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ABSTRACT 
 
Asphalt is an important road paving material. Besides an acceptable price, durability, surface conditions (like 
roughening and evenness), age-, weather- and traffic-induced failures and degradation are relevant aspects. In the 
professional road-engineering branch empirical models are used to describe the mechanical behaviour of the material 
and to address large-scale problems for road distress phenomena like rutting, ravelling, cracking and roughness. The 
mesoscopic granular nature of asphalt and the mechanics of the bitumen layer between the particles are only partly 
involved in this kind of approach. The discrete particle method is a modern tool that allows for arbitrary (self-
)organization of the asphalt meso-structure and for rearrangements due to compaction and cyclic loading. This is of 
utmost importance for asphalt during the construction phase and the usage period, in forecasting the relevant distress 
phenomena and understand their origin on the grain-, contact-, or molecular scales. Contact models that involve visco-
elasticity, plasticity, friction and roughness are state-of-the art in fields like particle technology and can now be 
modified for asphalt and validated experimentally on small samples. The ultimate goal is then to derive micro- and 
meso-based constitutive models that can be applied to model behaviour of asphalt pavements on the larger macro-
scale. Using the new contact models, damage and crack formation in asphalt and their propagation can be modelled, as 
well as compaction. Furthermore, the possibility to trigger self-healing in the material can be investigated from a 
micro-mechanical point of view. 
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1. INTRODUCTION  
 
Asphalt mixtures are composite materials that consist of solid particles, viscous binder/fluid (bitumen) and pores filled 
with air. When considering asphalt we should distinguish different states the mixture can be in: a) hot and non-
compacted (construction phase, relatively loose particle matrix) and b) compacted at ambient temperature. During 
compaction of the mixture the relative contents of the different phases changes: starting from the initially loose 
material, the particle in the skeleton move close to each other and air in the voids is squeezed out. The fluid in the 
mixture (that can be hot or cold, i.e. less or more viscous) lubricates the contact surfaces between the particles and can 
make movement of the particles easier [1]. The multiphase material has properties that depend on those of the original 
components, i.e. aggregate and binder. The physical properties of the skeleton (e.g. shape, surface texture, size 
distribution, moduli), but also the properties of the binder (e.g. grade, relaxation characteristics, cohesion) and binder–
aggregate interactions (e.g. adhesion, absorption, physiochemical interactions) characterize the material behavior of the 
asphalt mixture. In addition, aggregate particles in the mixture have different shapes, surface texture and orientations, 
which make the description of the contacts between particles a challenge [2].  
When looking at asphalt, it makes sense to distinguish between three different length scales, i.e. micro-, meso- and 
macro-scale. The interaction between the mortar (composition of bitumen and the smallest particles) and a single large 
stone is defined as the micro-scale. The interaction of multiple stones of various sizes and the mortar is defined as the 
meso-scale. On the macro-scale, the behavior of the whole road is accounted for. Kinematics at different scales 
apparently governs the behavior of the material: to gain thorough knowledge of asphalt pavement behavior, one has to 
focus on all three length scales. As common practice in the professional asphalt branch, fundamental constitutive 
models able to describe the micro- and meso-mechanical behavior are hardly used. Large scale problems are addressed 
by using empirical models [1] for road distress phenomena like rutting, raveling, cracking and roughness. The 
mesoscopic granular nature of asphalt, the chemistry and the mechanics of the (modified) bitumen layer between the 
particles is, because of the limitations of those empirical models, just partly involved. Our ambitious goal is to bridge 
the gap between discrete and continuous concepts. The material behavior at the grain-scale can be combined with the 
granular structure in order to identify the contact law for the asphalt components and relate such kinematics with the 
macroscopic response at the larger scale of the road. Finding a micro-based model with predictive quality on the macro-
level is the ultimate challenge.  
On the particle-scale, the interaction of the mortar with the grains and between the grains can be efficiently investigated 
using a Discrete Element Method (DEM) [3]. Discrete element methods simulate particulate systems by modeling the 
translational and rotational degrees of freedom of each particle using Newton’s laws, and the forces are calculated 
associating proper contact models with each particle contact. 
In the last twenty years, attempts for a micro-mechanical modeling of asphalt have been done by other researchers: a 
contact law for the behavior of two particles connected by a binder and elastic to describe the behavior of an assembly 
of bonded particles was proposed in Ref. [4]; a micro-mechanical description of rutting with intergranular and 
aggregate-binder interactions was given in Ref. [5]; 2D modeling based on image processing are reported in [2]. DEM 
studies on cemented particulate materials include the work by Rothenburg et al. [5], Chang and Meegoda [6], Sadd and 
Dai [7], Buttlar and You [8] and Ullidtz [9].  
Special attention deserves the Finite Element numerical approach LOT (Lifetime Optimization Tool) used in [10]. Here 
the authors define an adhesive zone, taking into account the boundary effect of the mortar. The stone chippings are 
modeled as pure rigid bodies, that can’t deform. It is assumed that for modeling raveling, caused by repeated traffic 
loading, the effect of the bonding agent (mortar) is dominant. For this reason, they study cohesive failure (within the 
mortar) and adhesive failure (between mortar and stone chippings). Given the behavior of the mortar as input 
information from specific laboratory tests (Dynamic Shear Rheometer, Dynamic Material Analyser, Direct Tension 
Test), the adhesive zone can be reproduced. The mortar is modeled as a linear visco-elastic material. On the basis of the 
performed tests, a damage model for the adhesive zone is derived, and from here, input parameters for the LOT 
calculations are retrieved. Three types of FE model have been developed: i) 2D idealized, i.e. ideal 2D round particles; 
ii) 3D idealized, i.e. ideal 3D round particles, and iii) 2D photo/scan, based on pictures of real samples. FE simulations 
lead to the visualization of stress distributions in the sample. In Figure 1 the maximum principal stress within the mortar 
using the 2D photo/scan model is shown. 
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Fig. 1: Indication of the maximal principal stress (i.e. tensile stress) in the central area of the model (after [10] 
with thanks to the authors).  
 
