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Abstract

We present a meshless simulation method for multiphase fluid-particle flows

coupling Smoothed Particle Hydrodynamics (SPH) and the Discrete Element

Method (DEM). Rather than fully resolving the interstitial fluid, which is often

infeasible, the unresolved fluid model is based on the locally averaged Navier

Stokes equations, which are coupled with a DEM model for the solid phase.

In contrast to similar mesh-based Discrete Particle Methods (DPMs), this is a

purely particle-based method and enjoys the flexibility that comes from the lack

of a prescribed mesh. It is suitable for problems such as free surface flow or flow

around complex, moving and/or intermeshed geometries. It can be used for both

one and two-way coupling and is applicable to both dilute and dense particle

flows. A comprehensive validation procedure for fluid-particle simulations is

presented and applied to the SPH-DEM method, using simulations of single

and multiple particle sedimentation in a 3D fluid column and comparison with

analytical models. Millimetre-sized particles are used along with three different

test fluids: air, water and a water-glycerol solution. The velocity evolution for

the single particle compares well (less than 2% error) with the analytical solution

as long as the fluid resolution is coarser than 2 times the particle diameter.

The multiple particle sedimentation problems (sedimentation of a homogeneous

porous block and a Rayleigh Taylor instability) also reproduce the expected
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terminal velocity well for porosities 0.5 ≤ ε ≤ 1.0, but although care should be

taken in the presence of high porosity gradients. Overall the SPH-DEM method

successfully reproduces the expected behaviour in the sedimentation test cases,

and promises to be a flexible and accurate tool for other fluid-particle system

simulations.

Keywords: SPH, DEM, Fluid-particle flow, Discrete Particle Model,

Sedimentation, Rayleigh-Taylor instability

1. Introduction

Fluid-particle systems are ubiquitous in nature and industry. Sediment

transport and erosion are important in many environmental studies and the in-

teraction between particles and interstitial fluid affects the rheology of avalanches,

slurry flows and soils. In industry, the efficiency of a fluidised bed process (e.g.

Fluidized Catalytic Cracking) is completely determined by the complex two-

way interaction between the injected gas flow and the solid granular material.

Also, the dispersion of solid particles in a fluid is of broad industrial relevance

to the food, chemical and painting industries, which involves in most cases three

phases: a granular medium, the air initially present in its pores and an injected

liquid.

The length-scale of interest determines the method of simulation for fluid-

particle systems. For very small scale processes it is feasible to fully resolve

the interstitial fluid between the particles (see Zhu et al. (1999); Pereira et al.

(2010); Potapov (2001); Wachmann et al. (1998) for a few examples of particle

or pore-scale simulations). However, for many applications the dynamics of in-

terest occur over length scales much larger than the particle diameter and the

computational effort required to resolve the pore-scale is too great. It then

becomes necessary to use unresolved, or mesoscale, fluid simulations. This

mesoscale is the focus of this paper and the domain of applicability for the

SPH-DEM method. At even larger length scales of interest (macroscale) it be-

comes infeasible to model the granular material as a discrete collection of grains

2



and instead a continuum model is used in a two-fluid model. However, it must

be noted that while this approach might be computationally necessary in many

cases, it can fail for some systems involving dense granular flow, where existing

continuum models for granular material do not adequately reproduce impor-

tant material properties such as anisotropy, history dependency, jamming and

segregation.

Fluid-particle simulations at the mesoscale are often given the term Discrete

Particle Models (DPM). These models fully resolve the individual solid parti-

cles using a Lagrangian model for the solid phase. The fluid phase does not

resolve the interstitial fluid, but instead models the locally averaged Navier-

Stokes equations and is coupled to the solid particles using appropriate drag

closures. Most of the prior work on DPMs have been done using grid-based

methods for the fluid phase, and a few relevant examples can be seen in the pa-

pers by Tsuji et al. (1993), Xu (1997, 2000), Hoomans (1996); Hoomans et al.

(2000) or Chu and Yu (2008).

Fixed pore flow simulations (where the geometry of the solid particles is

unchanging over time) using SPH for the (unresolved) fluid phase have been de-

scribed by Li et al. (2007) and Jiang et al. (2007), but these do not allow for the

motion and collision of solid grains. Cleary et al. (2006) and Fernandez et al.

(2011) simulate slurry flow at the mesoscale using SPH and DEM in SAG mills

and through industrial banana screens, but only perform a one-way coupling

between the solid and fluid phases.

The DPM model presented in this paper is based on the locally averaged

Navier-Stokes (AVNS) equations that were first derived by Anderson and Jack-

son in the sixties (Anderson and Jackson, 1967), and have been used with great

success to model the complex fluid-particle interactions occurring in industrial

fluidized beds (Deen et al., 2007). Anderson and Jackson defined a smoothing

operator identical to that used in SPH and used it to reformulate the NS equa-

tions in terms of smoothed variables and a local porosity field (porosity refers

to the fraction of fluid in a given volume). Given its theoretical basis in kernel

interpolation, it is natural to consider the use of the SPH method to solve the
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AVNS equations, coupled with a DEM model for the solid phase.

The coupling of SPH and DEM results in a purely particle-based solution

method and therefore enjoys the flexibility that is inherent in these methods.

This is the primary advantage of this method over existing grid-based DPMs.

In particular, the model described in this paper is well suited for applications

involving a free surface, including (but not limited to) debris flows, avalanches,

landslides, sediment transport or erosion in rivers and beaches, slurry transport

in industrial processes (e.g. SAG mills) and liquid-powder dispersion and mixing

in the food processing industry.

Another advantage of using a DPM, or mesoscale simulation, is of course

the reduced computational requirements over a fully resolved simulation. For

example, we have found that in general a fluid resolution of h = 2d minimises

the error in the SPH-DEM method, where d is the solid particle diameter. For

a fully resolved simulation the interstitial fluid must be resolved, and therefore

the fluid resolution would need to be at least h = 0.2d, which scales the number

of computational nodes (for the fluid) by a factor of 1000.

Figure 1 shows a SPH-DEM simulation applied to a liquid-powder mixing

problem in the food processing industry, taken from a simulation of a water jet

injected in a granular bed whose pores are initially filled with air. To predict

the shape of the front correctly, one has to consider the free surface and the

absence of dissipation on the air side, both included in the SPH-DEM model.

Even more complex (realistic) injection geometries are easily incorporated into

the simulation with no additional effort. Moreover, using DEM enables studying

the effect (on the initial liquid front propagation) of packing and top surface

inhomogeneities that can be generated during pouring, unlike simpler ”porous

media”-like approaches. Polydispersity can also be included by altering the

radius of the simulated grains and using an applicable drag term (e.g. see

Van der Hoef et al. (2005))

Sections 2-3 describes the AVNS equations and the SPH and DEM models

for the fluid and solid phases and the coupling between them. Section 4 in-

troduces the test cases, Section 5 describes the results for the Single Particle
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Figure 1: Example of a two-phase SPH-DEM simulation of a water jet (bottom) injected into
a granular bed.

Sedimentation test case, Section 6 the results for Multiple Particle Sedimen-

tation and Section 7 describes the simulation of a Rayleigh Taylor Instability

using solid particles sedimenting into a clear fluid.

