Effect of cohesion on shear banding in quasi-static granulamaterial
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Very often when dealing with powder technology, a fundarakepoint is raised, what is the effect of contact
cohesion on the bulk behavior? A dimensionless parametgtermine the intensity of cohesive forces is the
granular Bond numbe(Bo). Using DEM simulations, we investigate the effect of cahtzohesion on slowly
sheared dense, dry, frictional-cohesive powders in alspttom Couette cell. Because of the geometry a wide
stable shear band forms and the steady state becomes tke Ttmushear banding phenomenon is independent
of cohesion for Bond numbdso < 1 and dependent on cohesion Bw > 1, when cohesive forces start to play
an important role. Inside the shear band, we find that the meanal contact force is independent of cohesion,
while the forces carried by contacts along the (compressivketensile) eigen-directions of the local strain rate
are cohesion dependent. Forces carried by contacts alergpthpressive and tensile directions are symmetric
about the mean force, while the force along the neutral timeds like the mean total force. The anisotropy
of the force network increases with cohesion. Cohesion ials@ases the heterogeneous structures in both
compressive and tensile directions.

I. INTRODUCTION subjected to isotropic compression. Gilabert et al| [50] fo
cussed on a two-dimensional packing made of particles with

Granular materials such as sand and limestone, neither bghort-range interactions (cohesive powders) under weak co
have like elastic solids nor like normal fluids, which makesPaction. Yang et al. [[51] studied the effect of cohesion on
their motion difficult to predict. When they yield under slow force structures in a static granular packing by changireg th
shear, the relative motion is confined to narrow regions (beParticle size. In a previous study [53], the effect of dry co-
tween large solid-like parts) called shear band$![1-3].aBhe heS|on_ at contact on the critical state yield stress Wagedud
bands are observed in many complex materials, which rangkhe critical-state yield stress shows a peculiar non-tinkea
from foams|[[4] and emulsionS![Bl 6] to colloids [7] and gran- Pendence on the confining pressure related to cohesion. But
ular matter €-17]. There has been tremendous effort t§€ Microscopic origin was not studied. . .
understand the shear banding in flow of non-cohesive grains In this paper, we report the effect of varying attractive
[, [2,[8£19]. However, real granular materials often experi forces at contact on the steady state flow behavior and the
ence inter-particle attractive forces due to many phygibat ~ force structure in sheared dry cohesive powders. Discrete
nomena:van derWaals force due to atomic forces for small Element Method (DEM) simulations are used to investigate
grains [20522] capillary forces due to presence of humidity the system at micro (partial) and macro level. In order to
(23], solid bridgeq24,[25], coagulation of particles [26], and quantify the intensity of coh_esllon, a variation (_)f thenu- _
many more. lar Bond numbef50, 54, 55] is introduced. We find that this

The question, arises how does the presence of attractiimensionless number very well captures the transitiomfro
forces affect shear banding? So far, only a few attempts hav@ gravity/shear-dominated regime to the cohesion-domthat
been made to answer this question, concerning dense met&ggime. To understand this further we look at the effect 6f co
lic glasses[[27/_28], adhesive emulsiohs| [29, 30], ativacti hesion on the mean force and anisotropy, by investigatiag th
colloids [31-3B], cemented granular media [34], wet granul forces a!o_ng the eigen-directions of the local strain rate t
media [35/ 36] and clayey soils [37]. Recently, rheologicalSor- Intuitively, one would expect only the tensile direatto
studies on adhesive emulsions and collolds [295301, 33] rebe affected by cohesion, but the real behavior is more com-
ported that the presence of attractive forces at contagtiaff Plex. We also discuss the probability distributions anctet
shear banding by affecting flow heterogeneity and wall slip. 9eneities of the forces in different directions to compléte