Nevertheless, a well-established multiscale description for the constitutive behavior of particle-bitumen systems is still 
missing. Particularly, very limited work has been done on 3D micro-mechanical modeling of the mixture, with proper 
visco-elasto-plastic, temperature-dependent contact/interaction models. Moreover, to our knowledge, no systematic 
numerical study on the microscopic processes that govern cracks (and eventually self-healing) in asphalt has been done. 
On the technological/methodological side, a general computational framework suitable for simulating the loading/cyclic 
and fracture/healing behavior of granular-bitumen composites is the need of the hour. The detection and analysis of 
damage as well as microscopic self-healing mechanisms have been achieved by particle based simulations already 
[11][12] so that these results now can be applied to asphalt and translated to a practicable continuum model with 
predictive quality, which will allow proposing and designing optimized materials with superior self-healing capabilities 
in the future [13]. 
In this preliminary study an approach to modeling of cohesive, sintering and self-healing particulate materials is 
described [14]. The mechanical evolution in time of all the particles in the material is simulated in DEM using a modern 
version of the sintering contact model [11]. This contact model mimics the physical behavior of the interaction of the 
particles accounting for dissipative, elasto-plastic, adhesive, and frictional effects and the pressure dependence. The 
model is by construction non-linear in its response to external load [11]. An additional temperature-dependence, as 
possibly resulting from diffusion of atoms and the resulting sintering effects, can be added on top of the elasto-plastic 
contact model [12]. 
Initially, some particle-samples are prepared by applying isotropic (hydrostatic) pressure. The spherical particles 
deform plastically at contact and stick to each other forming a solid sample with (after releasing pressure) zero 
confining stress – on which uni-axial tension or compression is further applied. The numerical results are compared 
(qualitatively) with laboratory uni-axial tests from [15] on samples of dense asphalt concrete. The comparison is 
encouraging as the model is able to reproduce the typical softening behavior of asphalt under compression. 
Large deformations of sintered samples will then lead to damage. In the final part of the work, self-healing of sintered 
particulate materials is studied using the DEM simulations. Loose particles can sinter due to their time-, stress- or 
temperature-dependent contact properties and forces. Self-healing of damaged samples can be activated through re-
sintering, a process that globally increases further the contact adhesion between particles. The simplest self-healing of 
particle contacts only involves the increase in contact strength due to re-sintering, without accounting in detail for all 
microscopic mechanisms. Experimental and numerical studies indicate that the net increase in strength depends on the 
sintering temperature and duration, see for example [12][16][17]. In the simulations, during the initial pressure sintering 
preparation, the optimal strength is not reached. Hence, the sample still has the potential to be strengthened further 
during a second sintering (healing). If the re-sintering is applied after the sample has already experienced some damage 
under mechanical loading (like uni-axial tension or compression), the question is to which extent the damage can be 
healed. 
In Section 2 the technical details of the simulation method are summarized, and the pressure-sintering contact model is 
described. In the following section 3, numerical results of DEM simulations are reviewed for damage under unconfined 
uni-axial tensile and compressive loading. In Section 3.3 a qualitative comparison is made between the numerical data 
and results from laboratory uni-axial compression tests on unconfined asphalt samples [15]. In Section 3.4, DEM 
simulations are reported, where self-healing through re-sintering is applied to the previously used numerical samples. 
Finally in section 4, an example is reported describing how the parameters obtained from numerical element tests can 
be implemented in FE simulation to reproduce macro-scale asphalt processes. 
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2. SIMULATION METHOD 
 
