
Equation of state and jamming density for equivalent bi- and polydisperse,
smooth, hard sphere systems

V. Ogarko1, a) and S. Luding1, b)

Multi Scale Mechanics (MSM), TS, CTW, University of Twente, PO Box 217, 7500 AE Enschede,
The Netherlands.

(Received 24 October 2011; Accepted 25 February 2012)

We study bi- and polydisperse mixtures of hard sphere fluids with extreme size ratios up to 100. Simulation
results are compared with previously found analytical equations of state by looking at the compressibility
factor, Z, and agreement is found with much better than 1% deviation in the fluid regime. A slightly improved
empirical correction to Z is proposed.
When the density is further increased, excluded volume becomes important, but there is still a close

relationship between many-component mixtures and their binary, two-component equivalents (which are
defined on basis of the first three moments of the size-distribution). Furthermore, we determine the size
ratios for which the liquid-solid transition exhibits crystalline, amorphous or mixed system structure.
Near the jamming density, Z is independent of the size distribution and follows a −1 power law as function

of the difference from the jamming density (Z → ∞). In this limit, Z depends only on one free parameter,
the jamming density itself, as reported for several different size distributions with a wide range of widths.
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I. INTRODUCTION

The hard-sphere model can be applied with some suc-
cess for various physical phenomena and systems, like
e.g., disorder-order transitions, the glass transition, dense
granular flows and simple gases and liquids1–7. Kinetic
theory describes the behavior of such particle systems,
assuming that the particles are infinitely rigid and colli-
sions are instantaneous1,8, like in the hard-sphere model.
In this paper we study the high density limit, where
the caging-effect, that is, particles captured by their
neighbors, becomes important in the dynamics of the
global system and thus a free-volume theory needs to
be formulated9–15. There exists no unique equation of
state, valid for the intermediate densities, where the sys-
tem changes from the disordered to the ordered state,
since the system displays hysteresis and rate-dependence;
for various theoretical approaches see Refs. 6, 16–25 and
references therein.
In this study systems of particles of many different

sizes are investigated in the high-density limit using the-
ory and simulations. Fluid and jammed configurations
of hard sphere mixtures are examined for various size
distributions at slow compression rates26–29. Several au-
thors proposed theories to compute the amorphus jam-
ming density of binary and polydisperse hard sphere mix-
tures, see Refs. 30–34 and references therein. We con-
struct a simple but physically reasonable model that re-
lates the behavior of different hard sphere mixtures, even
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for metastable states. Additionally, we give accurate data
for the jamming density as a function of size polydis-
persity, which is important for e.g. experiments on non-
monosized colloidal or granular systems.

In Sec. II, the theoretical ideas are introduced, which
are needed to analyze the numerical results presented in
Sec. III, before the results are summarized in Sec. IV.

II. THEORY

We consider a s-component thermalized mixture of N
elastic smooth spheres, homogeneously placed in three-
dimensional (3D) systems of volume V . Spheres are
located at positions ri with velocities vi, radii ai and

masses mi. The kinetic energy Ek = (1/2)
∑N

i=1 miv
2
i

is dependent on time via the particle velocities vi. For
rigid spheres that do not interact except via an infinite
repulsion on contact, i.e., with zero interaction / contact
duration, the total energy is given by E = Ek, whereas
for soft spheres the potential energy also has to be con-
sidered. The temperature in equilibrium hard-sphere sys-
tems is not a relevant parameter, since it does not affect
the equilibrium configuration28, it only scales time (or
the free energy35). As a consequence, there is only one
independent thermodynamic state variable, which can
be either the reduced (dimensionless) pressure (so-called
compressibility factor) Z = PV/NkBT or the density
(volume fraction) ν = 4π

∑
a3i /(3V ), related through the

equation of state (EOS), where kBT = 2E/(3N) with the
Boltzmann constant kB .
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A. Bidisperse systems

Let us consider a binary (s = 2) mixture of spheres
with radii a1 and a2, with N1 and N2 the number of
particles of each kind, and N = N1 + N2. Thus the
mixture can be classified by only two parameters, the
composition n1 = N1/N and the size ratio R = a1/a2.
The total volume fraction ν = ν1 + ν2 is the last rele-
vant system parameter, since the partial volume fractions
ν1,2 = 4N1,2πa

3
1,2/(3V ) can be expressed23 in terms of n1

and R, using the dimensionless moments

Ak = n1 + (1− n1)R
−k =

⟨
ak

⟩
/ak1 , (1)

where
⟨
ak

⟩
= n1a

k
1 + n2a

k
2 . With this, one has ν1 =

n1ν/A3 and ν2 = (1− n1)ν/(R
3A3).

A calculation in style of Jenkins and Mancini, see Refs.
36 and 37, leads to the partial translational pressures
pti = 2niE/(3V ) for species i and to the collisional pres-
sures pcij = πN1N2gijaij(1 + rij)T/(3V

2) with the par-
ticle correlation function gij evaluated at contact, and
aij = ai + aj . In the following, for simplification the
inter-species restitution coefficients rij are set to unity
(elastic case), r11 = r12 = r22 = 1. The particle correla-
tion functions gij from Ref. 37–40, are here expressed in
terms of A2,3, R and ν:

g11 =
1

1− ν
+

3ν A2

A3

2(1− ν)2
+

(ν A2

A3
)2

2(1− ν)3
, (2)

g22 =
1

1− ν
+

3ν A2

RA3

2(1− ν)2
+

(ν A2

RA3
)2

2(1− ν)3
, (3)

g12 =
1

1− ν
+

3ν A2

(1+R)A3

(1− ν)2
+

2(ν A2

(1+R)A3
)2

(1− ν)3
. (4)

Thus, the global pressure in the mixture is:

pm = pt1 + pt2 + pc11 + 2pc12 + pc22

=
2E

3V

[
1 +

ν

2 ⟨a3⟩
(g11a

3
11n

2
1 + 2g12a

3
12n1n2 + g22a

3
22n

2
2)

]
=

2E

3V
[1 + 4νgeff(ν)] .