Another unique yet not completely understood feature of!Cture. _ _ _ _
granular materials is their highly heterogeneous contrcef ~ The paper is organized in four main parts. Secfion Il de-
distribution. The heterogeneity in the force distributisms ~ Scribes the model system in detail specifying the geometry,
been observed in both experimental and numerical studiedetails of particle properties, interaction laws. In secfilll
[2,[38-L46]. While huge effort has been made to understanthe velocity profiles z_ind shear band from samples with dl_f-
the force distribution of non-cohesive particles[2,[38147), ~ ferent contact cohesion are presented. In the same section,
only limited studies have aimed to understand the same for aghe force anisotropy and probabilities are studied tooaliin
semblies with attractive interactions [21] 48-52]. Richeét sect_lorﬂﬂ is dedicated to the discussion of the results; con
al. [49] studied the stress transmission in wet granulaesys ~clusions and an outlook.
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II. DISCRETE ELEMENT METHOD SIMULATION (DEM)

In this section, we explain our DEM simulations. We in-
troduce a model of cohesive grains in §ec.Jll A and show our
numerical setup in SeC.TIB. In Séc.1I C, we introduce a con-
trol parameter, i.eglobal Bond numberwhich governs the 1o

flow profiles and structure of the system. 5 2 - 5)
fey

A. Model ‘
] ?:}f;;(afag)i ‘ ;
Discrete Element Methods (DEM), provide numerical so- == P~ e
lutions of Newton’s equations of motion based on the spec- Fo e ’
ification of particle properties viz. stiffness, densitgdius )
and a certain type of interaction laws like Hertzian/Hoakea
[56,[57]. Simulation methodology and material parameters
used in this study are the same as in our previous work
[53,58]. The adhesive elasto-plastic contact model [59] is
used to simulate cohesive bulk flow, is briefly explained be-
low.
For fine, dry powders, adhesive properties due to van der

Waals forces and plasticity and irreversible deformativihe  F|G. 1: Schematic graph of the piece-wise linear, hystereti

vicinity of the contact have to be considered at the same timeyn adhesive force-displacement model in normal direction
[60,(61]. This complex behavior is modeled using a piece-

wise linear hysteretic spring model [59]. Few other contact
models in similar spirit are also recently proposed [62, 63]
The adhesive, plastic (hysteretic) force is introducedlby a
lowing the normal unloading stiffness to depend on the hysto P Ko 2map . , . _
of deformation. During initial loading the force increadies overlap 6‘_“"”‘ = K kata ? 1S _defmed (withgy = 0'05_)'
early with overlapd alongk,, until the maximum overlapmax Above th|s_overla[k2 does not increase anymore and is set
is reached, which acts as a history parameter. During unload® the maximal valué, = kp. This visco-elastic, reversible
ing the force decreases alokg the value of which depends branch is referred to as “limit branch” and is discussed in de
on the maximum overlafimaxas given by Eq{2). The overlap tailin [5<]. S _ o
when the unloading force reaches zekp= (1— ki /ko) dmax, The contact friction is set tg = 0.01, i.e. artificially small,
nonlinearly on the previous maximal forégax = Kidmax. The only. In order to study the influence of contact cohesion, we
negative forces reached by further unloading are attraativ- analyzed the system for the following set of adhesivity para
hesion forces, which also increase nonlinearly with the pre€terske:
vious maximum force experienced. The maximal cohesion
force that corresponds to the “pull-off'force, is given by

As discussed in Ref, [59], very large deformations will léad
a quantitatively different contact behavior, a maximalctor

ke € [0,5,10,25,33,50,75,100,200Nm™ L, (3)

fin = —KcOmi 1) which has to be seen in relation kg = 100 Nn1. Other
m m parameters, such as the jump—in fofgg58] and¢; [58,/59]
With Smin = 2= §ax. are not varied here.

n= Kok

Three phyzsjgcal phenomena: elasticity, plasticity and eohe
sion are quantified by three material paramekgr&;, andk.,
respectively. Plasticity disappears flar = k, and cohesion
vanishes fok; = 0. . . .