2.1 DEM modeling of particulate materials 
 
The Discrete Element Method (DEM) [3] for particle systems can be used to illustrate how the macroscopic response of 
a solid-like, sintered sample, resembling an asphalt mixture, depends on various micro- and meso-scopic properties 
such as the particle-particle contact network, the particle size, and the contact adhesion between particles (simulating 
the interaction of the bitumen with the particles), their contact friction and stiffness. In the present work, after solving 
the equations of motion at the particle level, the coupling between micro- and macro scale properties is performed. The 
response of the particle system (expressed in terms of macroscopic stress and strain) is obtained by averaging [18] the 
local quantities at the particle contact level (interparticle contact forces and displacements) over the assembly. The 
effective response then depends directly on the chosen particle contact model [11][19][20]. Even though recent studies 
have demonstrated that the accurate simulation of systems composed of non-spherical particles is possible [21][22], for 
simplicity we restrict ourselves here to spherical particles. 
 
2.2 Adhesive contact model 
 
In the following, particulate material samples are (i) prepared, (ii) deformed and damaged, and then (iii) self-healed and 
(iv) deformed again. The non-linear model by Luding et al. [11][23][24] is used – see these references for more details, 
to describe the adhesive particle-particle interaction in the asphalt mixture. In Figure 2, the normal contact force f (that 
is directed parallel to the line connecting the centers of two contacting particles) is plotted against the contact overlap 
(resembling the deformation between particles at the contact), δ > 0. If δ < 0, there is no contact between particles, and 
thus f = 0. This sign convention relates positive (negative) values of the contact displacement δ to overlap/deformation 
(separation), while positive (negative) values of the contact force f relate to compression/repulsion (tension/attraction).  
 
 

 
Fig. 2: Particle contact model plotted as force-displacement relation [11][23], with d for contact positive, and 
repulsion and attraction forces positive and negative, respectively. 
 
A contact begins at δ = 0 and, during initial compressive loading, the contact force increases with the overlap as f=k1δ, 
with k1 the elasto-plastic contact stiffness. When the external compressive forces are compensated by the contact 
repulsive force at the maximum contact overlap, δmax, for unloading, the contact stiffness increases to a value k2, so that 
the elastic unloading force is f = k2(δ−δf).  Elastic unloading to zero contact force leads to the (plastic) contact overlap δf 
= (k2−k1) δmax/k2. If the overlap is further decreased, the contact force gets tensile, with maximum tensile contact force 
ft,max = –ktδt,max, realized at contact displacement δt,max.  
For the sake of brevity, the tensile softening parameter kt hereafter is referred to as the “contact adhesion”. Note that, 
mostly for practical reasons [11], for contact deformations above  δmax, the force follows the limit branch f = k2(δ−δf), 
since further loading is unrealistic anyway and would lead to much stiffer behavior if properly modeled. The extreme 
loading and unloading limit branches are reflected by the outer triangle in figure 1. Starting from the realized maximal 
overlap, δ*

