
friction coefficients (which was studied in detail in Refs.
[16, 20] so that those data are not shown here). Surpris-
ingly, as with the orientation of the largest eigenvalue
of fabric for weak and strong forces plotted in Fig. 6,
we see a clear difference between the fraction of weak
and strong contacts. In the following, we will discuss in
detail the observations for weak contacts – which have
opposite trends as the observations for strong contacts.

The first observation from Fig. 10(a) is that a greater
fraction (over 50%) of the contacts in the respective sys-
tems are weak – an indication that fewer contacts carry a
larger than average proportion of the load in the system,
which is due to the shape of the force probability den-
sity function P (f∗), see Section IVD. Secondly, for sys-
tems with lower friction, the fraction of weak contacts at
the beginning of the loading cycle is significantly higher
than for higher friction, meaning that the load is more
evenly (not exactly proportionally) distributed between
weak and strong contacts for systems with higher fric-
tion coefficient. With increasing loading, while the total
number Ctot strongly increases (not shown), the fraction
of weak contacts decreases for packings with lower fric-
tion coefficients, and increases for those with higher fric-
tion. Also, the decrease of weak contacts with increasing
loading for lower friction systems is stronger and occurs
earlier than the increase for systems with higher friction.
At maximum loading τ = 0.5, the proportion of weak
contacts are close for all friction coefficients with slightly
higher fraction for the highest friction coefficients µ =
0.5 and 1.0. This observation, that the packings with
higher friction behave in a qualitatively different fash-
ion, is consistent with the earlier observation in Fig.6(b),
where the difference in orientation of strong/weak con-
tacts for low/high friction coefficients can be seen too.

It is surprising that the fractions of weak contacts are
close for systems with lower friction and evolve in a sim-
ilar (almost symmetric) fashion during loading and un-
loading. For µ = 0.01 and 0.05, the fractions of weak
contacts at the end of unloading are slightly lower than
at the beginning of loading. With increasing friction,
the fractions of weak contacts at the end of unloading
are higher than at the beginning of loading; the anti-
symmetry between the loading and unloading phases is

more visible for µ ≥ 0.1.

To evaluate the proportion of weak and strong con-
tacts contributing to sliding and sticking at contacts, we
plot in Fig. 11, the number of weak sliding (

∑

wsl) and
strong sticking (

∑

sst) contacts with respect to the the
total weak (

∑

w) and strong (
∑

s) contacts, respectively.
From Fig. 11(a), the fraction of weak sliding contacts
grows during loading and reaches a peak before it begins
to decrease towards zero as maximum loading (τ = 0.5)
is approached. The initial growth rate of the weak sliding
contacts and the peak reached decreases with increasing
friction but all approach zero at τ = 0.5 because the
deformation rate decreases to zero before reversal. Dur-
ing unloading, a second growth phase of the weak slid-
ing contacts is seen and the maximum reached is higher
than that reached during loading – thus leading to a non-
symmetry around τ = 0.5. Additionally, only a small
proportion (much less than ≈ 50%) of the total weak
contacts are sliding. This indicates that even though an
increase in the number of weak sliding contacts is seen
during loading and unloading, more and more weak con-
tacts stick (ft/µfn < 1) for increasing µ.

In contrast to the weak sliding contacts, the fraction
of strong sticking contacts, as presented in Fig. 11(b) de-
creases during loading until it reaches a minimum before
an increase towards τ = 0.5 can be seen. The rate of de-
crease and the minima reached decrease with increasing
friction and the minima are lower during unloading, i.e.
all data are non-symmetric around τ = 0.5.