In order to account for realistic load-dependent contact be, F19urel2 is a sketch of our numerical se'%)n%wlgjeome-
havior, thek, value is chosen to depend on the maximum overl'Y Of the system is described in detail in Refs./[15,164-67])
lap dmay i.€. particles are more stiff for larger previous defor- !N this figure, the inner, split, and outer radii are given by
mationand the so dissipation is dependent on deformation™+ R @ndRo, respectively, where the concentric cylinders

The dependence &k on overlapdma is chosen empirically rotate relativg to each cher around th_e symmetry axis (the
as linear interpolation dot-dashed line). The ring shaped split at the bottom sepa-

rates the moving and static parts of the system, where a part
Kp it Smax/Fhax > 1 of the bottom_ and the outer cylinder rotate at the same rate.
ko(Sma) = 4 ki + (Kp—Ky) Smax @) The system is filled wittN ~ 3.7 x 10* spherical particles
2\ Zmax P _p:x.f b4 with densityp = 2000 kg/n? = 2 g/cn? up to heightH. The
if Omax/ Omax < average size of particles & = 1.1 mm, and the width of

B. Split-bottom ring shear cell



simmetry s introduce gglobal Bond numbeas
; .
: Bo= e 4)
— ; )

: where f, and (f) are the maximum allowed attractive force
o< < e reached at a contact (given by the contact model,[Eq. (1)) and
the mean force per contact reached close to the bottom, re-
spectively. For the calculation of mean forde, layer of two
particles diameters which is few particle diameter awaynfro
bottom is chosen. Because the shear band initiates from the
FIG. 2: (Color online) A sketch of our numerical setup  pottom, we choose the mean forde at the bottom to under-
consisting of a fixed inner part (light blue shade) and a  stand the effect of cohesion on these shear bands.
rotating outer part (white). The white part of the base ard th ¢ js jmportant to mention that the mean compressive force
outer cylinder rotate with the same angular velo€ltaround (5t the bottom) corresponds to the weight of the material
the symmetry axis. The inner, split, and outer radii aremive apove, whereas the maximum attractive force corresponds to
by R = 0.0147m,Rs = 0.085m, and?, = 0.11m, the pull-off force, which is directly related to the surfaee-
respectively, where each radius is measured fromthe  ergy of the particles. These two material and particle prope
symmetry axis. The gravity points downwards as shown by tjes are easily accessible experimentally.
arrow. The Bond number is a measure of the importance of ad-
hesive forces compared to compressive forces. A low Bond
number indicates that the system is relatively unaffected b
the homogeneous size-distribution (Wéhin/amax=1/2) is  attractive force effects; a high number (typically largeart
1- .o/ =1—(a)?/(a?) = 0.18922. The cylindrical walls and  one) indicates that attractive forces dominate. Interatedi
the bottom are roughened due to some (about 3% of the totalumbers indicate a non-trivial balance between the two ef-
number) attached/glued particlesl[65, 66]. fects.

When there is a relative motion at the split, a shear band |n parallel with the global Bond number as defined above,
propagates from the split positid® upwards and inwards, e also define two local variants of this quantity. A local sim
remaining far away from cylinder-walls and bottom in most y|ation based Bond numb@&o’(P) = f5(P)/(f(P)) can be
cases. The qualitative behavior is governed by the HfiBs  define by comparing the maximum attractive force reached at
and three different regimes can be identified, as reported ig given pressure (which can be less than or equal to the maxi-
Refs. [67-70]. We keebl /Rs < 0.5, such that the shear band mum allowed attractive force given by the contact modelhwit
reaches the free surface and stays away from inner wall [68he mean force at that pressure (subsdrippresents the local
69]. guantity, while superscrit denotes that this definition takes

Translational invariance is assumed in the tangentiainput from simulation data). Another variant of tl’BQa(P) is
@—direction, and the averaging is performed over toroidaldefined in the Appendix, which compares the analytical pre-
volumes, over many snapshots in time. This leads to fieldgiction for the maximum attractive force with mean force at
Q(r,2) as function of the radial and vertical positions. The that pressure.
averaging procedure has been explained in detail for three d  Figure3 displays the global Bond numtBwand the mean
mensional systems in [63.65)66], and is not further disetiss values ofBg*(P) and BoX(P) (averaged over different pres-
here. sure) as functions of the adhesivity paramé¢grwhere the

Since we are interested in the quasi-static regime, the rotgigure shows that local and global quantities are comparable
tion rate of outer cylinder is chosen to bé0s*, such that  with slight divergence for high cohesida. For the sake of
the inertial numbet = —4 [71]is| < 1. The simulation simplicity in the rest of this paper, we use the global Bond

GG numberBoto quantify the intensity of cohesion.

runs for more than 50 s.