2. Governing Equations

2.1. The Locally Averaged Navier-Stokes Equations

Here we describe the governing equations for the fluid phase, the locally aver-

aged Navier-Stokes equations derived by Anderson and Jackson (1967). Ander-

son and Jackson defined a local averaging based on a radial smoothing function

g(r). The function g(r) is greater than zero for all r and decreases monotonically

with increasing r, it possesses derivatives gn(r) of all orders and is normalised

so that
∫

g(r)dV = 1.

The local average of any field a′ defined over the fluid domain can be obtained

by convolution with the smoothing function
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ε(x)a(x) =

∫

Vf

a′(y)g(x− y)dVy, (1)

where x and y are position coordinates (here one dimensional for simplicity).

The integral is taken over the volume of interstitial fluid Vf and ε(x) is the

porosity.

ε(x) = 1−

∫

Vs

g(x− y)dVy, (2)

where Vs is the volume of the solid particles.

In a similar fashion, the local average of any field a′(x) defined over the solid

domain is given by

(1 − ε(x))a(x) =

∫

Vs

a′(y)g(x− y)dVy, (3)

where the integral is taken over the volume of the solid particles.

Applying this averaging method to the Navier-Stokes equations, Anderson and Jackson

(1967) derived the following continuity equation in terms of locally averaged

variables

∂(ερf)

∂t
+∇ · (ερfu) = 0, (4)

where ρf is the fluid mass density and u is the fluid velocity.

The corresponding momentum equation is

ερf

(

∂u

∂t
+ u ·∇u

)

= −∇P +∇ · τ − nf + ερfg, (5)

where P is the fluid pressure, τ is the viscous stress tensor and nf is the

fluid-particle coupling term. We use a Newtonian fluid where τ = µ∇ · u. We

neglect Reynolds-like terms and do not consider turbulent flow. The coefficient

for the coupling term n is the local average of the number of particles per unit

volume and f is the local mean value of the force exerted on the particles by the

fluid. This force includes all effects, both static and dynamic, of the particles

on the fluid, the details of which can be seen in Eq. (23).
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2.2. Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (Gingold and Monaghan, 1977; Lucy, 1977;

Monaghan, 2005) is a Lagrangian scheme, whereby the fluid is discretised into

“particles” that move with the local fluid velocity. Each particle is assigned a

mass and can be thought of as the same volume of fluid over time. The fluid

variables and the equations of fluid dynamics are interpolated over each par-

ticle and its nearest neighbours using a smoothing kernel W (r, h), where h is

the smoothing length scale. Like g(r) in the AVNS equations, the SPH ker-

nel is a radial function that decreases monotonically and is normalised so that
∫

W (r, h)dV = 1.

Unlike g(r) and to reduce the computational burden of the method, the

SPH kernel is normally defined with a compact support and a finite number of

derivatives.

In SPH, a fluid variable A(r) (such as momentum or density) is interpolated

using the kernel W

A(r) =

∫

A(r′)W (r − r′, h)dr′. (6)

To apply this to the discrete SPH particles, the integral is replaced by a sum

over all particles, commonly known as the summation interpolant. To estimate

the value of the function A at the location of particle a (denoted as Aa), the

summation interpolant becomes

Aa =
∑

b

mb
Ab

ρb
Wab(ha), (7)

where mb and ρb are the mass and density of particle b. The volume element

dr′ of Eq. (6) has been replaced by the volume of particle b (approximated by

mb

ρb
), equivalent to the normal trapezoidal quadrature rule. The kernel function

is denoted by Wab(h) = W (ra − rb, h). The dependence of the kernel on the

difference in particle positions is not explicitly stated for readability. Due to

the limited support of W, particle neighbourhood search methods as standard

in SPH or DEM can be applied to optimize the summation in Eq. (6).
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The accuracy of the SPH interpolant depends on the particle positions within

the radius of the kernel. If there is not a homogeneous distribution of particles

around particle a (for example, it is on a free surface), then the interpolation

can be compromised.

The interpolation can be improved by using a Shepard correction (Shepard,

1968), originally devised as a low cost improvement to data fitting. This cor-

rection divides the interpolant by the sum of kernel values at the SPH particle

positions, so the summation interpolant becomes

Aa =
1

∑

b
mb

ρb
Wab(ha)

∑

b

mb
Ab

ρb
Wab(ha). (8)

This correction ensures that a constant field will always be interpolated

exactly, and improves the interpolation accuracy of other, non-constant fields.

3. SPH-DEM Model

3.1. SPH implementation of the AVNS equations

SPH is based on a similar local averaging technique as the AVNS equations,

so it is natural to convert the interpolation integrals in Eqs. (1) and (2) to SPH

sums using a smoothing kernel W (r, h) in place of g(r).

To calculate the porosity εa at the center position of SPH/DEM particle a,

the integral in Eq. (2) is converted into a sum over all DEM particles within

the kernel radius and becomes

εa = 1−
∑

j

Waj(hc)Vj , (9)

where Vj is the volume of DEM particle j. For readability, sums over SPH

particles use the subscript b, while sums over surrounding DEM particles use

the subscript j. Note that we have used a coupling smoothing length hc to

evaluate the porosity, which sets the length scale for the coupling terms between

the phases. Here we set hc to be equal to the SPH smoothing length, but in

practice this can be set within a range such that hc is large enough that the

porosity field is smooth but small enough to resolve the important features of
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the porosity field. For more details on this point please consult the numerical

results of the test cases and the conclusions of this paper.

Applying the local averaging method to the Navier-Stokes equations, Ander-

son and Jackson derived the continuity and momentum equations shown in Eqs.

(4) and (5) respectively. To convert these to SPH equations, we first define a

superficial fluid density ρ equal to the intrinsic fluid density scaled by the local

porosity ρ = ερf .

Substituting the superficial fluid density into the averaged continuity and

momentum equations reduces them to the normal Navier-Stokes equations.

Therefore, our approach is to use the standard weakly compressible SPH equa-

tions, see (Robinson and Monaghan, 2011), using the superficial density for the

SPH particle density and adding terms to model the fluid-particle drag.

The rate of change of superficial density is calculated using the variable

smoothing length terms derived by Price (2012)

Dρa

Dt
=

1

Ωa

∑

b

mbuab ·∇aWab(ha), (10)

where the capitals in the time derivative denote the material derivative.

uab = ua−ub and Ωa is a correction factor due to the gradient of the smoothing

length

Ωa = 1−
∂ha

∂ρa

∑

b

mb
∂Wab(ha)

∂ha
. (11)

Neglecting gravity, the SPH acceleration equation becomes

dua

dt
= −

∑

b

mb

[(

Pa

Ωaρ2
a

+Πab

)

∇aWab(ha) +

(

Pb

Ωbρ2
b

+Πab

)

∇aWab(hb)

]

+fa/ma,

(12)

where fa is the coupling force on the SPH particle a due to the DEM particles

(see Section 3.3). The viscous term Πab models the divergence of the viscous

stress tensor in Eq. (5) is calculated using the term proposed by Monaghan
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(1997), which is based on the dissipative term in shock solutions based on Rie-

mann solvers. For this viscosity

Πab = −α
usigun

2ρab|rab|
, (13)

where usig = cs + un/|rab| is a signal velocity that represents the speed

at which information propagates between the particles. The normal velocity

difference between the two particles is given by un = uab · rab. The constant α

can be related to the dynamic viscosity of the fluid µ using

µ = ραhcs/S, (14)

where S = 112/15 for two dimensions and S = 10 for three (Monaghan,

2005). For some of the reference fluids we have chosen to simulate in this paper

it was found that the physical viscosity was not sufficient to stabilise the results

(see Section 6.3), and it was necessary to add an artificial viscosity term with

αart = 0.1. However, this viscosity term is only applied when the SPH particles

are approaching each other (i.e. uab · rab < 0) so that the dissipation due to the

artificial viscosity is reduced while still stabilising the results.