max<δmax, unloading occurs within the outer triangle, as characterized by a branch with stiffness 
k* = k1+(k2−k1) δmax ∗/δmax, and (elastic, reversible) force, f ∗= k*(δ−δ∗). The intermediate stiffness k* follows from a linear 
interpolation between k1 and k2 – which is our (arbitrary) choice due to the lack of experimental data on this (probably) 
non-linear behavior. In summary, the model has three (“stiffness”) k-parameters that describe the three relevant physical 
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effects at the contact: (1) elasticity, (2) plastic deformations, and (3) contact-adhesion. Furthermore, the model involves 
(4) a non-linear contact stiffness via the choice of k*. This piece-wise linear model is a compromise between simplicity 
and the need to model physical effects. Except for some early theoretical studies, see [20] and the many works that are 
based on it, there is no experimental/numerical literature available to our knowledge that provides enough detailed 
information on the force-displacement relations, involving all four physical contact properties above and their 
nonlinear, history-dependent behavior. If this information becomes available, the present model can be extended and 
generalized. 
The tangential contact force acts parallel to the particle contact plane and is related to the tangential contact 
displacement through a linear elastic contact law, with the tangential stiffness ks. The tangential contact displacement 
depends on both the translations and rotations of the contacting particles. Coulomb friction determines the maximum 
value of the tangential contact force: During sliding the ratio between the tangential contact force and the normal 
contact force is assumed to be limited and equal to a (constant) dynamic friction coefficient µd; during sticking, the 
tangential force is limited by the product of normal force and static coefficient of friction µs.  
 
Tab. I: Microscopic material parameters based on Ref. [11], but rescaled as indicated in the right column. 
 

Property  Symbol Values [14] SI units 
Time Unit ut  1 1 ms 
Length Unit ux  1 1 m 
Mass Unit um  1 1 kg 
Average radius 

� 

R  0.5 10-3 0.5 mm 
Material density ρ  2000 2000 kg/m³ 
Elastic stiffness 2k k=  5.104 5.1010 kg/s² 
Plastic stiffness 1 2/k k  0.5  
Adhesion “stiffness” 2/tk k  [0, …, 20]  
Friction stiffness 2/sk k  0.2  
Plasticity range fφ  0.05  
Coulomb friction d sµ µ µ= =  1  
Normal viscosity nγ γ=  5.103 5.106 kg/s 
Tangential viscosity /fγ γ  0.2  
Background viscosity /bγ γ  4  
Background torque /brγ γ  1  

 
 
3. RESULTS: LOCAL BEHAVIOR 
 
The simulations reported here consist of four subsequent stages, namely (i) a sample preparation stage (isotropic 
compression), (ii) an uni-axial (tensile or compressive) loading stage, (iii) a self-healing stage, and (iv) the continuation 
of the uni-axial loading.  
Six plane, perpendicular outer walls form a cuboidal volume, with side lengths of L = 11.5 mm. The samples are 
composed of about 103 poly-disperse spherical particles (see Figure 3 as an example), with particle radii drawn from a 
Gaussian distribution around mean 

� 

R = 0.5 mm [11][25]. The particle density used in the simulations is ρ=2000 kg/m3, 
 
 
 
 
 
 
 
 
 
 
 
 

    
 

Fig. 3: Sequence of snapshots from a compression test with  poly-disperse particles and rigid outer walls 
(kt/k2=0.5). The circles are the particles with the greyscale coding the average stress. 
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the maximum elastic contact stiffness is k2=5.1010 N/m. The initial elasto-plastic stiffness (normalized by k2) is 
k1/k2=1/2, and the contact adhesion kt/k2 is varied. The other stiffness parameters, friction coefficients, and viscous 
damping parameters are summarized in Table I, most of them being dimensionless, like all quantities discussed in the 
rest of the paper. As final remark, we note that the choice of parameters is empirical – most of them kept fixed here, 
only adhesion is varied systematically. 
 