C. Bond number lll. RESULTS

; ; o ; In this section, we present our results of DEM simulations.
Intensity of cohesion can be quantified by a ratio of the ' . :
y q y In Sec[IITA, we analyze the flow profiles and shear banding

maximum attractive force to a typical force scale in the sys- dv distributi q
tem. For example, Nase et al. [54] introduced the granulafl Our system. In Se€.IIB, we study distributions and struc

Bond number under gravity, which compares the maximun{u"es _Of for_ce cha_in networks in shear bands_. InBecllll C, we
attractive force at contact with the weight of a single grain explain anisotropic features of the force chain networks.

For plane shear without gravity, other authdrs [50, 55] used

a ratio between the maximum attractive force and the aver-

age force due to the confining pressure. In our analysis, we
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FIG. 5: (Color online) Non-dimensional angular velocity
profile w at the top surface plotted against the radial
coordinate scaled by the mean diamete). Different
symbols represent different values of the global Bond
number given in the inset, where the solid lines represent th
corresponding fits to EqX(5).

FIG. 3: (Color online) Variants of granular Bond number
plotted against cohesive strendth where the red circles
represent the global Bond numiio, while the blue squares
and green triangles represent the average valuBsioP)

andBqf(P), respectively.

tional invariance in the azimuthal direction and take agesa
over the toroidal volumes as well as many snapshots in time
[13]. The angular velocity profile can be well approximated
by an error function

wA1+A2erf<%> (5)

as in the case of non-cohesive materials [15/ 64-67], where
R: andW are the position and width of the shear band, re-
spectively. Here, we use the dimensionless amplitudles;
A, =~ 0.5, for the whole range of the Bond numbers, while
we useA; = 0.6 andA; = 0.4 for the strong cohesion with
Bo=4.86. The dimensionless amplitudes, andA, (along
with estimated errors), are summarized in Tdble I. Fiddre 6
shows the position of the shear band relative to the split at
FIG. 4: (Color online) Snapshots from simulations with different POtOMRs —Re and the width of shear barwf (both scaled
cohesion strengths, but the same number of mobile particles by mean particle diameter) at the top surface against thel Bon
N = 34518, seen from the top (Top) and from the front (Bottom). number. Here, within the error-bars, both the position and
The material is (a) without cohesi®@o = 0, and (b) with strong width are independent of cohesionBb < 1. However, the
cohesiorBo= 4.86. The colors blue, green, and orange denote theshear band moves inside and becomes wider with the Bond

particles with displacements in tangential direction meromd number ifBo> 1.
rde <0.5mm,rdg <2mm,r dt‘!’ Sl 4mm, anddg >4 mm, Both the position and width of shear band also depend
respectively

on the height ) in the system. Figurgl 7 displays the non-
dimensional position and width of the shear band for diffiere
values ofBo as functions of the height scaled by the filling
height, i.e.z/H. In this figure, the shear band moves closer
to the inner cylinder and gets wider while approaching to the
Figure[4 displays both top- and front-view of samples withtop layer, which is consistent with previous cohesive ana-no
the same filling height, i.e. the same number of particled, ancohesive studie$ [15,53,1641-67] 70]. In fig. J/(a), the lares
different global Bond numberBo= (left) 0 and (right) 486,  the prediction by Unger et al. [68]:
respectively, where the color code represents the azirutha

displacement rate of the particles. From the front-view, th R H\A 1B
el k@ o

A. Effect of cohesion on Flow Profiles

shear band (green colored area) moves inwards and gets wider 1-— R

with increasing “height”, while the shear band also moves in R s

wards and becomes wider with increasing “Bond number”. . )
Figure[B shows the non-dimensional angular velocity proVhere the exponentis given ify/= 2.5 for non-cohesive par-

files at the top surface against radial coordinate normalizelicles. If the Bond numberis less than one, our numerical dat
with mean particle diamete/d), where we assume transla- SOW very good agreement with EfJ (6). Abde= 1, how-
ever, the exponert decreases with the global Bond number
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FIG. 6: (Color online) (a) Position and (b) width (both schle 0 02 04 06 08 1
by mean patrticle diameter) of shear band at the top surface (a)
plotted against the global Bond number. Symbols with s