The fluid pressure in Eq. (12) is calculated using the weakly compressible

equation of state. This equation of state defines a reference density ρ0 at which

the pressure vanishes, which must be scaled by the local porosity to ensure that

the pressure is constant over varying porosity.

Pa = B

((

ρa

εaρ0

)γ

− 1

)

. (15)

The scaling factor B, is free a-priori and is set so that the density variation

from the local reference density is less than 1 percent, ensuring that the fluid is

close to incompressible. For this, in terms of B, the local sound speed is

c2s =
∂P

∂ρ

∣

∣

∣

∣

ρ=εaρ0

=
γB

εaρ0
, (16)

and the fluctuations in density can be related to the sound speed and velocity

of the particles (Monaghan, 2005):
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|δρ|

ρ
=

u2

c2s
. (17)

Therefore, in order to keep these fluctuations less than 1% in a flow where

the maximum velocity is um and the maximum porosity is as always εm = 1, B

is set to

B =
100ρ0u2

m

γ
. (18)

As the superficial density will vary according to the local porosity, care must

be taken to update the smoothing length for all particles in order to maintain

a sufficient number of neighbour particles. This is referred to as ”variable-h” in

this study. The smoothing length ha is calculated using

ha = σ

(

ma

ρa

)1/d

, (19)

where d is the number of dimensions and σ determines the resolution of the

summation interpolant. The value used in all the simulation results presented

here is σ = 1.5.

Recall that the SPH density is given by ρ = ερf . Assuming a constant

intrinsic fluid density ρf , the smoothing length h is thus proportional to the

local porosity h ∝ (1/ε)1/d.

3.2. Discrete Element Model (DEM)

In DEM (also known as Molecular Dynamics), Newton’s equations of mo-

tion are integrated for each individual solid particle. Interactions between the

particles involve explicit force expressions that are used whenever two particles

come into contact.

Given a DEM particle i with position ri, the equation of motion is

mi
d2ri
dt2

=
∑

j

cij + fi +mig, (20)

where mi is the mass of particle i, cij is the contact force between particles

i and j (acting from j to i) and fi is the fluid-particle coupling force on particle
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i. For the simulations presented below, we have used the linear spring dashpot

contact model

cij = −(kδ − βδ̇)nij , (21)

where δ is the overlap between the two particles (positive when the particles

are overlapping, zero when they are not) and nij is the unit normal vector

pointing from j to i.. The simulation timestep is calculated based on a typical

contact duration tc and is given by ∆t = 1
50 tc, with tc = π/

√

(2k/mi)− β/mi.

The timestep for the SPH method is set by a CFL condition

δt1 ≤ min
a

(

0.6
ha

usig

)

, (22)

where the minimum is taken over all the particles. This is normally much

larger than the DEM contact time, so the DEM timestep usually sets the min-

imum timestep for the SPH-DEM method.

See Table 1 for all the parameters and time-scales used in these simulations.

3.3. Fluid-Particle Coupling Forces

The force on each solid particle by the fluid is (Anderson and Jackson, 1967)

fi = Vi(−∇P +∇ · τ)i + fd(εi,us), (23)

where Vi is the volume of particle i. The first two terms models the effect of

the resolved fluid forces (buoyancy and shear-stress) on the particle. For a fluid

in hydrostatic equilibrium, the pressure gradient will reduce to the buoyancy

force on the particle. The divergence of the shear stress is included for com-

pleteness and ensures that the movement of a neutrally buoyant particle will

follow the fluid streamlines. For the simulations considered in this paper this

term will not be significant.

The force fd is a particle drag force that depends on the local porosity εi

and the superficial velocity us (defined in the following section). This force

models the drag effects of the unresolved fluctuations in the fluid variables and
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is normally defined using both theoretical arguments and fits to experimental

data. For a single particle in 3D creeping flow this term would be the standard

Stokes drag force. For higher Reynolds numbers and multiple particle inter-

actions this term is determined using fits to numerical or experimental data

(Van der Hoef et al., 2005). See Section 3.4 for further details.

The pressure gradient and the divergence of the stress tensor are evaluated at

each solid particle using a Shepard corrected (Shepard, 1968) SPH interpolation.

Using the already given SPH acceleration equation, Eq. (12), this becomes

(−∇P +∇ · τ)i =
1

∑

b
mb

ρb
Wab(hb)

∑

b

mbθbWib(hb), (24)

θa = −
∑

b

mb

[(

Pa

Ωaρ2
a
+Πab

)

∇aWab(ha) +

(

Pb

Ωbρ2
b

+Πab

)

∇aWab(hb)

]

.

(25)

In order to satisfy Newtons third law (i.e. the action = reaction principle),

the fluid-particle coupling force on the fluid must be equal and opposite to the

force on the solid particles. Each DEM particle is contained within multiple

SPH interaction radii, so care must be taken to ensure that the two coupling

forces are balanced.

The coupling force on SPH particle a is determined by a weighted average

of the fluid-particle coupling force on the surrounding DEM particles. The

contribution of each DEM particle to this average is scaled by the value of the

SPH kernel.

fa = −
ma

ρa

∑

j

1

Sj
fjWaj(hc), (26)

where fj is the coupling force calculated for each DEM particle using Eq.

(23). The scaling factor Sj is added to ensure that the force on the fluid phase

exactly balances the force on the solid particles. It is given by

Sj =
∑

b

mb

ρb
Wjb(hc), (27)
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where the sum is taken over all the SPH particles surrounding DEM particle

j. For a DEM particle immersed in the fluid this will be close to unity.

3.4. Fluid-Particle Drag Laws

The drag force fd depends on the superficial velocity us, which is proportional

to the relative velocity between the phases. If uf and ui are the fluid and particle

velocity respectively, then the superficial velocity is defined as us = εi(uf −ui).

This term is used as the dependent variable in many drag laws as it is easily

measured from experiment by dividing the fluid flow rate by the cross-sectional

area.

In the SPH-DEMmodel, the fluid velocity uf used to calculate the superficial

velocity, is found at each DEM particle position using a Shepard corrected SPH

interpolation. The value of the porosity field at each DEM particle position εi

is found in an identical way.

The simplest drag law is the Stokes drag force

fd = 3πµdus, (28)

where d is the particle diameter. This is valid for a single particle in creeping

flow.