In Fig. 12, we plot the number of weak sliding (
∑

wsl)
and strong sticking (

∑

sst) contacts with respect to the
total sliding and sticking contacts, respectively. In Fig.
12(a), we confirm that a higher proportion (> 0.5) of the
sliding contacts are weak [5, 6, 44, 45]. The proportions
of weak sliding contacts for µ = 0.01 − 0.3 are almost
identical and decrease during loading. During unload-
ing, however, the proportions of weak sliding contacts
behave differently with increasing friction. We again ob-
serve the non-symmetry of the loading and unloading
data. In Fig. 12(b), we plot the fraction of strong stick-
ing contacts with respect to the total sticking contacts.
A little less than 50 % of the sticking contacts are strong.
The fractions of strong sticking contacts increase initially
during loading and later decreases as maximum compres-
sion is approached. The fraction of strong sticking con-
tacts show a decreasing trend at τ = 0.5 with increas-
ing µ. During unloading, the fractions of strong sticking
contacts increase and later decrease towards the end of
the unloading branch. With increasing friction, the non-
symmetry of the data decreases. For the highest friction
coefficients, the fraction of strong sticking contacts dur-
ing loading is slightly more than those present during
unloading.

In summary, strong and weak forces have been ana-
lyzed along with the level of friction mobilization. It has
been shown that a higher proportion of the total contacts
in the system are weak, irrespective of the friction coef-
ficient. Among these weak contacts, the contacts which
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friction coefficients.

are sliding are less in number compared to the sticking
contacts. In contrast, when the total sliding contacts are
considered, a higher proportion of them are weak, as also
reported in earlier literature.

D. Probability density function

To better understand the relationship between contact
forces and the macroscopic stress and structure, we first
study the probability density function of normal contact
forces in different directions.

In the following analysis, we will consider the probabil-
ity distribution of the normal forces during uniaxial com-
pression with reference to the compressive z−direction
and the two lateral x and y−direction. Keeping each di-
rection as reference, we define a cut off χ such that the
contact forces admitted for the probability distribution
analysis fulfill the criteria |n̂c · n̂ǫ| > χ where n̂c is the
normal unit vector of the reference direction and n̂ǫ is
the strain eigenvector corresponding to a compressive or
tensile direction. The strain eigenvector is fixed due to
the deformation mode, but will be different for other test
set-ups. In the case χ = 0, all contact forces in the en-
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semble will be considered while no contacts exist when
χ = 1. For the present study, we set χ = 0.8 and only
note that as χ approaches 1, less data are available and
the noise level increases, but not changing much the fol-
lowing results.

In Fig. 13, we plot the normalized probability density
of the normal force P (f/〈fall〉) against the normalized
force f∗ = f/〈fall〉 for the three reference directions (x,
y and z) and for all contacts. In this case, µ = 0.1 and
cut-off χ has been set to 0.8. To allow for comparison,
the forces have been normalized with the mean of the
normal force for all contacts. As shown in Fig. 13(a), at
τ = 0, the force probabilities from the three reference
directions and for all contacts are virtually the same evi-
denced by the apparent collapse of the different curves on
each other. This is not surprising since the initial state
is isotropic and no direction-dependent deformation has
taken place. At maximum compression (in Fig. 13(b)), a
difference between the force distribution in the compres-
sion z−direction and the axial x and y direction is evi-
dent. Firstly, we observe that the force probability in the
radial directions (x,y) are close since no active deforma-
tion takes place in these directions. Another observation
is that the proportion of weak forces in the axial direc-
tion significantly exceeds those in the compression direc-
tion. Also, the mean force in the z−direction is observed
to be higher than in the radial direction. At maximum
compression, we observe a wider distribution in the com-
pressive z− direction compared to the force distribution
for all contacts and the two lateral directions.

The longer tail seen in the force distribution in the
z−direction is due to the presence of stronger forces com-
pared to the other directions. At the end of the decom-
pression cycle, shown in Fig. 13(c), we observe that the
initial state is not recovered due to the deformation his-
tory of the sample and there is a higher proportion of
weak forces in the decompression z−direction compared
to the radial directions.

V. POLAR REPRESENTATION

To understand the orientation and arrangement of the
contacts over the whole angular spectrum during uniaxial
deformations, we introduce now the polar representation
of contacts, forces and mobilized friction. For the analy-
sis, we test two different averaging methods, namely the
constant bin width (b) and constant height (h), which
give comparable results and are shown in detail in Ap-
pendix I. In the following, we will use data obtained using
the constant bin width method.