(5)

Like done for 2D systems in Ref. 23, the effective cor-
relation function geff(ν) can be expressed in term of the
dimensionless moments:

O1 =
⟨a⟩

⟨
a2
⟩

⟨a3⟩
and O2 =

⟨
a2
⟩3

⟨a3⟩2
(6)

so that (see Appendix A)

geff(ν) =
(1− ν)2 + 3O1(1− ν) +O2(3− ν)ν

4(1− ν)3
. (7)

Then the equation of state for mono- and bidisperse sys-
tems reads:

Z = 1 + 4νgeff(ν). (8)

Note that in the monodisperse case all gij and geff(ν)
are identical to the pair distribution function at contact
gCS(ν) = (1− ν/2)/(1− ν)3, proposed by Carnahan and
Starling (CS)41, since R = 1, Ak = O1,2 = 1 (using the
relation ZCS = 1 + 4νgCS (Ref. 38)). The Carnahan-
Starling pair distribution function is quite accurate at
low and moderate volume fractions, but does not show
the reported divergence due to excluded volume effects
at the close packing volume fraction42,43.

B. Polydisperse systems

In the case of a polydisperse mixture (s = N → ∞) in
which the sphere radius is distributed according to some
probability density function f(a),

⟨
ak

⟩
≡

r
akf(a)da is

the k-th moment of the size distribution. By just using
these moments, the function geff(ν) from Eq. (7) is well
defined also for multi-component systems of spheres. It
turns out that the equation of state (8) coincides with
the well-known Boubĺık, Mansoori, Carnahan, Starling,
and Leland (BMCSL) equation of state proposed for
mixtures38,44:

ZBMCSL =
1

1− ν
+O1

3ν

(1− ν)2
+O2

ν2(3− ν)

(1− ν)3
. (9)

There are several modified equations of state for multi-
component mixtures in the literature, which require the
knowledge of the equation of state for a one-component
system20. First, we consider Santos et al.’s equation of
state, based on the Carnahan-Starling equation of state:

ZSCS = ZBMCSL + (O1 −O2)
ν3

(1− ν)3
. (10)

Second, following Santos et al.’s procedure based on
the Carnahan-Starling-Kolafa (CSK) equation of state,
ZCSK = [1 + ν + ν2 − 2ν3(1 + ν)/3]/(1− ν)345, one gets

ZSCSK = ZSCS + (O1 +O2)
ν3(1− 2ν)

6(1− ν)3
. (11)

Third, Boubĺık extended the CSK equation of state to
mixtures46, yielding:

ZBCSK = ZBMCSL +O2
ν3(1− 2ν)

3(1− ν)3
. (12)

Although we could consider the extensions of other
equations of state47, for the sake of simplicity we will
restrict our analysis to the above mentioned equations of
state.
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C. Discussion

It is interesting to observe that all the equations of
state considered in Sec. II B are functionals of the particle
size distribution (PSD) only through its dimensionless
moments O1 and O2. Therefore, we study and discuss the
properties ofO1 andO2. It can be shown that 0 < O1 ≤ 1
and O2

1 ≤ O2 ≤ O1 for any size distribution function
(see Appendix B). This property makes it convenient to
characterize a size distribution by a point on the O1O2

plane.
We can see that O1 is the ratio of the arithmetic mean

diameter to the Sauter mean diameter, and it is a mea-
sure of the broadness of the PSD48, i.e., O1 = D10/D32,
with Dpq = 2(

r
apf(a)da/

r
aqf(a)da)1/(p−q). Corre-

spondingly, O2 = (D20/D32)
2 is another measure for

shape and width of the PSD. Those combined size-
descriptors were already used as early as 1979 to model
systems like polydisperse sprays49.
In the bidisperse case the system of equations (6) can

be solved analytically in terms of the variables n1 and R,
yielding a unique solution: nbi

1 (O1, O2) and Rbi(O1, O2)
(see Appendix C). This means that for any given polydis-
perse system we can construct an “equivalent” bidisperse
system, which has the same equation of state in the fluid
regime. We use this in Sec. III to check how the compress-
ibility factor and the jamming density of polydisperse
systems are related to those of their bidisperse equiva-
lents. Earlier, equivalent binary mixtures were used to
investigate a slightly polydisperse hard sphere crystal in
Ref. 50, while here we will show that they can be used to
model widely polydisperse fluids and glasses at all den-
sities, which is in the spirit of what Santos et al. call
the “universality” ansatz, see Refs. 51–53 and references
therein.

III. COMPARISON WITH SIMULATIONS

Since we are interested in the behavior of rigid parti-
cles, we perform event-driven molecular dynamics sim-
ulations using the modification of the Lubachevsky-
Stillinger algorithm54 as the primary tool for our
investigations28,55,56. The system consists of a cubic cell,
with periodic boundary conditions, which are imposed to
simulate an infinite system, i.e., a statistically homoge-
neous medium. The compressibility factor is calculated
from the total exchanged momentum in all interparticle
collisions during a certain short time period ∆t, given
by 400 events per particle. By growing the size of the
particles linearly in time with a growing rate Γ one can
change the volume fraction (for details see Appendix D).
Over time the additional energy created during collisions
would accelerate the particles, but this is avoided by peri-
odic rescaling of the average particle velocity to hold the
mean temperature constant55, such that the total change
in kinetic energy of the system is kept small (below 1%).
If the growing is sufficiently slow, the system will be in

approximate equilibrium during the densification and one
can rather efficiently gather quasi-equilibrium data as a
function of density6,57. The number of particles N used
in most simulations is 163 = 4096, if not explicitly stated
otherwise. In order to improve the performance of neigh-
borhood search the ideas of a multilevel contact detection
algorithm58 can be used, but were not implemented here.