Coulson and Richardson (1993) proposed a drag law valid for a single parti-

cle falling under the full range of particle Reynolds Numbers Rep = ρf |us|d/µ.

fd =
π

4
d2ρf |us|

(

1.84Re−0.31
p + 0.293Re0.06p

)3.45
(29)

For higher Reynolds numbers and multiple particles, the drag law can be

generalised to

fd =
1

8
Cdf(εi)πd

2ρf |us|us, (30)

where Cd is a drag coefficient that varies with the particle Reynolds number

Rep = ρf |us|d/µ, and f(εi) is the voidage function that models the interactions

between multiple particles in the fluid.
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A popular definition for the drag coefficient was proposed by Dallavalle

(1948)

Cd =

[

0.63 +
4.8

√

Rep

]2

. (31)

Di Felice proposed a voidage function based on experimental data of fluid

flow through packed spheres (Di Felice, 1994)

f(εi) = ε−ξ
i , (32)

ξ = 3.7− 0.65 exp

[

−
(1.5− log10 Rep)2

2

]

. (33)

Both the Stokes drag term (as the simplest reference case) and the com-

bination of Dallavalle and Di Felice’s drag terms are used in the simulations

presented in this paper. Another commonly used drag term is given by a com-

bination of drag terms by Ergun (1952) and Wen and Yu (1966). For εi → 1

this term and Di Felice’s are identical (over all Re). As the porosity decreases

both drag terms generally follow the same trend, although the Ergun and Wen

& Yu model gives a larger drag force for dense systems.

4. Validation Test Cases

Three different sedimentation test cases were used to verify that SPH-DEM

correctly models the dynamics of the two phases (fluid and solid particles) and

their interactions.

1. Single Particle Sedimentation (SPS)

2. Sedimentation of a constant porosity block (CPB)

3. Rayleigh Taylor Instability (RTI)

These test cases were designed to test the particle-fluid coupling mechanics

in order of increasing complexity. The first test case simply requires the correct

calculation and integration of the drag force on the single particle, the single

particle being too small to noticeably alter the surrounding fluid velocity. The
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Figure 2: Setup for test case SPS, single particle sedimentation in a fluid column. (Left)
Perspective view, showing the fluid domain, the no-slip bottom boundary and the single
spherical DEM particle. (Right) Top view, the grey area is the bottom no-slip boundary

second requires that the drag on both phases and the displacement of fluid

by the particles be correctly modelled for a simple velocity field and constant

porosity. The third test case does the same but with a more complicated and

time-varying velocity and porosity field.

The first test case (SPS) models a single particle sedimenting in a fluid

column under gravity. Figure 2 shows a diagram of the simulation domain.

The water column has a height of h = 0.006m and the bottom boundary is

constructed using Lennard-Jones repulsive particles (these particles are identical

to those used by Monaghan et al. (2003)). The boundaries in the x and y

directions are periodic with a width of w = 0.004 m and gravity acts in the

negative z direction. The single DEM particle is initialised at z = 0.8h. It has

a diameter equal to d = 1× 10−4 m and has a density ρp = 2500 kg/m3.

For the initial conditions of the simulation, the position of the DEM particle

is fixed and the fluid is allowed to reach hydrostatic equilibrium. The particle

is then released at t = 0 s.

Most fluid-particle systems of interest will involve large numbers of particles,

and therefore the second test case (CPB) involves the sedimentation of multiple

particles through a water column. In this case, a layer of sedimenting particles

is placed above a clear fluid region. Figure 3 shows the setup geometry. The

fluid column is identical to the previous test case, but now the upper half of the
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Figure 3: Setup for test cases CPB and RTI, multiple particle sedimentation in a fluid column.

column is occupied by regularly distributed DEM particles on a square cubic

lattice, with a given porosity ε. The separation between adjacent DEM particles

on the lattice is given by ∆r = (V/(1−ε))1/3, where V is the (constant) particle

volume. The diameter and density of the particles are identical to the single

particle case. In order to maintain a constant porosity as the layer of particles

falls, the DEM particles are restricted from moving relative to each other and

the layer of particles falls as a block (only translation, no rotation of the layer).

The third test cases (RTI) uses the same simulation domain and initial con-

ditions as CPB, but now the particles are allowed to move freely. This setup

is similar in nature to the classical Rayleigh-Taylor (RT) instability, where a

dense fluid is accelerated (normally via gravity) into a less dense fluid. The

combination of particles and fluid can be modeled as a two-fluid system with

the upper ”fluid” having an effective density ρd, and an effective viscosity µd,

both higher than the properties of the fluid without particles. From this an

expected growth rate can be calculated for the instability and compared with

the simulated growth rate. See Section 7 for more details.

For all three test cases, three different model fluids are used to evaluate the

SPH-DEM model at different fluid viscosities and particle Reynolds numbers.

The density and viscosities of these fluids correspond to the physical properties

of air, water and a 10% glycerol-water solution.
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4.1. Simulation Parameters and Timescales

Table 1 shows the parameters used in the three test cases. Each column

corresponds to a different model fluid. Where a value appears only in one

column, this indicates that the parameter is constant for all the fluids. The

particle Reynolds number is calculated using the expected terminal velocity of

the single particle or multiple particle block.

The standard Stokes law, Eq. (28), can be used to calculate the vertical

speed of a single particle falling in a quiescent fluid.

v(t) =
(ρp − ρ)V g

b

(

1− e−bt/m
)

, with constant b = 3πµd. (34)

Since we are interested in a range of particle Reynolds numbers, not just at

the Stokes limit, we also consider the Di Felice drag force, Eq. (32), which is

valid for higher Reynolds numbers and varying porosity (i.e. it considers the

interaction of multiple particles). When the buoyancy and gravity force on the

falling particle balance out the drag force, the particle is falling at its terminal

velocity. Equating these terms leads to a polynomial equation in terms of the

particle Reynolds number at terminal velocity

0.392Re2p + 6.048Re1.5p + 23.04Rep −
4

3
Arε1+ξ = 0, (35)

where ξ is given in Eq. (32) and Ar = d3ρ(ρp − ρ)g/µ2 is the Archimedes

number. The Archimedes number gives the ratio of gravitational forces to vis-

cous forces. A high Ar means that the system is dominated by convective

flows generated by density differences between the fluid and solid particles (e.g.

Buoyancy, Rayleigh Taylor instabilities) . A low Ar means that viscous forces

dominate and the system is governed by external forces only.

Solving for Rep, one can find the expected terminal velocity using Rep =

ρ|ut|d/µ.

Note that a range of porosities is used for test cases CPB and RTI, and this

results in a range of particle Reynolds numbers as the terminal velocity depends

on the porosity.
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Table 1: Relevant parameters and timescales for the simulations using different fluids. Parameters appearing only in one column are kept constant
for all fluids.

Notation Units Air Water Water + 10% Glycerol

Box Width w m 4× 10−3

Box Height h m 6× 10−3

Fluid Density ρ kg/m3 1.1839 1000 1150

Fluid Viscosity µ Pa · s 1.86× 10−5 8.9× 10−4 8.9× 10−3

Particle Density ρp kg/m3 2500

Particle Diameter d m 1.0× 10−4

Spring Stiffness k kg/s2 1.0× 10−4

Spring Damping β kg/s 0

Porosity ε 0.6-1.0

Calculated Terminal Velocity (Eq. 35) |ut| m/s 0.102-0.5 1.3× 10−3-7.6× 10−3 1.3× 10−4-8.4× 10−4

Calculated Terminal Re Number (Eq. 35) Rep 0.65-3.19 0.15-0.85 0.002-0.011

Archimedes Number Ar 83.89 18.57 0.192

Particle Contact Duration tc s 2.54× 10−3

Fluid CFL Condition tf s 1.4-4.5 ×10−5

Fluid-particle Relaxation Time td s 7.47× 10−2 1.56× 10−3 1.56× 10−4
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Also included in Table 1 are the relevant timescales for the simulations. The

particle contact duration tc and fluid CFL condition tf are described in Sections

3.2 and 3.1 respectively. The fluid-particle relaxation time is the characteristic

time that a falling particle in Stokes flow will converge to its terminal velocity.