3.1 Isotropic Loading  
 
In this section the sample preparation by pressure sintering [23] is reported. During sintering, the particles deform 
plastically at contact and stick to each other due to strong, non-linearly increased van der Waals forces. At the same 
time, the sample shrinks, i.e. becomes denser. Such pressure-sintering results in a solid sample with bonded particles, 
similar to asphalt mixtures. Moreover, the sintering model can be temperature-dependent, resembling the effect of the 
temperature in the asphalt preparation with bitumen [12]. The process is characterized by two stages: the first stage 
reflects the application of a hydrostatic (or isotropic) pressure, σs/σ0 = 4.10-2, to a loose assembly of particles, with the 
reference stress σ0 = k1/(2R ). This desired isotropic stress is slowly applied to the six outer walls. The hydrostatic 
loading process is considered to be finished when the kinetic energy of the sample is negligible compared to the 
potential energy. For our sample, the solid volume fraction (volume of the solid particles over total volume) at the end 
of the hydrostatic loading process is ν = 0.676, which relates to a porosity (volume of fluid and air phases with respect 
to total volume, in the specific case of asphalt) of 1–ν = 0.324.  
The second stage of the pressure sintering process is reflected by a stress relaxation phase, where the external 
hydrostatic pressure is strongly reduced, while the adhesion between particles is now made different then zero. Due to 
the presence of particle contact adhesion, the lateral stability of the specimen remains preserved when the hydrostatic 
pressure is released, i.e., a coherent and stable particulate structure is obtained that can be subsequently used in the 
analysis of damage and healing under uni-axial loading conditions. The solid volume fraction of the sample after stress 
relaxation is decreased to ν = 0.63.  
 
3.2 Response under uni-axial compression and tension 
 
In the uni-axial compression (tension) test, one of the two outer walls, with its normal parallel to the axial (loading) 
direction, is slowly moved towards (away from) the opposite wall (see Figure 3). The change of the wall displacement 
in time is prescribed by a cosine function with rather large period in order to limit inertia effects.  
The response of the sample under uni-axial compression and uni-axial tension is shown in Figure 4. The normal axial 
stress σ, normalized by the reference stress σ0, is plotted as a function of the normal axial strain ε, where positive stress 
(strain) values relate to compression (contraction). The stress-strain curves are depicted for different values of kt 
(normalized by k2), which quantifies the adhesion at the particle contacts, see Figure 2. A larger particle contact 
adhesion increases the effective strength of the sample, both under uni-axial tension and compression. Furthermore, the 
overall strain at which the effective stress reaches its maximum increases with increasing contact adhesion, kt.  
Note that the maximum stress under uni-axial compression is order of five times larger than under uni-axial tension. A 
relatively high compressive strength in relation to the tensile strength is typical of various sintered materials, such as 
ceramics [26], and appears even in asphalt mixtures [15][27]. As further result, from Figure 4, the softening branch 
under uni-axial tension is somewhat steeper than under uni-axial compression. Here we use a rate that is close to the 
quasi-static regime, as studied in more detail in [28]. The initial loading branch is linear up to large stress and the initial 
(elastic) axial stiffnesses σt in tension and compression are determined by the sample preparation procedure, and are 
approximately equal for all the cases considered here, i.e., σt/σ0 = 1.04. The tensile responses are all characterized by 
local failure at the center of the sample.  
 
3.3 Comparison between numerical simulations and physical experiments 
 
We refer to experiments in [15] to qualitatively compare our numerical investigation with laboratory tests on asphalt 
mixtures. The authors perform uni-axial unconfined compression tests on compacted samples of dense asphalt concrete 
(DAC 0/5). The tests are performed in the displacement control mode, at constant axial deformation rates (refer to [15] 
for details). Mixtures such as DAC are continuously graded (in agreement with our numerical sample) and derive their 
stability from the packing of the aggregates and the cohesion provided by the bitumen. We report in Figure 4 the stress-
strain behavior for the aggregate compressed at different strain rate. Despite the differences between the numerical and 
laboratory tests, the comparison of Figures 4 and 5 (axial stress versus axial strain on the right side of Figure 5) shows 
that the elasto-plastic adhesive contact model is able to capture qualitatively the basic features in the behavior of the 
asphalt mixture, but the strain-rate dependence has to be studied further.  
 



 7 

 
 

Fig. 4: Dimensionless axial stress (normalized by σ0 = k1/(2 R )), plotted against axial strain during uni-axial 
compression (positive stress and strain values) and uni-axial tension (negative stress and strain values), for 
different particle contact adhesions kt/k2 (after [14]). 
 