A. Harmonic approximations

The axial distribution of contact force orientations
P (θ), along with the degree of anisotropy in a granular
packing, can be approximated by a Legendre polynomial
based on spherical harmonics of the form Y m

l (θ,ϕ) [7, 10].
The approximation is simplified by admitting only func-
tions that are consistent with the symmetry of the defor-
mation mode, namely functions independent with respect
to ϕ and periodic as a function of θ. With this crite-
ria, the two lowest admissible functions are Y 0

0 =1 and
Y 0
2 = 3 cos2 θ − 1 such that the second order harmonic

representation of contacts is of the form:

P2(θ) = a0[1 + ǫ(3 cos2 θ − 1)] (23)

with the factor a0 as constant and a unique anisotropy
descriptor ǫ. In our case, due to normalization, a0 ≈ 0.5..
For the uniaxial mode, snapshots of the contact probabil-
ity density data are presented in Fig. 15(a) during uni-
axial loading and unloading. We observe distributions
with two peaks and a dip around π/2 indicating that a
higher order approximation is needed. The higher order
needed for the present uniaxial dataset is possibly due to
the peculiarity of the deformation mode. Unlike the tri-
axial test which involves an active stress control on the
lateral boundaries of the system, the stress on the lat-
eral boundaries of the uniaxial mode evolve, albeit with
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FIG. 13: Normalized probability density of the normal force P (f/〈fall〉) for the three reference directions and for all
contacts forces plotted against the normalized force f∗ = f/〈fall〉 for µ = 0.1 and cut-off χ = 0.8. Three snapshots

are shown at (a) initial, τ= 0, (b) maximum, τ =0.5, and (c) final, τ= 1.0 compression.

θ P2(θ) P6(θ)

θ = 0 a0[1 + 2ǫ] a0[1 + 2ǫ2 + 8ǫ4 + 16ǫ6]

θ = π/2 a0[1− ǫ] a0[1− ǫ2 + 3ǫ4 − 5ǫ6]

θ = π a0[1 + 2ǫ] a0[1 + 2ǫ2 + 8ǫ4 + 16ǫ6]

TABLE III: Second and sixth order harmonic expansion
of the contact distribution for the axial direction
(compression: θ = 0, π) and the lateral direction

(θ = π/2).

smaller magnitude in comparison to the stress in the axial
direction.

Eq. (23) can be extended to admit higher order spher-
ical harmonic functions with l = 4, 6. For l= 4, Y 0

4 =
35 cos4 θ − 30 cos2 θ + 3 and for l =6, Y 0

6 = 231 cos6 θ −
315 cos4 θ+105 cos2 θ−5 all with different prefactors. For
a 6th order expansion, the contact distribution will take
the form:

P6(θ) = a0[1 + ǫ2Y
0
2 + ǫ4Y

0
4 + ǫ6Y

0
6 ], (24)

where the axial symmetry is implied. Eq. (24) introduces
now three anisotropy state descriptors ǫi, with i = 2, 4, 6.
Also, Equations (23) and (24) can be further simplified
for the well defined limits at θ = 0, π/2 and π as shown
in Table III.

Different methods of obtaining the anisotropy state de-
scriptors have been attempted in this study. The de-
tails and comparison of the methods are discussed in
Appendix II. For all methods, we consistently observe
that the contact distribution is approximated by a sixth
order polynomial with two peaks and a strong depression
at π/2. In the following, as a reference case, we use the
azimuthal fit to the constant probability data discussed
in Appendix II.

B. Discussion of Results

Having established that the contact distribution is
approximated by a sixth order distribution with three
anisotropy state descriptors, we compare descriptors ǫ2,
ǫ4 and ǫ6 for different friction coefficients as functions of
the deviatoric strain during uniaxial loading and unload-
ing. From Fig. 14(a), besides a slight increase in the max-
imum ǫ2 values between µ = 0 and 0.02, the maximum ǫ2
value shows a decreasing trend with friction and almost
saturates for the highest friction coefficients. This is con-
sistent with the trend of the maximum deviatoric fabric
shown in Fig. 3. Also consistent with the deviatoric fabric
evolution during unloading is that the initial state is not
recovered. In Fig. 14(b), beginning from different ran-
dom values, ǫ4 is negative and systematically decreases
for all friction coefficients during loading followed by a
slight increase during unloading. The descriptor ǫ6 is
distributed around zero and remains fairly constant dur-
ing loading and unloading but has some variation within
either deformation.