This is given by td = m/b from Eq. (34). This relaxation time provides another

minimum timestep for the SPH-DEM simulation, given by

∆trelax ≤
1

20

m

b
. (36)

The physical properties of the solid DEM particles are constant over all

the simulated cases. Since the results of the test cases are insensitive to the

particle-particle contacts, a relatively low spring stiffness of k = 10−4kg/s2 was

used. This value ensures that the timestep is limited by the fluid CFL condition,

rather than the DEM timestep, significantly speeding up the simulations.

5. Single Particle Sedimentation (SPS)

This section describes the results from SPH-DEM simulations using the first

test case (SPS). We tested one and two-way coupling between the phases, the

effect of different drag laws (Stokes and Di Felice), different fluid properties (air,

water and water-glycerol) and the effect of varying the fluid resolution.

5.1. One and two-way coupling in Stokes flow

For a single particle falling in Stokes flow the standard Stokes drag equation,

Eq. (28), can be used for the drag. Since Stokes drag law assumes a quiescent

fluid, the force on the fluid due to the particle is set to zero (fa = 0 in Eq. (26)).

This implements a one-way coupling between the phases. Note that the SPH

particles can still interact with the DEM particles through the porosity field,

but for a single particle this effect will be negligible.

In Figure 4 the evolution of a DEM particle’s vertical speed in water is

shown for one-way and two-way coupling. Also shown is the expected analytical

prediction using Eq. (34). The falling DEM particle reproduces the analytical

velocity very well for both one-way and two-way coupling and the error between
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Figure 4: Sedimentation velocity for a single particle in different fluids falling from rest with
both one-way and two-way coupling. The dashed line is the theoretical result integrating
Stokes law. The y-axis shows the particle vertical velocity scaled by the expected terminal
velocity |ut| and the x-axis shows time scaled by the drag relaxation time td. The inset shows
the percentage error between the SPH-DEM and the expected trajectory.

the two curves is less than 2% for the vast majority of the simulations. Note

that the error curve does diverge to 5% when the particle is first released, but

this is is a short-lived effect and the error drops below 2% after a time of about

td, the relaxation time for the drag force.

These results indicate that the pressure gradient calculated from the SPH

model, very accurately reproduces the buoyancy force on the particle, balancing

out the drag force at the correct terminal velocity. The results are identical for

both one-way and two-way coupling, indicating that the drag force on the fluid

has a negligible effect. This is true as long as the fluid resolution is sufficiently

larger than the DEM particle diameter, and this is explored in more detail in

Section 5.2.

Figure 4 also shows the same result for a DEM particle falling in air and

in the water-glycerol mixture. For air, the drag force on the particle is much

lower than for water, and the particles do not have time to reach their terminal
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velocity before reaching the bottom boundary, where the simulation ends. As

for the previous simulation with water, there is initially a larger (approx 4%)

underestimation of the particle vertical speed, but once again this occurs only

for a very small time period and does not affect the long term motion of the

particle. For the majority of the simulation the error is less than 0.3% for both

one-way and two-way coupling.

The results for the water-glycerol fluid are qualitatively similar to water.

Here the drag force on the particle is much higher than for water and the par-

ticle reaches terminal velocity very quickly. However, as long as the simulation

timestep is modified to resolve the drag force relaxation time td as per Eq. (36),

the results are accurate. For both the one-way and two-way coupling, the sim-

ulated velocity matches the analytical velocity very well and the error remains

less than 0.3% for the duration of the simulation.

In summary, the results for the one-way and two-way coupling between the

fluid and particle for all the reference fluids are very accurate, and reproduce

the analytical velocity curve within 0.3-2% error besides short-lived higher de-

viations at the initial onset of motion. All data can scale using ut and td for

velocity and time respectively.

5.2. Effect of Fluid Resolution

In this section we vary the fluid resolution to see its effects on the SPS results.

Using water as the reference fluid, four different simulations were performed with

the number of SPH particles was ranging from 10x10x15 particles to 40x40x60.

Using the SPH smoothing length h as the resolution of the fluid, this gives a

range of 1.5d ≤ h ≤ 6d, where d is the DEM particle diameter.

Figure 5 shows the percentage difference between the average terminal ve-

locity of the particle and the expected Stokes law. The error bars in this plot

show one standard deviation of the fluctuations in the terminal velocity around

the average.

The h/d = 6 resolution corresponds to that used in the previous one and two-

way coupled simulation, and the percentage error here is similar to the one-way
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Figure 5: The effect of fluid resolution for the SPS test case, with water as the surrounding
fluid. The x-axis is h/d, where h is the SPH resolution and d is the DEM particle diameter.
The y-axis shows the average percentage error between the particle terminal velocity and the
analytical value. The errorbars show one standard deviation from the mean.

case, which is a mean of 0.2% with a standard deviation of 0.8%. As the fluid

resolution is increased there is no clear trend in the average terminal velocity,

but there is an obvious increase in the fluctuation of the terminal velocity around

this mean. For h/d ≥ 2, the standard deviation of this fluctuation is less than

1%, but this quickly grows to 3% for h/d = 1.5.

The increased error as the fluid resolution approaches the particle diameter

is due to one of the main assumptions of the AVNS equations, i.e. that the fluid

resolution length scale is sufficiently larger than the solid particle diameter. In

this case the smoothing operator used to calculate the porosity field is also much

greater than the particle diameter and this will result in a smooth porosity field.

As the fluid resolution is reduced to the particle diameter the calculated porosity

field will become less smooth and there will emerge local regions of high porosity

at the locations of the DEM particles. As the fluctuations in the porosity field

become greater this in turn will cause greater fluctuation in the forces on the

SPH particles leading to a more noisy velocity field.
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Another trend, that is not clear in these results but can be seen for solid

particles with higher density, is the terminal velocity of the particle increasing

with increasingly finer fluid resolution. Due to the two-way coupling, the drag

force on the particle will be felt by the fluid as an equal and opposite force. This

will accelerate the particles by a amount proportional to the relative mass of the

SPH and DEM particles. For higher resolutions the mass of the SPH particles

is lower, leading to an increase in vertical velocity of the affected fluid particles.

Since the DEM particle’s drag force depends on the velocity difference between

the phases, which is now smaller, this will lead to a increase in the particle’s

terminal velocity. For the SPS test case shown here, the single particle does not

exert too much force on the fluid and this is not a very large effect. As the fluid

resolution is decreased from h/d = 6 to 2, there is a slight increase (on the order

of 1-2%) in the terminal velocity, but lower than this the trend is lost, likely due

to the increasingly noisy results due to the fluctuations in the porosity field.

5.3. The effect of fluid properties and particle Reynolds number

We have used three different reference fluids in the simulations, correspond-

ing to air, water and a water-glycerol mixture. Using the SPS test case, this

results in a range of particle Reynolds numbers between 0.011 (water-glycerol)

and 3.19 (air), allowing us to explore a realistic range of particle Reynolds

numbers. We have further extended this range by considering two additional

(artificial) fluids with a density of water but lower viscosities, resulting in a

range of 0.011 ≤ Rep ≤ 9.