A. Particle size distributions

The following types of particle size distributions are
used: (i) uniform size distribution; (ii) uniform volume
distribution, i.e., the probability distribution of the vol-
ume of the particles is constant; (iii) systems constructed
by mapping the aforementioned polydisperse systems to
bidisperse ones (see Sec. II C for details).

For a given size distribution, we denote the ratio be-
tween the maximum and the minimum particle radius
as ω. Therefore, ω = 1 corresponds to the monodisperse
case, i.e., all sizes are equal, and in our convention ω ≥ 1.
Further in the paper when we use ω for bidisperse sys-
tems we mean the extreme size ratio of the equivalent
polydisperse system, while for the true size ratio we use
Rbi. Examples and analytical expressions for O1 and O2

as function of ω for the considered size distributions are
shown in Appendix E.

The use of a single variable, i.e., the size ratio ω, ex-
cludes continuous distributions like log-normal, for which
one has to use O1 and O2 for classification, see Appendix
E. The size-distributions used here, due to their sharp
edges with well defined ω, could be obtained by ideal
sieving from wider, smooth continuously distributed re-
alistic distributions.

The sizes of particles of polydisperse systems are drawn
from the particle size distribution function using the sys-
tematic sampling approach59,60. It guarantees a more
evenly spread sample, i.e., there will always be large par-
ticles, even if they are rare, like in the case of the uniform
volume distribution.

B. Equation of state in the fluid regime

In Fig. 1 we show the compressibility factor Z from
simulations scaled by the BMCSL, SCS, SCSK and
BCSK equations of state for different densities and for
different size distributions. Note, that in the monodis-
perse case (O1 = O2 = 1) ZCS = ZBMCSL = ZSCS and
ZSCSK = ZBCSK.

We observe for monodisperse systems that the devi-
ation of the compressibility factor from all considered
theories is below 0.3% (a) in the volume fraction region
of 0 < ν < 0.54. The deviation is well below 1% in the
volume fraction region of 0 < ν ≤ 0.6 for polydisperse
systems: for uniform size, with ω = 5 (b), uniform size,
with ω = 100 (c), and uniform volume, with ω = 4 (d),
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FIG. 1. (Color online) The quality factor, i.e., the numeri-
cal Z scaled by the theoretical predictions for different densi-
ties and for different size distributions (a) monodisperse, and
polydisperse with (b) uniform size, ω = 5, (c) uniform size,
ω = 100, and (d) uniform volume, ω = 4. The growth rate
for all data is Γ = 16 × 10−6. The error bars indicate the
standard deviation of the quality factor within an averaging
bin. The error bars are shown only for the BMCSL EOS since
in the other cases they have the same trend and magnitude.

distributions, respectively. This indicates that the num-
ber of particles is large enough to realistically represent
the respective size distributions to suppress possible ef-
fects of finiteness of the system. The uniform volume
distribution does not allow to properly realize wider dis-
tributions, due to the small sample size, N = 4096.

Based on all these results, we propose a more accurate
equation of state for the fluid regime, which is simply
the arithmetic average of Santos et al.’s and Boubĺık’s
extensions:

ZOL =
1

2
(ZSCS + ZBCSK). (13)

Equation (13) is more accurate at intermediate volume
fractions 0.20− 0.60 and is almost identical to the other
forms for lower volume fractions. For all systems, with
ν ≤ 0.60, presented in Fig. 1, ZOL performs better than
0.2% except for the monodisperse case data, for ν > 0.54,
due to crystallization.

Our simulations also confirm that for ν < 0.54 the
agreement in the compressibility factor between the con-
sidered polydisperse systems and their bidisperse equiv-
alents (defined in Sec. II C) is of order of 0.1% for ω ≤ 50
(data not shown).

In the following we show what happens at higher vol-
ume fractions.

C. How much disorder is necessary to avoid order?

According to Alder et al.28,61, monodisperse hard-
sphere systems undergo a first-order fluid-solid phase
transition, characterized by a melting point, i.e., the den-
sity at which the crystal thermodynamically begins to
melt, and a freezing point, i.e., the density at which the
fluid thermodynamically begins to freeze. In this subsec-
tion, we investigate how much polydispersity is needed
to avoid partial crystallization, complementing an earlier
study in 2D (Ref. 24) and 3D (Ref. 62) as also studied in
experiments on colloids63.

Since the compressibility factor increases very rapidly
at densities higher than the freezing point, we plot the
estimated jamming density ϕJ = ν/(1 − d/Z) instead
of the compressibility factor, inspired by28, as shown in
Fig. 2, since ϕJ (Z → ∞) = ν. The estimated jamming
density ϕJ here is derived from the free-volume EOS for
a d-dimensional system12:

Zfv =
d

1− ν/ϕJ
. (14)

In Fig. 2, ϕJ is plotted against ν for different systems
with uniform size distribution. Data agree perfectly with
the fluid theory before the particle system changes from
the fluid state to the state of coexistence of fluid and
solid, as indicated by a sharp increase (jump) above the
fluid prediction, see Fig. 2(a). The jumps are due to
partial crystallization observed for size ratios 1 ≤ ω . 1.2
but not for larger ω. (It must be noted that for the system
with ω = 1.2, partial crystallization is observed not for
every run, as shown in Fig. 2(a) for two runs with random
initial velocities, i.e., from six runs we found that four
systems exhibit partial crystallization, while two systems
do not.) Near the critical size ratio, ωc ≈ 1.20 ± 0.02,
where ordering effects disappear, also the history and
fluctuations of the system play an important role.

For the critical polydispersity, a simple model which
agrees with our findings was proposed64, inspired by Lin-
demann’s melting criterion: a crystal melts when the
thermally-induced root-mean-square displacement of an
atom or particle reaches a characteristic fraction of the
typical interparticle spacing3. Our findings also agree
with the criterion for stability of the polydisperse crystal
based on free energy minimization65.