In addition to the contact probabilities in Fig. 15(a),
we now study the distribution for other quantities. The
polar distributions of the normal force shown in Fig.
15(b) during loading displays a high and increasing nor-
mal force along the compression (axial 0◦) direction com-
pared to the lateral (π/2) direction reaching their max-
imum at τ = 0.5. After strain reversal (unloading), the
normal force in the tensile (extension) direction is re-
duced until the force in the lateral (π/2) direction be-
comes higher. Interestingly, in contrast to P (θ), the dis-
tribution of the normal forces fn(θ) is well described by a
second-order harmonic approximation similar to Eq. (23)
during loading and unloading.

For the distribution of the tangential force and mobi-
lized friction, shown respectively in Fig. 15(c) and 15(d),
we observe a distribution similar to that of the contacts
shown in Fig. (17), with two strong peaks and a depres-
sion around π/2. This indicates the need for a higher
order tensorial descriptor also for these two quantities
that appear to be strongly related with the behavior of
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FIG. 14: Comparison of the 6th order anisotropy state
descriptors (a) ǫ2 (b) ǫ4 (c) ǫ6 as a function of the

deviatoric strain for different friction coefficients during
loading (left) and unloading (right).

the contact network, rather than with the normal forces.
Similar to fn(θ), the distribution of the tangential force
ft(θ) also shows an increase along the compression direc-
tion followed by a decrease during decompression. We
also find that during loading, the mobilized friction in-
creases along the tensile (π/2) direction while remaining
fairly stable and flat in the lateral direction. After strain
reversal, the mobilized friction increases again along the
tensile direction (which is now 0◦). Coupling these obser-
vations to the normal force distribution, we find that fric-
tion is less mobilized along the direction where stronger
forces exist (compression) and more mobilized along the
direction where weaker forces (tension) are seen. Simi-
lar to the directional probability distribution of the nor-
mal force presented in Section IVD, the initial state (at
τ = 0) which is mostly isotropic is not recovered at the
end of unloading (τ = 1).

VI. SUMMARY AND OUTLOOK

The discrete element method has been used to inves-
tigate the microscopic and macroscopic response of fric-
tional, polydisperse granular assemblies under uniaxial
loading and unloading paths. The main goal was to inves-
tigate the effects of contact friction on the force and con-

tact network orientation and distribution and to relate
this to the evolution of structural anisotropy – which is
the key ingredient that quantifies the response of granular
materials under non-isotropic loading conditions. Since
the uniaxial test is widely realizable in laboratory exper-
iments using various geometries, our findings should be
relevant for both experimental and numerical researchers
interested in the behavior of packings under different de-
formation and stress conditions. The present study cov-
ers a wide range of friction coefficients for systems that
are already “jammed” and since the boundary walls are
periodic, the effects of walls and system geometry should
be minimal, which allows to understand the bulk behav-
ior with rather few particles (N ≈ 10,000).

As preparation procedure, in order to obtain homoge-
neous initial isotropic states, we attempted several prepa-
ration protocols and found that the methods lead to
mostly identical initial states. We report that the evo-
lution of the deviatoric stress ratio and the deviatoric
fabric, as functions of the deviatoric strain, in the pres-
ence of friction, are different with respect to each other.
Even though the contact model is linear, both quanti-
ties show a non-linear behavior due to the structural
changes during loading and unloading. For the config-
urations with lower friction, a saturation in the devia-
toric stress ratio during loading was observed. However,
when friction is increased, a clear saturation of the devi-
atoric stress ratio is not seen within the same maximum
strain. During loading, the deviatoric fabric, which quan-
tifies the structural anisotropy reaches a maximum be-
fore maximum εdev independent of µ, and then decreases
as the maximum strain is approached. Interestingly for
the higher friction coefficients, a second increase was ob-
served. The peak deviatoric stress ratio smax

dev reached
during uniaxial loading increases up to µ = 0.3 and sub-
sequently decreases for higher friction. The peak devi-
atoric fabric reached Fmax

dev largely shows a decreasing
trend with increasing friction and eventually saturates
at Fmax

dev ≈ 0.025.