error-bars are the data, while the lines are only a guidedo ey

as in Tabldll. Note that Eq](6) slightly deviates from the re-

AN
sults near the top surface if the cohesion is str@dm=£ 2.22 g 4
and 285). In Fig[7(B), the lines are the prediction by Ries. et
al. [70] for non-cohesive system: 2
z\2]Y
W(2) = Wop [1 B (l B ﬁ) } ’ 7 %0 0z 04 06 o8 1
z/H

whereWop is the width at the top surface and the exponent is ®)
given byy = 0.5 for non-cohesive particles. o< 1, Ba. 1) o5 2. o101 online) (a) Position and (b) width (both schle

with Wp = 0.012 andy = 0.5+ 0.1 well agrees with our re- by mean particle diameter) of shear band in the cell plotted
sults. However, foBo > 1, both the widthoep and exponent against height scaled by the filling heighd. Different

y increase with the global Bond number as in Table I. In addi- symbols correspond to values of the global Bond number

tion, Eq. [I) deviates from the results near the top laydreft . . ) . ) o
cohesi?)n[i]gstrongio: 2.22 and 285), where the \F/)vid% ini. givenin the inset. The lines in (a) and (b) are the predigtion

tially increases with the height, but saturates algte~ 0.6. Eqgs. [6) and{l7), respectively.
Hence forBo > 1, we choose width at that height to W&,
and usey= 0.66 and 07 forBo= 2.22 and 285, respectively.
From the above results, we find that the cohesive forces be- |7
tween particles drastically affect the flow profiles. E@3. (6
and [¥) very well predict the position and width of the shear
bands, respectively fd8o < 1. For largeBo these equations
do not work anymore at large heights since the shear band in-
terferes with the inner cylinder. The shear band, whichés th
region with a large velocity gradient, is causeddtiging mo-
tions of particles. However, strong cohesive forces connect
particles in contacts (in other words, the cohesive forces p
mote collective motion®f particles) and prevent them from
sliding. As a result, the velocity gradient is smoothened an
the width of shear-band is broadened. This observation is
consistent with previous studies on adhesive dense emsisio
[72]. Interestingly, such an effect of cohesion is supprdss
if the global Bond number is less than one, where our nu-
merical data agrees well with previous theoretical/nuoasri
studies on non-cohesive particlés|[68, 70]. Hence, we show
that the global Bond numbeBo, captures the transition be-
tween essentially non-cohesive free-flowing granularrasse
blies(Bo< 1) to cohesive onefBo > 1).

FIG. 8: (Color online) Force chain networks of positive
normal forces foBo= (a) 0.33 and (b) 285, and negative
normal forces foBo= (c) 0.33 and (d) 285 at height
0.02 < z< 0.05m, respectively.



Bo A Ao H B & ranggWop |y
0 |0.50f 0.00050.500t 0.00050.03652.52 |0.1-1 ]0.01170.507|
0.17|0.50+ 0.00050.499+ 0.00050.03652.52 [0.1-1 |0.01180.523
0.33]0.49+ 0.0007/0.50Q+ 0.00070.03652.512/0.1-1 ]0.01180.555
0.81]0.49+ 0.0008 0.500+ 0.00080.03612.494{0.1-1 |0.01190.583
1.05/0.49+ 0.001 |0.50H 0.001 {0.03592.5100.1-1 |0.01200.582
1.50/0.49+ 0.002 |0.501 0.002 {0.03642.453 0.1-0.8 |0.01260.613
2.22/0.49+ 0.003 |0.501 0.003 {0.03682.367/0.1-0.6 |0.0138 0.667
2.85/0.49+ 0.005 [0.502+ 0.005 |0.03692.2590.1-0.6 {0.01600.713

TABLE I: Table showing filling height of the systeh, and fitting range/H for Egs. [6) and{7), together with the fit
parameteréy, A in Eq. (), in Eq. (8),Wop andyin Eq. (7).

0.015 . 0.015 . . L.
i ; i ; PDFs as the cohesive strength is increased.