It should be noted that it is possible to observe a poly-
disperse crystal also for large size ratios, if the particles
are allowed to redistribute for very long time35,66. In
this case, different annealed phase behavior is expected at
high densities65. Self-diffusion can occur and spheres can
crystallize into multiple crystal phases (domains) each
containing spheres of a different size.

In the monodisperse case the metastable freezing point,
i.e., the density of partial crystallization of the densified
fluid, is very close to 0.54, which is in good agreement
with data from Refs. 6, 28, and 68. This should not be
confused with the freezing point, which implies the stable
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FIG. 2. (Color online) The estimated jamming density ϕJ as
a function of volume fraction ν for systems with uniform size
distribution. Shown are systems of 4096 spheres with vari-
ous size ratios ω. In (a) ω, given in the inset, corresponds to
decreasing ϕJ (top-to-bottom), and in (b) increasing ω cor-
responds to bottom-to-top. Also plotted are the fluid theory
(BMCSL EOS) and the approximation for the crystal phase67.
The used growth rate here is Γ = 8× 10−6. For ω = 1.2 data
for two different runs are shown, marked with 1.2 and 1.2∗.

thermodynamic point and occurs at about 0.49 as deter-
mined from a number of different simulations69,70 and
free energy calculations71. While a metastable freezing
point depends on the compression rate, the freezing point
does not. The location of the metastable freezing point,
νf , is shifted to higher density with increasing polydis-
persity. Taken from a few representative simulations,
values are νf = 0.540, 0.548, 0.556, 0.557, 0.565, 0.573 for
ω = 1, 1.1, 1.12, 1.14, 1.16, 1.2, respectively, fluctuating
with different runs (±0.005). The latter trend reverses
(decreasing νf ) for another type of crystallization which
we observe in the bidisperse systems with (relatively)
large size ratios, see Fig. 3. This is discussed in more
detail in Sections IIID and III E. In contrast, there is
no strong dependence of the (final) jamming density on
ω for partially crystallized systems, since crystallization
is a stochastic nucleation process, i.e., different runs of

the same system with random initial particle velocities
will lead to different jamming densities (data not shown).
The trends in Fig. 2(b) show that the larger ω, the larger
the density at which disordered systems (not crystallized)
deviate from the fluid theory (the sharp increase of ϕJ

relative to the fluid theory turns to a smooth decrease).
In addition, for such systems the jamming density is in-
creasing with ω, which is discussed in more detail in Sec.
III E. Finally, all curves end at the identity line ϕJ = ν at
densities well below the perfect crystal EOS67, for which
ϕJ = ν ≈ 0.74 would be expected (for mono-disperse
systems).

We checked (data not shown) that the jumps in ϕJ

vanish around ω ≈ 1.2 (Rbi ≈ 1.1) also for other size
distributions, which are defined in Sec. III A. We only re-
mark that the bidisperse systems – equivalent to systems
with uniform volume distribution – show some fine struc-
ture around the jumps, which we do not discuss here for
the sake of brevity.

In Fig. 4, systems with uniform size distribution shown
for different size ratios ω. It can be seen how the ordering
disappears as the size ratio increases.

In Fig. 5 bidisperse systems corresponding to uniform
size distributions are shown for different size ratios, i.e.,
with (relatively) small size ratios just below the crystal-
lization ratio, Fig. 5(a), just above, Fig. 5(b), and with
(relatively) large size ratios just below and above partial
(single species) crystallization in Figs. 5(c) and 5(d), re-
spectively. Note that changing of the polydispersity from
10% (a) to 11% (b) changes the physical state of the sys-
tem a lot, so that we can see the difference even by the
eye, which is quite remarkable. This is consistent with
results from Ref. 72, where for a binary mixture with a
size ratio 1.111 and n1 = 0.5 crystallization was almost
totally suppressed.

In Sec. III E we investigate the order-disorder transi-
tion for many different size distributions in more detail
using another criterion to measure partial crystallization.

D. Bidisperse versus polydisperse

The aim of this subsection is to compare the equa-
tion of state of polydisperse systems and their bidisperse
equivalents at volume fractions where fluid theory is not
valid, i.e., in their “glassy” states or in coexistence of
fluid and solid phases. Figure 6 shows ϕJ as a function
of volume fraction for a few systems with uniform size
distribution and their bidisperse equivalents, 6(a), and
for systems with uniform volume distribution and their
bidisperse equivalents, 6(b).

While for small size ratios, ω . 1.2, order-
ing / crystallization occurs, see Fig. 2(a), for moderate
size ratios, 1.2 . ω . 4, the estimated jamming den-
sity of the considered polydisperse systems and their re-
spective bidisperse equivalents are within 1%, where the
bidisperse data are slightly below. Thus, one can reduce



V. Ogarko and S. Luding J. Chem. Phys. 136, 124508 (2012)

 0.69

 0.7

 0.71

 0.72

 0.73

 0.74

 0.75

 0.76

 0.77

 0.78

 0.52  0.54  0.56  0.58  0.6  0.62

E
st

im
at

ed
 φ

J

ν

2.40    (6)
2.53    (7)
2.63    (8)
2.79  (10)
3.19  (20)
3.35  (30)
3.49  (50)
3.72 (103)

FIG. 3. (Color online) The estimated jamming density ϕJ

as a function of volume fraction ν for bidisperse systems cor-
responding to uniform size distribution. Increasing ω corre-
sponds to bottom-to-top, with growth rate Γ = 16 × 10−6.
The (metastable) freezing density is decreasing with increas-
ing size ratio. The BMCSL EOS are shown by dash-dotted
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FIG. 4. (Color online) Particle systems with uniform size
distribution with different size ratios at densities very close
to jamming. Size ratios are ω = 1 (a), ω = 1.12 (b), ω = 1.18
(c), and ω = 1.22 (d). The order-disorder transition can be
clearly seen as the size ratio increases. Color is by relative
size, i.e., yellow (light) corresponds to small particles, and
blue (dark) corresponds to big ones. The used growth rate to
reach these configurations was Γ = 8× 10−6.