The orientation of the largest stress eigenvector θs1,
during loading with non-systematic rates aligns to 0◦,
i.e. the compression direction. When strain is reversed,
we observe that θs1 remains oriented along the vertical
direction before reverting to 90◦. The deviatoric strain
at which the reversal happens is observed to decrease
with increasing friction. On the other hand, the orienta-

tion of the largest fabric eigenvector θf1 shows a strong
dependence on friction. For systems with low friction,

θf1 aligns with the compressive direction during loading
while the configurations with high friction begin to align
perpendicular to the axial direction as maximum devia-
toric strain is approached.

The deviatoric strains at which the stress tensor
changes, i.e. sdev = 0, θs1 = 45◦ and stress shape fac-
tor Λσ = 0 (zero), are identical to each other and show
a decreasing dependence on friction, with εdev ≈ 0.01 for
µ = 1. For quantities relating to the microstructure, e.g.
the strain at which e.g. Fdev = 0 is different from the
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FIG. 15: Snapshots of the polar distribution of the (a) contacts P6(θ) (b) normal force fn(θ) (c) tangential force
ft(θ) (d) mobilized friction ψt(θ) at different dimensionless time (τ) during uniaxial loading and unloading for

friction µ = 0.1.

stress.
As reported in previous studies [38], we also confirm

that the orientation of the eigenvector of stress corre-
sponding to the compression direction for strong (forces
greater than average) and weak (forces less than average)
contacts are orthogonal with respect to each other. As
a consequence of the definition of the stress tensor, the
effects of strong contacts are more dominant for stress.
For fabric however, strong contacts are more dominant
when friction is low while the weak contacts are found to
play a bigger role for stronger friction.
In terms of the proportion of contacts, we confirm that

a larger proportion of the total contacts are weak while
the proportion of sliding contacts out of the total con-
tacts are less than 45%. More importantly, we find less
than 50% weak sliding contacts with respect to the total
number of weak contacts. On the other hand, the pro-
portion of weak sliding contacts with respect to the total
sliding contacts are significantly higher. The latter is in
agreement with earlier studies that show that friction is
more highly mobilized in weak contacts [44, 45].
As a consequence of the isotropic initial configuration,

we find that the directional distribution of normal forces
at the initial state are isotropic for all µ. At maximum
compression, we observe a higher mean, a lower peak and
a wider tail of the force distribution in the compressive
z−direction while the distribution in the two lateral di-
rections remain identical, narrower and have a shorter
tail. Due to history, after uniaxial compression and ten-
sion, the initial states are not recovered with weaker

forces and less contacts in the tensile z− direction.

We have also presented two averaging methods for the
polar representation of contacts using the constant az-
imuthal and constant height methods. For our data, a
second order tensor is insufficient to describe the struc-
tural anisotropy. We find a sixth order distribution with
two peaks leading to three anisotropy state descriptors
(ǫ2, ǫ4 and ǫ6).

We find that ǫ2 is close to F s
dev/

√
3 and for different

friction, the maximum ǫ2 values behave in a similar fash-
ion to the maximum deviatoric fabric. Finally, while
a second order tensorial descriptor is sufficient for the
normal force, the tangential force and mobilized friction
show a similar behavior to the contact distribution – re-
quiring a higher order harmonic approximation due to
the two strong peaks at π/4 and the dip around π/2.

Future studies will concern exploring higher order
tensors and the validity of the findings for other non-
isotropic deformation modes (e.g. under simple and pure
shear). Furthermore, recent experiments [9] will allow to
validate the present observations by DEM.