 
 
Fig. 5: Axial stress σ  versus axial strain εaxial and radial strain ε radial for uni-axial compression tests on DAC 
samples at different strain rates and T=30°C (after [15]). Negative σ  means here compression, while negative and 
positive ε  mean axial and radial strain, respectively.  
 
 
3.4 Self-healing under uni-axial compression and tension 
 
In this section we show a possible modeling of induced self-healing mechanisms in asphalt [13]. During uni-axial 
compression, the sample is stopped at various strains, see Figure 6, and the self-healing is achieved by an instantaneous 
increase of the particle contact adhesion kt, which is assumed to be the net-effect of a re-sintering cycle, like warming 
up an asphalt mixture. Technically, on the contact level, an increase of the contact adhesion kt corresponds to an 
increase of the maximum tensile strength ft,max, and a decrease of the corresponding displacement δt,max, i.e. rupture 
occurs at large tensile strain.  
After the application of the re-sintering cycle (self-healing), uni-axial loading is resumed, where the effect of self-
healing on the effective stress-strain response of the sample becomes apparent through a comparison of its response 
with that of both, the unhealed reference sample and a pre-emptively healed sample, which has the stronger contact 
adhesion from the beginning on.  
Under uni-axial compression, see Figure 6(a), or uni-axial tension, see Figure 6(b), the self-healing of the initial sample 
with kt/k2 = 1/5 is activated by instantaneously increasing the contact adhesion to kt/k2 = 1 or 20, uniformly at all particle 
contacts. Figure 5 shows the response curves after the initiation of self-healing (dashed lines, labeled with the 
abbreviation ‘SH’), together with the stress-strain responses of the relatively weak (kt/k2 = 1/5, solid squares), strong 
(kt/k2 = 1, triangles) and very strong (kt/k2 = 20, solid circles) samples. The maximum compressive strength reached 
after self-healing is larger for healing at smaller deformation – and thus smaller damage. Astonishingly, for all self-
healing cases considered, the response eventually converges to the response of the “strong” sample with kt/k2 = 1 or 20. 
The strong sample stress-response thus can be interpreted as the response of a pre-emptively “self-healed” sample, 
where the increase in contact adhesion is initiated at the onset of mechanical loading already. The response of the 
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sample with kt/k2 = 1 or 20 acts as envelope for the responses of the self-healed samples with kt/k2 increased from 1/5 to 
1 or 20, respectively. 

 
 

 
 

Fig. 6: Axial stress versus axial strain during (a) uni-axial compression and (b) uni-axial tension, for particle 
contact adhesions kt/k2=1/5 (solid squares). The initiation of self-healing occurs at axial strains ε  ≈  0.019, 0.022, 
0.026, and 0.045 for compression and ε≈  -0.003, -0.005, and -0.007 for tension, as indicated by (magenta) dots. 
The self-healing strength is activated (a) five times and (b) hundred times larger than the original samples’ 
contact adhesion. The self-healing stress responses are given (starting from the different strain points) by the 
dashed lines. The outer envelope corresponds to self-healing (increase of contact adhesion) already at zero strain 
(after [14]).  
 
4. MODELING ASPHALT BEHAVIOR AT MACROSCALE 
 
4.1 Simulation of material parameters  

When the local behavior has been obtained by DEM analysis, a micro-mechanical based model can be implemented in a 
Finite Element Analysis code and the macro-scale asphalt response can be reproduced. Using DEM we can simulate 
element laboratory test (e.g. unconfined uni-axial tests as described in Sections 3.2 and 3.3 or confined uni-axial 
compression in a Hveem stabilometer [1]) and deduce the basic parameters to model the material behavior.  
In this way, the material response during compaction can be reproduced and studied [1]. During compaction of hot 
asphalt mixtures, particles slide along each other, air is driven out and the matrix becomes denser. An analogy can be 
established between non-compacted asphalt mixes and wet soils. Critical State theory [29] predicts the soil behavior by 
using yield loci coupled with specific volume change of the tested material samples, to define plastic deformations. 
More recently, a model was proposed that involves not only a yield stress, but also the anisotropy of the structure 
[30][31]. From physical or numerical tests the model parameters, including the growth of the yield locus (related to the 
applied stress ratio) can be made as a result of densification. 
As already mentioned, the numerical element tests represent the bridge between micro-scale (particle-mortar 
interaction) and meso-scale (multiple particle interaction): during compression, particles move relative to each other, 
slide and roll because of interparticle friction. Moreover, on the micro-scale one has to take into account how stiff 
(viscous) the mortar/bitumen layer around the particle is. This parameter also affects sliding of particles and the final 
local constitutive behavior.  
 