mixtures to two-component (binary) systems, which have

(a) (b)
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FIG. 5. (Color online) Particle systems with bidisperse size
distribution corresponding to a uniform size distribution, i.e.,
n1 = 1/2, with different size ratios at densities very close to
jamming. Size ratios are Rbi ≈ 1.100 (ω = 1.18) (a), Rbi ≈
1.111 (ω = 1.2) (b), Rbi ≈ 2.060 (ω = 4) (c), and Rbi ≈ 2.404
(ω = 6) (d). The order-disorder transition can be clearly seen.
Note that in (d) also some signs of segregation / clusterization
of small particles can be seen, though investigation of this is
beyond the scope of this paper.

similar physics, even when the system densities are above
the fluid-regime.

The equivalency of two- and many-component mix-
tures breaks down in the case of uniform size distribu-
tion as polydispersity (width) increases, e.g., for ω = 6
(Rbi ≈ 2.4, nbi

1 = 1/2), due to partial crystallization of
the big particles in the bidisperse system, as it can also be
seen in Fig. 5(d). This is consistent with results from Ref.
73, where the structure of binary hard sphere mixtures
is studied in more detail. This kind of partial crystalliza-
tion happens since the small particles fit into interstices
of a crystal made of the large particles64. Such “colloidal
alloy” structures have been observed both in naturally-
occurring opals74 and synthetic colloids75,76.

In the case of bidisperse distributions corresponding to
uniform volume distributions, we did not observe strong
evidence of partial crystallization in the 1.18 ≤ ω ≤ 10
(1.10 . Rbi . 3.89) range, even though a bit of restruc-
turing for ω ≥ 5, see Fig. 6(b), seems to happen.

In the inset of Fig. 6(b) the zoomed data for ω = 8
are plotted, showing that the (final) jamming density can
change (jump) also very close to the identity line ϕJ = ν,
indicating considerable re-structuring even very close to
jamming.

In Subsection III E we determine more precisely the
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range of size ratios for which systems show crystallization
and/or partial single-species ordering.
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FIG. 6. (Color online) The estimated jamming density ϕJ as
a function of volume fraction ν for systems with (a) uniform
size distribution and their bidisperse equivalents, using Γ =
8×10−6, and for systems with (b) uniform volume distribution
and their bidisperse equivalents, using Γ = 16 × 10−6. Size
ratios ω and Rbi are displayed in the inset, where the latter is
given in brackets. Also plotted are the fluid theory (BMCSL
EOS) and the approximation for the crystal phase67. Data
for polydisperse systems in (b) are shown for ω ≤ 4. In the
inset of (b) the zoomed data for ω = 8 are shown.

E. Towards the jamming density

In this subsection, we investigate the maximum density
νmax as a function of polydispersity. By maximum den-
sity we mean the density obtained after long-term (slow)
compression, i.e., further compression for a time period
about 4 × 105 events per particle does not increase the
density, possibly due to numeric limits. The average com-
pressibility factor of the final (jammed) systems is typi-
cally Z ≥ 1013. (In Subsection IIIG we will also verify
that the (related) difference between obtained densities
νmax and the true jamming densities, i.e., the densities

(a)

(b)

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ν
m
a
x

ω
−1

US1

US2

BUS1

BUS2

Eq. (15)

0.664

0.666

0.668

0.67

10
−7

10
−6

10
−5

10
−4

ν
m
a
x

Γ

US

BUS

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ν
m
a
x

ω
-1

Eq. (15)

Eq. (16)

UV2

BUV2

0.99

0.995

1

1.005

1.01

1 2 3 4 5 6 7 8 9 10

ν
m
a
x
/
fi
t

ω

FIG. 7. (Color online) The maximum density νmax as a func-
tion of the inverse size ratio ω−1 for different size distributions
and for different compression rates, in the inset subscript 1
corresponds to the reference growth rate Γ = 8 × 10−6, and
subscript 2 corresponds to Γ = 16 × 10−6, i.e. two times
faster. Size distributions are (a) uniform size distribution
(US) and their bidisperse equivalents (BUS), or (b) uniform
volume (UV) and their bidisperse equivalents (BUV). The size
ratio ω corresponds to the polydisperse systems, while bidis-
perse ones are constructed using C. Results for BUV systems
with N = 8192, using Γ = 16 × 10−5, are shown as pluses in
(b), which are fitted for ω ≥ 10 by Eq. (16) with swapped val-
ues of ϕRCP and ν∞

max (dash-dotted line). The left most point
(+, ω = 30) is higher than expected because of partial crys-
tallization, setting in also here at very large ω. Results from
Ref. 83 obtained by compression of soft frictionless particles
with a uniform size distribution are shown as crosses in (a).
In the inset of (a), νmax is plotted for different growth rates Γ
for the uniform size distribution (ω = 2) and their bidisperse
equivalent (Rbi ≈ 1.48). In the inset of (b), the deviation of
data from the fits is shown with corresponding symbols.

where the compressibility factor becomes infinity, is at
most 10−13.)