Appendix I: Averaging Methods

In this appendix, we describe the two averaging meth-
ods namely the constant azimuthal angle method (b) and
the constant height method (h).
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A. Constant azimuthal angle (bin width) method

Given the three normal unit vector components n̂x, n̂y,
and n̂z for each contact pair, to calculate the azimuthal
angle, one needs the polar orientation arccos(n̂z) of the
normal unit vector in the direction relative to the active
(axial) direction as schematically described in Fig.16(a).
We average over the spherical azimuthal (vs. polar) (r, ϕ)
coordinate and then distribute the vectors, based on their
orientation into bins of width ∆θ.
The fraction of contacts in a single bin is defined as

φθ = Cθ/Ctot, where C
θ =

∑

C∈b 1 and b ∈ [θ−∆θ/2; θ+

∆θ/2]. Furthermore, φθ is normalized with the surface of
the spherical annulus for each b by the factor ∆θ sin θ to
yield the azimuthal contact probability density P (θ) =
(φθ/∆θ sin θ) such that

∫ π

0
P (θ) sin θ∆θ = 1. [58] The

polar distributions of the normal forces, tangential forces
and mobilized friction are given respectively, by fn(θ) =
(
∑

C∈b fn)/(C
θ), ft(θ) = (

∑

C∈b ft)/(C
θ) and ψt(θ) =

(
∑

C∈b(ft/µfn))/(C
θ), where the normalization with the

number of contacts in each bin has been used.

(a) (b)

FIG. 16: Schematic representation of the angles of the
contact unit vector (green arrow) for (a) the constant
bin width ∆θ method and (b) the constant height

method. The angles θ and ϕ are the azimuthal angle
and polar angle of the system, respectively.

B. Constant height method

In the constant height method, we sort the vectors
based on their orientations into n azimuthal spherical
segments with equal heights ∆h = cos θ2−cos θ1 as shown
schematically in Fig 16(b). Given the polar radius r, and
the height from the center of each segment to the middle
of the sphere h, the polar angle θ of each vector is calcu-
lated for every n̂z ∈ h. The fraction of contacts within
each segment range is then given as φh = Ch/Ctot, where
Ch =

∑

C∈h 1 and h ∈ [h − ∆h/2;h + ∆h/2]. With
−1 ≤ h ≤ 1, specifying the number of bins Mh (e.g.
Mh = 20), allows to compute all h−intervals and bound-
aries.
Other quantities, including the normal and tangential

forces and mobilized friction can be computed similar to

the constant bin width method, just by summation and
normalization with Ch instead of Cθ.

Appendix II: Fit Methods

In the following, we describe different methods of ob-
taining the anisotropy state descriptors using the data
obtained using the constant bin width or the constant
height methods.

C. Method 1: Fit azimuthal contact probability
density P (θ) = (φθ/∆θ sin θ)

In the first case, we fit the azimuthal contact proba-
bility density data P (θ) = (φθ/∆θ sin θ) using the har-
monic equation (24). Note that for the special case of
uniaxial compression, Eq. (23) does not lead to consis-
tent results across the methods and is thus disregarded.
However, as shown in different literature especially un-
der triaxial compression, the second order approximation
P2(θ) is sufficient to fully capture the contact probability
density data. Exemplary (not exhaustive) references of
works where forms of Eq. (23) as applied to various tri-
axial tests are presented in table IV. Other experimental
and numerical set-ups are also shown. Note that in these
cases, the orientational contact distribution obtained is
not of second order and are not fitted.