Rather than assuming Stokes flow as in the previous sections, here we

will use the Di Felice drag law (ε = 1), which is assumed to be valid for all

Reynolds numbers. This will be compared against fully resolved simulations

using COMSOL Multiphysics (finite element analysis, solver and simulation

software. http://www.comsol.com/).

Figure 6 shows the average error in the terminal velocity measured from the

SPH-DEM simulations using both the Stokes and Di Felice drag laws, using the

COMSOL results as the reference terminal velocity. Since the two drag laws
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Figure 6: Error in SPH-DEM average SPS terminal velocity at different terminal Re numbers.
The fully resolved COMSOL simulation is used as reference for the error calculation. The
solid red and dashed green lines show the results using either Stokes or Di Felice drag law.
The dotted blue line shows the reference terminal velocity calculated using the Coulson and
Richardson drag law (Coulson and Richardson, 1993).

are equivalent at low Rep, they give the same result at Rep = 0.01. As Rep

increases, the plots diverge, and the simulated terminal velocity using the Stokes

drag quickly becomes much larger than the COMSOL prediction (as expected

since the Stokes drag law is only valid for low Rep). In contrast, the Di Felice

drag law results in a simulated terminal velocity that follows the same trend as

the COMSOL results. At low Rep the DEM particle falls slightly (∼ 5%) faster,

at higher Rep it falls slightly (3-6%) slower.

For further comparison, the COMSOL results have also been compared with

the analytical drag force model proposed by Coulson and Richardson and re-

produced in Eq. (29). The expected terminal velocity was calculated using this

model and plotted alongside the SPH-DEM results in Figure 6. As shown, the

COMSOL results agree with this analytical terminal velocity to within 3.5%

over the range of Rep considered.

While the results in previous SPS sections have shown the SPH-DEM model
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can accurately reproduce the expected terminal velocity assuming a given drag

law (Stokes), this section illustrates that the final accuracy is still largely de-

termined by the suitability of the underlying drag law chosen. However, a full

comparison of the numerous drag laws currently in the literature is beyond the

scope of this paper, and for the purposes of validating the SPH-DEM model we

can assume that the chosen drag law (from here on the Di Felice), approximates

well the true drag on the particles.

6. Sedimentation of a Constant Porosity Block (CPB)

This section shows the results from the Constant Porosity Block (CPB) test

case. In a similar fashion to the SPS case, we explore the effect of fluid resolution

and fluid properties. In addition, we consider the influence of a new parameter,

the porosity of the block, on the results. All the simulations in this section use

two-way coupling, as the hindered fluid flow due to the presence of the solid

particles is an important component of the simulation. As the porous block

falls, the fluid will be displaced and flow upward through the block, affecting

the terminal velocity. All the simulations use the Di Felice drag law, which is

necessary to incorporate the effects of neighbouring particles (lower porosity)

on the drag force.

Figure 7 shows an example visualisation during the simulation of a block

with porosity ε = 0.8 falling in water. On the left hand side of the image are

the DEM particles (coloured by porosity εi) falling in the fluid column. The

porosity of most of the DEM particles is ε = 0.8, as expected, except near the

edge of the block where the discontinuity in particle distribution is smoothed

out by the kernel (with smoothing length hc
∼= 6d) in Eq. (9). This results in

a porosity greater than 0.8 for DEM particles whose distance is lower than hc

from the edge of the block. We will show in Section 6.1 that this effect can be

limited/avoided by choosing a smaller smoothing length.

On the right hand side is shown a vector plot of the velocity field at x = 0.

This shows the upward flow of fluid due to the displacement of fluid by the
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Figure 7: Visualisation of the DEM particles for the Constant Porosity Block test case. On the
left the DEM particles are shown coloured by porosity εi, and a transparent box representing
the simulation domain. On the right the corresponding fluid velocity field is shown at x = 0,
with the arrows scaled and coloured by velocity magnitude.
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Figure 8: Average percentage change in the terminal velocity and average porosity of the
Constant Porosity Block (CPB) with ε = 0.8 in water for varying fluid resolution. Errorbars
in the terminal velocity points show one standard deviation of the vertical velocity data from
the average, taken over a time period of 0.34 s after the terminal velocity has been reached.

particles as they fall. Also noticeable are fluctuations in velocity near the edges

of the block, which are discussed in more detail in Section 6.3.

Shortly after release, the vertical velocity of the CPB converges to a termi-

nal velocity that is consistent with the expected terminal velocity, although it

is slightly (less than 5%) higher than expected. The systematically increased

terminal velocity is due to reduced drag at the edges of the block due to the

finite width of the smoothing kernel. As the width of the smoothing kernel h

used to calculate the porosity field is larger (by a factor of 2-6, see Figure 8 for

details) than the particle diameter d, the porosity field near the edges of the

CPB will be smoothed out according to the width of the kernel. This results in

a slightly higher apparent local porosity and a reduced drag than what would

be expected with ε = 0.8.

6.1. The effect of fluid resolution

Figure 8 shows the percentage difference between the vertical velocity of

the block and the expected terminal velocity. The results from five different
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simulations are shown, each with a different fluid resolution ranging from h/d =

6 to h/d = 2. The porosity is set to ε = 0.8. The h/d = 6 plot uses a

smoothing kernel that is 6 times greater than the DEM particle diameter, leading

to increasing smoothing of porosity field near the edges of the block. Integrated

the porosity field over the volume of the CPB leads to a porosity of 0.85, about

6% higher than the true porosity of the block. This results in an increase of

22% in the terminal velocity of the block. Increasing the fluid resolution to

h/d = 5 causes the error to decrease to 15%, since the interpolated porosity at

the edge of the block is now closer to the set value of ε = 0.8. Further increases

in the fluid resolution consistently decreases the measured terminal velocity

until at h/d = 2 the error is only 5% of the expected value. These results

illustrate how the smoothing applied to the porosity field can have dramatic

results on the accuracy of the simulations. This is largely due to the fact that

the modelled drag only depends on the local porosity, which does not properly

consider the influence of porosity gradients on the applied drag force. Therefore

the accuracy of the drag law near large changes in porosity is highly dependent

on the magnitude of smoothing applied to the porosity field. This is true for the

Di Felice law and the most other drag laws proposed in the literature, but there

has been some recent work by Xu et al. (2007), which attempts to account for

the influence of the porosity gradient, but we will not study this further here.

6.2. The effect of porosity

Varying the porosity of the CPB allows us to evaluate the accuracy of the

SPH-DEM model at different porosities. Figure 9 shows the average terminal

velocity of the block, as measured from SPH-DEM simulation of the CPB over

a range of porosities from ε = 0.6 to 1.0. Results using both water and water-

glycerol as the interstitial fluid are shown on the same plot by scaling the y-axis

by the expected terminal velocity of a single DEM particle. The average terminal

velocity is taken after the block has reached a steady terminal velocity and the

error bars show one standard deviation of the vertical velocity from the average.