Figure[8 shows force chains of positive ((a) and (b)) and

/- negative ((c) and (d)) normal forces in the systems with low
-/ 4 cohesion ((a) and (c)) and strong cohesion ((b) and (d))y Gre
color shows the weak forces, while red and blue colors show
the strong positive and negative forces respectively. The
strong or weak positive forces are forces larger or smaiken t
1 the mean positive forces A similar approach is adopted to
identify the strong/weak negative forces. In this figure, we
0,015 —— — 0.015 — — observe that both positive and negative forces are fullgdev

. oped in the cohesive system ((b) and (d)), where the intensit
/1 of the positive/negative force inside the shear band ing&p
than outside. In addition, the strong (positive/negatieege
chains are percolated through the shear band region. As ex-
plained in Sec[TITC, we can also see that the positive and
negative force chains are aligned in their preferred divest
i.e. compressive and tensile directions, respectively.

Figure[9 displays scatter plots of the interparticle forces
against overlaps between the particles in contacts, wizete e
point corresponds to a contact and different colors reptese

FIG. 9: (Color online) Scatter plots of overlaps and forces different height, i.e. pressure level in the system. Theded
between all contacts inside (left) and outside (right) ef th  right columns are the results of inside and outside the shear
shear bands for differef®o = 0.33 and 285. The different bands, respectively. Higher the presspréigher is the aver-
symbols represent a zoom into the vertical ranges8mm  age force (or overlap), to sustain a pressure due to the weigh
+1 mm (green stars), 15 mml mm (blue circles), 22mm  of the particles. For almost all values Bb, the density of
+1mm (magenta dots), 29 mil mm (cyan squares), with  points towards unloading, branch inside the shear band is
approximate pressure as given in the inset. Note that the higher compared to the points outside. We also observe that
points do not collapse on the lifkg(3 — &) due to the finite with increasingBo, most contacts (except for small pressure)
width of the size distribution: pairs of larger than average drift towards and collapse around the limit branch of the-con
particles fall out of the indicated triangle. Radial range  tact model (especially inside the shear band). This implies
0.075m< r < 0.085m (left) signifies data points inside the thatthe cohesive forces are more pronounced in shear bands
shear band, while the radial rang®85m< r < 0.065m rather than outside.
(right) signifies the data points outside the shear band.
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1. Mean force and overlap in shear bands

B. Structure and distribution of forces in shear bands
Figure[10 displays the mean normal forcgfy, in the shear

To understand the microscopic origin of the anomalous flowP@nd plotted against pressufg, for different values of the
profiles of cohesive aggregates, we study the force networilobal Bo.nd number, where the so_lld line is the prediction by
and statistics of the interparticle normal forces. Regentl Shaebaniet all[74] for non-cohesive granular systems as
Wang et al. [[73] reported the shape of probability distribu- 5
tion function (PDF) as an indicator for transition of flow fino (f) = Ania’)
guasistatic to inertial flows. In this section, we use a smil Cep

hilosophy to determine if there is any change in the shape of
P Phy y g PE Quith the 2'¢ moment of the size distributiota®), coordina-

tion numberC, volume fractiong, and mean pressur@).

(P) (8)
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FIG. 10: (Color online) The mean normal force inside of the 04 .
shear band plotted against pressure, where different sgmbo 035 §8§§:§§ —_
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represent the global Bond number (as given in the inset) and e R Y.
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P (NmD) negative contacts inside the shear band plotted against
@ pressure, where different symbols represent the globatiBon

number (as given in the inset).

with cohesiorin agreement with Fid.]8. Note that the mean
positive force is linear with pressure and independent béeo
sion belowBo= 1, while its dependence on pressure becomes
nonlinear abov8o = 1. Though the origin of this nonlinear-

ity is not clear, it is readily understood that cohesion erdes

the collective motion of the particles, i.e. the particlearr
range less and the system is in a mechanically constrained

-0.0014 Lemiii

50 100 150 200 2520 300 350 400 state. Because increasing cohesion increases the magnitud
P (Nm™) of negative forces, both the positive and negative forcénsha
(b) are strong to balance each other. It is noteworthy that in Fig