In the amorphous regime ϕJ decreases (Z increases)
relative to the fluid prediction, due to excluded volume
effects. In Figs. 2 and 6, ordering / crystallization was
characterized by an increase of ϕJ above the fluid pre-
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diction (i.e. a decrease of Z below). Now, we also relate
this to the change of behavior of νmax, which is consistent
with Ref. 29.
Figure 7 shows the maximum density νmax as a func-

tion of the inverse size ratio ω−1 for different size dis-
tributions and for different compression rates. The size
ratio ω corresponds to polydisperse systems, while equiv-
alent bidisperse ones are constructed using formulas (C1)
and (C2). Firstly, we see that for small polydispersity
ω−1 & 0.85, i.e., ω ≤ 1.18 (Rbi . 1.100), all the consid-
ered systems display (partial) crystallization or ordering
effects, characterized by a jump (discontinuous increase)
in νmax with ω−1. Note that the bidisperse systems cor-
responding to uniform volume distributions do not crys-
tallize for ω = 1.18 (checked for three different runs), but
for slightly smaller ω ≤ 1.17 (Rbi . 1.095). Partial crys-
tallization of this type (small ω) can be seen by the eye
in Fig. 5(a).
In the 1.22 ≤ ω ≤ 4 range there is no (partial) crys-

tallization observed for any of the considered systems.
Furthermore, the maximum density of polydisperse sys-
tems is just slightly larger (within 0.5%) than for their
bidisperse equivalents, see the inset in Fig. 7(b). Note
that in the case of uniform volume distributions, larger
ω cannot be properly realized for too small N = 4096, so
we do not show results for ω > 5.
For larger ω, i.e., ω ≥ 5, bidisperse systems corre-

sponding to uniform size distributions undergo partial
crystallization of the large species (Rbi & 2.25), which
was discussed in the previous subsection.
As already evident in Fig. 6, the system with uniform

volume distribution and their bidisperse equivalents pack
“better” and reach much larger νmax, see Fig. 7(b), when
compared to 7(a), even without apparent partial (species)
crystallization77.
In contrast to their bidisperse counterparts, polydis-

perse systems with uniform size distribution do not show
any signs of crystallization for ω ≥ 1.22, and the maxi-
mum density converges with increasing polydispersity to
ν∞max ≈ 0.6828 ± 0.0004, seemingly not changing much
even for extremely wide distributions.
From our data, for uniform size distribution νmax can

be fitted by a function of ω:

νmax(ω) = ν∞max − (ν∞max − ϕRCP)(3ω
−2 − 2ω−3), (15)

where the random close packing density ϕRCP is taken to
be 0.65, as also predicted by cell theory78. The deviation
is within ±0.5% for all data ω & 1.2, see the inset in
Fig. 7(b), and we enforced the derivative ν′max ≡ 0 for
ω−1 → 1.
The maximum density of systems with uniform volume

distribution and their bidisperse equivalents can be fitted
by a function of ω in the range 1.2 ≤ ω ≤ 10:

νmax(ω) = ν∞max−(ν∞max−ϕRCP)(ω
−1−ω−2+ω−3)(1−logω−2),

(16)
where ϕRCP = 0.647 and ν∞max = 0.859, with deviation
within ±1%, see the inset in Fig. 7(b), and we enforced

the derivative ν′max ≡ 0 for ω−1 → 1. The bidisperse
equivalents deviate from Eq. (16) for ω > 10 due to
increasing relative volume of the large spheres with in-
creasing ω30. Remarkably, in this range Eq. (16), with
swapped values of ϕRCP and ν∞max, fits the data well, as
can be seen in Fig. 7(b). The two distinct regimes of
νmax of bidisperse systems with moderate to large size
ratios are predicted by a number of recently published
theories30–33. A few checks of our bidisperse data with
theoretical curves shown in Figure 6 in Ref. 30 show con-
sistency. For a more comprehensive study of the densest
binary packing of hard spheres see also Ref. 79.

The reported high-density limit for random close
packings80 is 3% greater than that of Bernal packings81

and still higher than our ϕRCP values, and can be ap-
proached for extremely fast compression27,29. For esti-
mates of ϕRCP for random close packings of hard spheres
see Table 1 in Ref. 82.

Note that the analytical expressions for O1 and O2

for two of the considered polydisperse size distributions
shown in Appendix E involve power laws and logarith-
mic functions as in Eqs. (15) and (16), respectively. This
suggests that the jamming density in general could be
expressed through O1 and O2, though we did not inves-
tigate this possibility in detail and leave it for further
research.

F. Different growth rates

The effect of using different growth rates Γ on the max-
imum density is shown in the inset of Fig. 7(a) for two
size distributions. We observe that the maximum den-
sity slightly increases (within 1%) with decreasing the
growth rate. There are no signs of saturation for Γ → 0,
which indicates a quite interesting slow dynamics, leaving
plenty of questions open for further research. The effect
of using various expansion rates is more comprehensively
studied in Refs. 26–29, and 84, so that we do not display
more of our data. We did not study extremely slow rates
and rate-dependence systematically. We only note that
different growth rates can lead to different metastable
freezing points28.

G. Super dense limit

In this subsection we show that sufficiently close to
the jamming density, the compressibility factor is inde-
pendent of the size distribution and depends on only one
parameter, the jamming density itself, complementing an
earlier study of monodisperse systems57. Figure 8 shows
the compressibility factor scaled by equation (14) for sys-
tems with uniform size distributions.

The jamming densities ϕJ used in Fig. 8 are deter-
mined using Eq. (14) by mapping the diverging compress-
ibility factor to finite values, as suggested by Torquato
et al.57,85. It must be noted that all ϕJ differ from νmax
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obtained in simulations by at most 10−13, which con-
firms that we are close to the infinite pressure limit.
We see from Fig. 8 perfect agreement with the free vol-
ume theory for all considered systems at the densities
(ϕJ − ν) . 10−8. Only one free parameter is required for
the free volume theory, ϕJ, even though in other studies
two fitting parameters are used24,29. In order to cap-
ture the deviation of the compressibility factor from the
free volume theory as the density difference increases,
theories which take into account the geometry and struc-
ture of the free volume should be developed. The point
where data collapse with the free-volume theory is the
point where cages are established and do not change any
more86.