For these simulations, again h/d = 2 is used.
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Figure 9: Average terminal velocity (scaled by |ut|, the expected terminal velocity of a single
DEM particle) of the Constant Porosity Block (CPB) in water and water-glycerol for varying
porosity and h/d = 2. Errorbars show one standard deviation of the vertical velocity data
from the average, taken over a time period of 0.34 s. The y-axis is scaled by |ut|, the expected
terminal velocity of a single DEM particle given by Eq. (35), which corresponds to the SPS
test case.
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Shown with the SPH-DEM results is a reference line showing the expected

terminal velocity computed using Eq. (35) and the input porosity of the block.

The SPH-DEM results for both water and water-glycerol match this reference

line very well over the range of porosities tested. At lower porosities the vertical

velocity of the CPB suffers from increasing fluctuation around the mean. This

is a consequence of fluctuations seen in the surrounding fluid velocity, and will

be described further in Section 6.3.

In summary, the simulated terminal velocity for the CPB matched the ex-

pected value over the range of resolutions and porosities considered, as long as

the resolution of the fluid phase (give by h) is sufficient to resolve the porosity

field of the given problem. For the CPB we have a jump at the edge of the block

from the given porosity of the block to the surrounding ε = 1. We found that

as long as the fluid resolution was kept at h = 2d, where d is the DEM particle

diameter (i.e.. the length scale of the porosity jump), the results matched the

theoretical predictions within 5% error.

6.3. Effect of Porosity Gradients on Fluid Solution

In the previous section it was shown how the smoothing of the porosity

discontinuity of the block slightly affected the drag on the DEM particles and

the final terminal velocity of the block. In this section we will show how the

high porosity gradients near the edge of the block also gave rise to further effects

on the SPH solution for the fluid.

Figure 10 shows the vertical velocity and porosity for all the SPH particles in

a CPB simulation with fluid resolution h/d = 2 and porosity ε = 0.8. These val-

ues are plotted against the vertical position of the SPH particles. The porosity

is rather smooth and clearly shows the location of the CPB. However, there are

fluctuations in the vertical velocity of the SPH particles near the edges of the

block, much larger than the rather small average (positive) velocity inside the

block. These fluctuations are present to different degrees in all of the SPH-DEM

simulations and their magnitude is proportional to the local porosity gradient.

Therefore, their effect is strongest for the simulations with low porosity or fine
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Figure 10: Scatter-plot of the vertical velocity (red dots) and porosity (green line) versus
height for all the SPH particles. The test case was CPB with a porosity of ε = 0.8 in water
as the surrounding fluid, the fluid resolution was h/d = 2 and αart = 0.1

fluid resolution (i.e. small hc).

Given the correlation of these fluctuations with high porosity gradients, their

source is likely to be due to errors in the SPH pressure field. It is well-known

(e.g. (Colagrossi and Landrini, 2003)) that SPH solutions can exhibit spurious

fluctuations in the pressure field, which normally have little or no effect on

the fluid velocity. For our simulations the pressure of each SPH particle is

proportional to (ρ/ερ0)7 and is therefore very sensitive to changes in ε. It is

likely that for high porosity gradients the pressure variations that are normally

present would be amplified and generate corresponding large fluctuations in the

velocity field.

As long as the fluctuations do not grow too large, they do not effect the mean

flow of the fluid, as evidenced by the accurate reproduction of the expected

terminal velocity in the previous sections. To ensure the simulation accuracy, it

was found that the application of an artificial viscosity with strength αart = 0.1,

see Eq. (13), was enough to damp out the fluctuations in velocity so that they
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did not have a significant effect on the results. This value of αart was used in all

of the CPB simulations shown here. The artificial viscosity has no effect on the

settling velocity of the SPS or CPB since this viscosity is only applied between

SPH particles and is not included in the fluid-particle coupling term (Eq. 23).

However, for systems where the fluid viscosity plays an important role (e.g. the

Rayleigh Taylor instability in the following section), this has an effect which

will be described in the next section.

7. Rayleigh-Taylor Instability (RTI)

The classic Rayleigh-Taylor fluid instability is seen when a dense fluid is

accelerated into a less dense fluid, for example, under the action of gravity.

Consider a water column of height h filled with a dense fluid with density ρd and

viscosity νd located above a lighter fluid with parameters ρf and νf . For the RTI

test case, the lower and higher density fluids are represented by the pure fluid

and the suspension, respectively. If the height of the interface between the two

fluids is perturbed by a normal mode disturbance with a certain wave number

k (see Figure 11 and Eq. (39)), then this disturbance will grow exponentially

with time.

The two-fluid model of a Rayleigh-Taylor instability was derived in the au-

thoritative text by Chandrasekhar (1961). The exponential growth rate n(k) of

a normal mode disturbance with wave number k at the interface between the

two fluids (with zero surface tension) is characterised by the dispersion relation

(Chandrasekhar, 1961) given by

−

[

gk

n2
(αf − αd) + 1

]

(αcqd + αfqc − k)− 4kαfαd

+
4k2

n
(αfνf − αdνd)[αdqf − αfqd + k(αf − αd)]

+
4k3

n2
(αfνf − αdνd)

2(qf − k)(qd − k) = 0, (37)

where νf,d = µf,d/ρf,d is the kinematic viscosity of the two phases, αf,d =
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Figure 11: Diagram showing a cross-section of the initial setup for the Rayleigh-Taylor In-
stability (RTI) test case. The upper grey area is the particle-fluid suspension with effective
density and viscosity ρd and µd, the lower white region is clear fluid with density and viscosity
ρf and µf . The suspension is given an initial vertical perturbation with wave number k and
amplitude d/4.

ρf,d/(ρf + ρd) is a density ratio and q2f,d = k2 + n/νf,d is a convenient abbrevi-

ation.

For this test case, we use an identical initial condition as in the CPB test

case, with an initial block of particles immersed in the fluid with an initial

porosity of ε = 0.8. Using the density of the surrounding fluid ρf , the effective

density of the fluid-particle suspension is ρd = ερf +(1− ε)ρp. This system can

be approximated using a two fluid model, where the suspension is treated as a

fluid with density ρd and kinematic viscosity νd. Therefore, in a similar fashion

to the RT instability described above, it is expected that an initial disturbance of

the interface between the two “fluids” will increase with an exponential growth

rate which is a solution of Eq. (37).

The effective viscosity of the suspension µd is estimated here using Krieger’s

hard sphere model (Krieger, 1959) (assumed to be valid for both dilute and

dense suspensions)
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Figure 12: Visualisation of the DEM particles (left) and velocity field (right) at x = 0 in the
x-z plane, for the Rayleigh Taylor (RT) test case, using ε = 0.8 and water-glycerol as the
surrounding fluid. The growth rate for this simulations versus time can be seen in Figure 14.

µd = µf

(

ε − εmin

1− εmin

)−2.5(1−εmin)

, (38)

where εmin = 0.37 is the porosity at the maximum packing of the solid

particles.

We generate an initial disturbance in the interface between the two “fluids”

by adding a small perturbation to the vertical position of every DEM particle

∆zi = −
d

4
(1− cos(kxxi))(1 − cos(kyyi)), (39)

where kx = ky = 2π/w and xi and yi are the x- and y-coordinates of the

position of particle i. This yields a symmetric disturbance in the interface with

a wave length equal to the box width w.
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Figure 13: Growth of Rayleigh-Taylor instability using water. The red pluses and green
crosses show the position of the lowest DEM particle when the artificial viscosity is either
added or not. The two reference lines show the expected growth rate using the lowest and
highest porosity of the CPB.