4.2 Modeling the behavior on the macro scale: compaction process 
 
Using the Critical State theory we can go from meso- to macro-scale modeling [1]. Based on the micro and mesoscopic 
scale information the Critical State parameters for a specific asphalt mixture (and temperature and initial compaction 
rate) can be estimated. The obtained material parameters can be used for Finite Element Continuum modeling to 
reproduce, for instance, rolling on asphalt.  Then, the horizontal incremental displacement of material can be calculated 
as a result of a roller pass on a relative non-compacted layer. Fig. 7 shows the results of FE implementation where the 
constitutive behavior parameters have been obtained from tests with Hveem stabilometer [1]. The simulations indicate 
that in the upper layer, the material moves in the same direction as rolling, while more in the deeper layer, the material 
moves opposite to the rolling direction. 
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no contactno contact contact

 

-0.0070 -0.0059 -0.0048 -0.0037 -0.0026 -0.0014 -0.0003 0.0008 0.0019 [mm]  
 

Fig. 7: Incremental material displacements in the x direction, i.e. horizontal material movement. A negative sign 
means movement in the rolling direction; a positive sign means movement opposite to the rolling direction. 
 
4. CONCLUSIONS 
 
In this work, (1) isotropic preparation, (2) uni-axial deformation, and (3) self-healing processes in damaged adhesive 
granular assemblies have been studied using DEM simulations with the final goal of application to asphalt mixtures. 
The effect of self-healing is mimicked by a (global) sintering process, as modeled by increasing the particle contact 
adhesion from relatively “weak” to rather “strong”.  
After isotropic compression, uni-axial compression/tension was applied to the sample for different contact adhesion 
strengths. While the initial stiffness (slope of the stress-strain curves) is not much affected, the peak strength of the 
material is: the stronger the contact adhesion, the larger the peak strength. For compression, the strength appears about a 
factor of five larger than for tension and the softening branch is rather smooth for compression, while the tensile regime 
shows a sharper drop, resembling more brittle-like behavior. 
Moreover, at different strains, the uni-axial deformation is stopped and global self-healing is applied. The stress-strain 
response obtained from such self-healed samples eventually converges to the envelope curve that represents the damage 
response of a sample that has the “strong” contact adhesion since the onset of loading. Another result is that the 
maximum sample strength reached after self-healing very much depends on the deformation level at which self-healing 
is activated.  
Furthermore we show an example of a FE macro-scale simulation of a  compaction process of an asphalt mixture used 
for road pavements. It concerns the simulation of a roller pass on just freshly paved and pre-compacted asphalt. It 
makes clear that, during a roller pass, while at the top of the layer material moves in the direction of rolling, deeper 
inside the layer the material moves into the opposite direction. Using such a model requires fundamental correct 
material parameters. We propose to gain those parameters from the micro- and meso-scale studies with DEM analysis. 
The model then will be able to indicate how much plastic deformation (material compaction increase) is achieved per 
roller pass.  
This preliminary work shows how powerful DEM simulations can be in describing the constitutive behavior of asphalt 
mixtures. In fact, discrete simulations give insights on the material microstructure and link observable (macroscopic) 
phenomena with the kinematics of the interacting components. Very useful information can be extracted from such 
microscopic analysis, e.g. on how and when to induce self-healing in a damaged material. Finally, given proper 
parameters from DEM simulations of element tests, a specific constitutive behavior can be implemented in a FE code to 
describe macro-scale process like rolling compaction. 
Future work concerns an interesting investigation issue. The easy switching between adhesive and non-adhesive contact 
forces in our numerical simulations allows us to separately investigate the role of the single components in the asphalt 
mixture, focusing in particular on the aggregate skeleton. Through our tool, we want to study how differences in 
dimension and arrangement of the aggregate skeleton affect the behavior of the full mixture [27][30].  
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