It must be noted that the results of Fig. 8 are obtained
using numerical double type (8 bytes). We used also
long double type (16 bytes) for a few simulations and
(while the data in Fig. 8 did not change) could reach
perfect agreement with the free-volume theory Eq. (14),
using raw data (without ϕJ mapping), even for 10−15 .
(νmax − ν) . 10−8, i.e., over seven orders of magnitude,
which is quite remarkable.

Finally, we remark that even though the free volume
theory presented in Eq. (14) is designed for monodisperse
systems, we observe a very good agreement for polydis-
perse systems as well (see Fig. 8). We also confirmed Eq.
(14) for two-dimensional systems, and for systems with
uniform volume and bidisperse size distributions (data
not shown), and for different compression rates.
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FIG. 8. (Color online) The compressibility factor scaled by
the free volume equation of state (14) in the limit of diverging
pressure for systems with uniform size distribution for differ-
ent size ratios, increasing ω corresponds to top-to-bottom,
with growth rate Γ = 16×10−6. When partial crystallization
happens we see some fine structures as shown in the inset for
the monodisperse system (ω = 1).

IV. SUMMARY AND CONCLUSIONS

In this study we have shown analytically that for any
given polydisperse system an equivalent bidisperse sys-
tem can be constructed with the same equation of state
in the fluid regime, using Eqs. (C1) and (C2). In order to
confirm this result simulation data of the measured com-
pressibility factor are compared to previously found equa-
tions of state and agreement was found with less than 1%
deviation. Based on the simulation data a slightly more
accurate equation of state (13) was proposed for the fluid
regime.

Surprisingly, for densities higher than the freezing
(or glass transition) density, beyond the fluid regime,
our simulations show that a polydisperse system and
its bidisperse equivalent have similar equations of state,
i.e., the estimated jamming density is within 1%, as
long as the bidisperse systems do not show either (par-
tial) crystallization or (theoretically predicted30) change
in maximum-density-behavior due to the overwhelming
presence of the major species.

We have observed three distinct types of liquid-solid
organization / behavior in the bidisperse systems with
equal number of small and big particles, depending on
the size ratio Rbi. First, for Rbi . 1.1 the crystalline
phase formed at high densities consists of a crystal made
of both small and big particles; second, in the range
1.1 . Rbi ≤ 2.06 we do not observe any signs of or-
dering effects, i.e., an amorphous solid is formed; finally,
at moderate to large size ratios Rbi & 2.40, we observe an
ordered structure that consists of a crystal of predomi-
nately large particles. We confirm this using two different
criteria to quantify partial crystallization, i.e., the com-
pressibility factor and the jamming density. Note that
above results are obtained using (relatively) slow density
growth rates, while for extremely fast compression it is
possible to avoid partial crystallization. For the polydis-
perse systems tested, we find partial crystallization only
for (relatively) low size ratios ω, i.e., ω . 1.2, but not for
larger ω.

Sufficiently close to the jamming density the compress-
ibility factor is independent of both size distribution and
compression rate and depends only on one free parame-
ter, the jamming density itself. The free volume equation
of state (14) is in very good agreement with our simula-
tion results for all considered systems in two- and three-
dimensions. We provide analytical (empirical fits) equa-
tions for the jamming density as function of the extreme
size ratio for uniform size and uniform volume radii dis-
tributions to be confronted with theory and experiments.

The result with potential for applications is the fact
that polydisperse systems can be modeled87 by their
bidisperse equivalents and their jamming (packing) den-
sity can be predicted from the moments O1 and O2. Fur-
thermore, the results of this study can be used for better
understanding the equation of state for mixtures of flu-
ids and thus, to predict mixing / segregation. Finally, our
predictions concerning the size ratios for which crystal-
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lization happens can be useful for experiments on colloids
and granular media, to either avoid or establish ordering
effects.

We would like to stress that this is a preliminary study
that considers mostly relatively slow growth rates for a
few size distribution function shapes. Whether our pre-
dictions also hold for very differently shaped and much
wider size distribution functions is open as well as ques-
tions about much slower or faster growth rates.

In a future study we will introduce an equivalent tridis-
perse system and show that with this it is possible to
suppress partial crystallization of binary systems also for
large size ratios. Comparison with experiment is another
subject of future research.
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Appendix A: DERIVATION OF THE EFFECTIVE
CORRELATION FUNCTION

In order to express the compressibility factor in the 3D
mixtures, using dimensionless moments, plug Eqs. (2),
(3) and (4) into the expression in brackets of Eq. (5):

g11a
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Using the expression (A1), and inserting Eqs. (6), one
obtains:

Z − 1 = (1 + r)
ν

4 ⟨a3⟩
(g11a

3
11n

2
1 + 2g12a

3
12n1n2 + g22a

3
22n2)

= (1 + r)2ν
(1− ν)2 + 3O1(1− ν) +O2(3− ν)ν

4(1− ν)3

= (1 + r)2νgeff(ν),
(A2)

where r is the restitution coefficient.

Appendix B: BOUNDS OF DIMENSIONLESS MOMENTS

In order to show that O1 ≤ 1, find the extrema of
g({ai}) = NO1 =

∑
ai

∑
a2i /

∑
a3i , i ∈ [1, N ] on the

interval ai ∈ (0,∞). For this solve the system of k =
1, ..., N equations:

∂g({ai})
∂ak

=

[
2ak

∑
ai +

∑
a2i∑

a3i
− 3a2k

∑
ai

∑
a2i

(
∑

a3i )
2

]
= 0.

(B1)

The system (B1) has one (trivial) solution ai = a =
const, which corresponds to the monodisperse case. By
looking at the sign of the second derivative of g(ai = a) it
can be checked that this extremum is the local maximum
gmax = N . Therefore the local maximum of O1 is equal
to unity.