Figure 12 shows the positions of the DEM particles during the growth of the

instability, along with the fluid velocity field at x = 0. At this time there is a

strong fluid circulation that is moving downward in the centre of the domain

and upward at the edges (not visible in this cut). This causes the growth of

the instability by increasing the sedimentation speed of the DEM particles near

the centre while reducing or even reversing the sedimentation of those particles

near the outer boundaries of the domain. The movement of the DEM particles

matches the expected behaviour of the instability, and the wave length of the

dominant mode is identical to the initial perturbation given to the DEM particle

positions. Next we will attempt to quantitatively compare the SPH-DEM results

to the growth rate predicted by the analytical two-fluid model.

In Figure 13 the growth of the RT instability versus time for ε = 0.8, fluid

resolution h/d = 2 is shown using water as the surrounding fluid. The symbols

show the vertical position of the lowest DEM particle, which provides an ap-

proximate measure of the instability amplitude. The vertical displacement of
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this point over time can be compared with the estimated growth rate for the

RT instability as given by the two-fluid model in Eq. (37). The growth rate

of the instability is added to the expected sedimentation speed using Eq. (35)

to calculate the expected trajectory of the lowest DEM particle. Using the pa-

rameters of the simulation (including ε = 0.8) and solving for the growth rate

leads to a growth curve given by the lowest blue dashed line. The two-fluid

model is included here as a benchmark, but it should be noted that this model

contains some significant approximations in treating the particle suspension as

an equivalent fluid, and is not necessarily more accurate than the SPH-DEM

results. While a constant porosity of 0.8 is used for the two-fluid RTI model,

the porosity of the DEM particles ranges from 0.8 ≤ ε ≤ 0.86 at t = 0 (ini-

tial conditions) and the porosity at the leading front of the instability grows

over time, reaching a value of 0.93 at the timestep shown in Figure 12 and a

maximum value of 0.95 before the instability meets the bottom boundary. To

account for this variation in porosity, we instead use the analytical model to

obtain an upper and lower bound to the instability growth. The upper bound

is calculated using epsilon = 0.8 (the blue dashed line) and the upper bound is

calculated using ε = 0.93, which gives the purple dashed line.

The SPH-DEM results are shown for the cases where the artificial viscosity

is either applied (αart = 0.1) or not used (αart = 0.0). In both cases there is a

clear exponential growth of the RT instability and only the quantitative growth

rate differs between the two simulations. If the artificial viscosity is applied, the

growth rate of the instability is lower than both of the two reference bounds. If

the artificial viscosity is not used, the growth rate of the instability is increased

to lie between the two bounds. After t = 0.15 s the growth rate becomes slower

than the upper bound, but by this time the bottom of the instability is close to

the bottom boundary, and we do not expect the two-fluid model (which assumes

an unbounded domain) to apply.

Figure 14 shows the same results but using water-glycerol as the interstitial

fluid. In this case the physical viscosity of the fluid is proportionally greater

than the artificial viscosity applied, and therefore the addition of the artificial
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Figure 14: Growth of Rayleigh-Taylor instability using water-glycerol. The red pluses and
green crosses show the position of the lowest DEM particle when the artificial viscosity is
either added or not. The two reference lines show the expected growth rate using the lowest
and highest porosity of the CPB.

viscosity has a lesser effect. For both αart = 0.1 and αart = 0.0 the growth rate

of the instability lies between the two bounds, except when the DEM particles

reach the bottom of the domain and wall effects start to dominate.

While it is encouraging that the SPH-DEM results (without artificial viscos-

ity) closely match the expected growth of the RT instability, the results highlight

the negative effect of the artificial viscosity when used in problems where the

fluid viscosity is important. Therefore it is necessary to develop an alternative

method of reducing the velocity fluctuations near high porosity gradients, and

this is the subject of current work. However, it is important to note that for

the majority of applications the addition of a small amount of artificial viscos-

ity has no significant effect on the results and is successful in eliminating the

problematic velocity fluctuations.

In summary, the results from the RTI simulations using water-glycerol show

that the SPH-DEM simulation can accurately reproduce the Rayleigh-Taylor

instability. The addition of an artificial viscosity, while successful in dampen-
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ing the velocity fluctuations, increases the effective viscosity of the system and

reduces the growth rate of the instability.

8. Conclusion

We have presented an SPH implementation of the locally averaged Navier

Stokes equations and coupled this with a DEM model in order to provide a

simulation tool for one or two-way coupled fluid-particle systems. One notable

property of the resulting method is that it avoids the use of a mesh and is

completely particle-based. It is therefore suitable for those applications where a

mesh presents additional problems, for example, free surface flow or flow around

complex, moving and/or intermeshed geometries (Robinson et al., 2012).

The SPH-DEM formulation was applied to 3D single and multiple particle

sedimentation problems and compared against analytical solutions. For single

particle sedimentation the SPH-DEM simulations reproduced the analytical so-

lutions very well, with less than 2% error over a wide range of Particle Reynolds

Number 0.011 ≤ Rep ≤ 9 and fluid resolutions. Only when the fluid resolution

became less than or equal to 1.5 times the particle diameter did the results start

to diverge from the expected solution.

For the multiple particle sedimentation test case using the Constant Porosity

Block (CPB), the SPH-DEM method accurately reproduced the expected ter-

minal velocity of the block, over a range of porosities 0.5 < ε < 1.0 and Particle

Reynolds Number 0.002 ≤ Rep ≤ 0.85. This is a general consequence of the

locally averaged Navier Stokes equation, and is not specific to the SPH-DEM

method. The minimum resolution of the porosity field will always be much

coarser than the DEM particle diameter, so any discontinuities in the particle

distribution will be smoothed and thus not be accurately reflected in the poros-

ity field. Furthermore, the results from the CPB also showed an instability in

the SPH fluid phase that occurred near the edges of the block. The high porosity

gradients in this region give rise to fluctuations in velocity of the SPH particles,

which are likely due to fluctuations in the pressure field being amplified by the

sudden change in porosity. Adding a small amount of artificial viscosity to the
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simulations was sufficient to damp these fluctuations and prevent them from

affecting the terminal velocity of the block.

The Rayleigh-Taylor Instability (RTI) test case successfully reproduced the

instability and its growth rate for both water and water-glycerol. For this test

case the addition of artificial viscosity was not necessary, due to the relatively

high porosity ε = 0.8 and lower porosity gradients at the interface between the

suspension and clear fluid.

Removing the SPH velocity fluctuations near high porosity gradients is the

subject of current work, and promising results have already been obtained by

either calculating the drag separately on the fluid or re-deriving the SPH equa-

tions from a Lagrangian formulation. Besides this issue, it was found that the

SPH-DEM model successfully reproduced most of the expected results from the

analytical test cases over a wide range of Reynolds Numbers and porosities, and

promises to be a flexible and accurate tool for modelling particle-fluid systems.

In the future, the method will be applied to dispersion of solids in fluid

or fluid-gas environments (Robinson et al., 2012). Other relevant directions for

future developments are: choice of drag law and the inclusion of the added mass

and lift forces; the choice of DEM particle contact forces and the inclusion of

friction and lubrication forces; and the inclusion of surface tension effects. These

questions require further study of the method and the choice of the parameters,

laws and assumptions.
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