D. Method 2: Fit to the constant height data

In the second case, we directly fit the fraction of con-
tacts φh, generated using the constant height method
such that the bad statistics at the poles are not over-
exposed as in Method 1. In this case, we set the zero
order parameter a0 = 0.5.
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FIG. 17: 6th Order Fits of methods 1 and 2 and 3 to
the P (θ) = (φθ/∆θ sin θ) data at dimensionless time
τ = 0.076. The solid red symbols represent data

obtained using the constant height method (h), while
the triangles are those obtained with the constant bin

width method (b).
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Reference Mode Contact Harmonic function

probability P (θ)

1. Azema et al. [7] triaxial second order 1
4π

[1 + ǫ(3 cos2 θ − 1)]

2. Deng and Dave [11] particle Settling higher order –

in a cylindrical geometry

3. Ishibashi et al [18] triaxial second order K(1− ǫ+ 3ǫ cos2 θ)

4. Jenkins [19] triaxial second order C
4π

[(1− ǫ) + 3ǫ cos2 θ]

5. Silbert et al. [43] 3D particle settling higher order –

on a flat base

6. Staron and Radjai [44] 2D avalanche higher order –

TABLE IV: Selected references on the orientational contact distribution for various modes. For an isotropic sample,
K = C/4π and C is the coordination number.

E. Method 3: Fit to fraction of contacts φθ with a
∆θ sin θ scaling

In the third case, we fit the fraction of contacts φθ data
directly using harmonic equation (23) or (24) multiplied
by ∆θ sin θ. The original signal is a first order sinus, i.e.
less weighting is given to the areas close to the poles such
that their larger statistical errors are suppressed.
In Fig. 17, we show the sixth order harmonic fits using

methods 1 (M1), 2 (M2) and 3 (M3) to the constant bin
width (b) and constant height (h) data for µ = 0. For
each method, three anisotropy state descriptors, namely
ǫ2, ǫ4 and ǫ6 are obtained. Here, as an example, we show
a single snapshot, namely at τ = 0.076. Note that the
original data is from 0 to π/2 and the extension from π/2
to π is only a mirror image. Focusing on the numerical
data (symbols), we observe two strong peaks at about
π/2± π/4 and a local maximum at π/2. The twin peaks
indicate that a distribution higher than second order is
needed. The data are well captured by a sixth order
approximation P6(θ) (solid lines). Comparing the b and
h, we observe stronger scatter at the boundaries for the b
data due to the weak statistics at the extreme θ values (0
and π). For the fits, we observe that M1, M2 ad M3 are
close and the major differences between them are most
pronounced at both peaks and extrema.
In Fig. 18, we plot the evolution of the anisotropy

state descriptors ǫ2, ǫ4 and ǫ6 as functions of the devia-
toric strain and compare the three methods. From Fig.
18(a), during loading, ǫ2 grows and reaches a maximum
at εdev ≈ 0.025 from where it slightly decreases. After
maximum loading, ǫ2 decreases (taking well into account

the sign change) and becomes increasingly negative un-
til it reaches ǫ2 ≈ −0.055 at complete unloading (τ=1).
Comparing the three methods, M3 is slightly off (higher)
during loading while M1 is also slightly off at the end of
unloading. Interestingly, we find that the evolution of ǫ2
is similar to the simple definition of the deviatoric fabric
in Eq. (19) involving a difference between the fabric com-
ponent of the axial direction and the average of the com-
ponents of the two lateral components. Note that the def-
inition of the fabric used here is based on Eq. (16) which
considers only the contacts and not the dependence on
the volume fraction. We note that the magnitude of ǫ2 is
proportional to Fdev/

√
3 (black diamonds in Fig. 18(a))

with M3 slightly off during loading and the unloading
data also showing slight variations. From Fig. 18(b) and
18(c), the values of ǫ4 and ǫ6 appear small compared to
ǫ2 but must not be neglected. When ǫ2 is taken as the
structural anisotropy state descriptor, it much resembles
Fdev. However, the higher order anisotropy is quantified
by the ǫ4 (which is negative) and ǫ6 (which is strongly
fluctuating and different for different methods).
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[5] E. Azéma and F. Radjai. Phys. Rev. E., 81:051304:1–17,

2010.



21

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

∈
2

εdev

M1
M2
M3
Fdev/√  3

(a)

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

∈
4

εdev

M1
M2
M3

(b)

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

∈
6

εdev

M1
M2
M3

(c)

FIG. 18: Evolution of the anisotropy state descriptors ǫ2, ǫ4 and ǫ6 of the 6th order expansion Eq. (24) as function
of deviatoric strain using the three methods for µ = 0.
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