By analogy, considering the extrema of the function
f(ai) = O2/O1, it can be shown that O2 ≤ O1.

Finally, to show that O2
1 ≤ O2, note that O2

1/O2 = A,

where A = ⟨a⟩2/
⟨
a2
⟩
≤ 1. This yields O2

1 ≤ O2, where
equality is reached only in the monodisperse case (O1 =
O2 = 1).

Appendix C: EQUIVALENT BIDISPERSE SYSTEMS

In order to find a bidisperse system that has the same
dimensionless moments O1 and O2 as a given polydis-
perse one, solve analytically the system of equations (6)
in terms of the variables n1 and R. This yields a unique
solution (O1 ̸= O2):

nbi
1 =

1

2
+

3O1O2 −O2 − 2O3
1

2λ
, (C1)

Rbi =
2O3

1 + 2O2
2 +O2 − 4O1O2 −O2

1O2 + (1−O1)λ

2(O2 −O1)(O2
1 −O2)

,

(C2)

where λ =
√
O2

√
4O3

1 +O2 − 3O1(2 +O1)O2 + 4O2
2 and

nbi
1 corresponds here to the number fraction of large

particles, i.e., Rbi ≥ 1. Inserting these values into
Eq. (8) leads also to the same compressibility factor
Zbi(nbi

1 , Rbi) = Zpoly(O1, O2).
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Appendix D: GROWTH RATE

In order to maintain the size distribution during the
growing process, the radius ai of the particle i changes
with time as:

dai
dt

= Γ
ai

amax(t)
, (D1)

where amax(t) is the radius of the largest particle (which
depends on time) and Γ is the growth rate with units of
velocity. In this convention, we have amax(t) = Γt and
amin(t) = Γω−1t, where amin(t) is the radius of the small-
est particle and ω is constant, as desired. This ensures
that the relative distribution of radii and thus sphere
volumes around the mean is constant over time, but the
mean sphere volume increases uniformly with time.

Appendix E: DIMENSIONLESS MOMENTS FOR
DIFFERENT SIZE DISTRIBUTIONS

Assume a polydisperse distribution of particle radii
with probability f(a)da to find the radius a between
radii a and a + da, and with

r ∞
0

f(a)da = 1. Using
the definition of the k-th moment of the size distribution
f(a),

⟨
ak

⟩
≡

r
akf(a)da, it is straightforward to cal-

culate dimensionless moments O1 = ⟨a⟩
⟨
a2
⟩
/
⟨
a3
⟩
and

O2 =
⟨
a2
⟩3
/
⟨
a3
⟩2

for any given polydisperse size distri-
bution.
For the uniform size distribution, with ω = amax/amin,

we obtain:

O1 = 1− 2

3

ω2
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1 + ω2
0

, O2 =
1

27

(3 + ω2
0)

3

(1 + ω2
0)

2
, (E1)

where ω0 = (ω − 1)/(ω + 1), and 2ω0 ⟨a⟩ is the width of
size distribution function f(a). It must be noted, that
plugging Eq. (E1) into Eq. (C1) yields nbi

1 = 1/2. There-
fore, a bidisperse system which is equivalent to a polydis-
perse system with uniform size distribution has the same
number of small and large particles for any ω.
For the uniform volume distribution, we have (ω > 1):

O1 =
2ω

ω2 − 1
lnω, O2 =

2ω2

(ω − 1)3(ω + 1)
ln3 ω. (E2)

For examples of numerical values see table I.
The moments of the log-normal distribution (not used

in our present simulations) can be computed from the
moment generating function of the normal distribution88.
If X has the log-normal distribution with parameters µ
and σ then E(Xn) = exp[nµ+(1/2)n2σ2], n ∈ N. There-
fore, we obtain:

O1 = exp(−2σ2), O2 = exp(−3σ2). (E3)

In a number of studies35,65,66 the magnitude of the
spread of sphere radii is conveniently characterized by

the parameter δ, which is often also referred to as poly-
dispersity and measures the standard deviation of the
radii distribution normalized by its mean: δ = (

⟨
a2
⟩
−

⟨a⟩2)1/2/ ⟨a⟩. Therefore we also provide an expression for
δ as function of O1 and O2: δ = (O2/O

2
1 − 1)1/2, which

is directly related to the parameter A used in Ref. 24,
A = 1/(δ2 + 1).

Distr. Figs. ω O1 O2 Rbi nbi
1 δ

US 1, 2, 3, 1.0 1.0 1.0 1.0 0

4, 5, 6(a), 1.2 0.995 0.992 1.11 0.05

7(a), 8 1.4 0.982 0.973 1.21 0.10

2 0.933 0.903 1.48 0.19

4 0.824 0.760 2.06 0.35

5 0.795 0.725 2.25 1/2 0.38

10 0.733 0.657 2.79 0.47

20 0.700 0.624 3.19 0.52

50 0.680 0.605 3.49 0.55

100 0.673 0.599 3.61 0.57

∞ 2/3 16/27 2+
√
3

√
3/3

UV 1(d), 6(b), 1.0 1.0 1.0 1.0 1/2 0

7(b) 1.2 0.994 0.992 1.11 0.453 0.05

1.4 0.981 0.972 1.21 0.413 0.10

2 0.924 0.888 1.49 0.327 0.20

4 0.739 0.632 2.24 0.190 0.39

5 0.671 0.543 2.56 0.156 0.46

7 0.568 0.418 3.13 0.114 0.55

8 0.528 0.373 3.40 0.100 0.58

10 0.465 0.304 3.90 0.080 0.64

100 0.092 0.020 17.83 0.006 1.16

∞ 0 0 – – –

TABLE I. Given are size ratios ω and dimensionless moments
O1 and O2 for a few polydisperse systems with uniform size
(US) and uniform volume (UV) radii distributions and Rbi

with nbi
1 for their bidisperse equivalents.
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