[9, the increase oBo increases the density of points in both
FIG. 11: (Color online) The mean (a) positive and (b)  positive and negative extremes, inside the shear band.
negative forces inside the shear band plotted againstyreess ~ The cohesive force seems not to affect the average number
where different symbols represent the global Bond number of contacts, see Refl_[58], where we reported that cohesion
(as given in the inset). had practically no effect on the contact number densityuwvol
metric fabric) in the same system. Higl 12 shows the frastion
of repulsive and attractive contacts against pressureifer d
Notably,the mean normal force is almost independent of coferent Bond numbers, together with the overall coordinmtio
hesionand linearly increases with pressure as in the cases qfumber. An increase of cohesion generates more attractive
static non-cohesive [39, 45] and cohesive systéms [51]. Weontacts while it decreases the number of repulsive cantact
also observe that for low pressure, Eg. (8) slightly over prenterestingly, the overall mean force remains independént
dicts the value of the mean force, while for higher pressur@&ohesion and contacts simply redistribute between thd+epu
the prediction well captures the data. While the mean value isjve and attractive directions.
insensitive to cohesion, the mean positive and negativaalor In contrast to the mean force, the mean overlap between
forces,(fpos) and(fneg), strongly depend on cohesion. Figure particles in contact depends on cohesion non-linearly, as
(11 shows the mean positive and negative forces against preshown in Fig[IB. In our model of cohesive particles! [59],
sure for different values dBo, wherethe intensities increase overlaps are always positive for both positive and negative
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FIG. 14: (Color online) Probability distribution of the
normalized force for (a) cohesion-le8e = 0 and (b) highly
cohesiveBo = 2.85 systems at different pressures in the
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FIG. 15: (Color online) Probability distribution of
normalized force * for (a) low pressure = 50 Nm 2 (close
to top) and (b) high pressuge= 400 Nni 2 (close to

bottom) in the system for data inside the shear band.
Different symbols represent the global Bond numBefas
given in the inset).

2. PDFs of forces and structures of strong force chains irashe
bands

The probability distribution function (PDF) of forces are
also strongly affected by cohesion. Figliré 14 shows the PDFs
of normal forces in shear bands for different pressure and co
hesion, where the forces are scaled by the mean normal force,
i.e. f*=f/(f). As can be seen, the PDF in the shear band for
cohesion-less particles is almost independent of pre¢Bige
[I4(@)), while itdepends on pressuikthe cohesive forces are
very strong (Fig[ I4(®)). FigureTl5 displays the variations
of the PDFs for different intensities of cohesion, where we

system. Different symbols represent value of local pressur find that the PDF becomes broad with increasing cohesion for

forces. It is worth mentioning that for loBo, the time evo-
lution of (d) saturates quickly, while foBo= 1.5,2.22,2.85

(as given in the inset).

Bo > 1. Therefore,strong cohesion, which leads the system
to a “mechanically frustrated state” induces larger fluctua
tions of positive/negative force®/e note that Yang et al,_[51]
also found similar trends in static three-dimensional jragx

for small sized particles, where the PDF becomes broader, as

it takes longer to longer to reach the steady state due to thearticle size decreases, i.e. cohesion increases. Brivaden

plastic increase of the overlap in averdge [53].

of the PDFs was also observed by Luding et ALl [75] during
cooling down of a sintered system.

The cohesive forces change not only the shapes of the
PDFs, but also their asymptotic behavior, i.e. the strectdr
strong force chains. At first, we fit their tails by a stretched
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FIG. 17: (Color online) A sketch showing the shear band as

exponential functior [76 _ . o
P rigde] dotted line, shear plane, and three eigen-directions of the

P(f*) ~ e (f/f0)? (9) strair_1 rate tensor. Grey lines show inqer and outer cyli§1der

while solid brown line shows the split, dashed black line
with a characteristic forcé, and a fitting exponerd. Figure shows the shear band which initiates at the split at bottom
I8 displays the characteristic force and the exponent again and moves towards inner cylinder as it moves towards the
the global Bond numbeBo. If Bo < 1, we obtainfy = top. Green arrow represents the eigen-direction for neutra

1.4+0.1 anda = 1.6+ 0.1, which is very close to that pre- €igenvalue of the strain rate tensor, which is tangentiti¢o

dicted by Eerd et al[[76] for three-dimensional non-cohesi ~ Shear band, perpendicular to this vector is the shear plane

ensemble generated by MD simulations. Bor> 1, however, ~ (vellow shaded region), which contains the eigen-dirextio

both characteristic force and fitting exponent decreask wit  for compression (red arrow) and tensile (blue arrow)

increasing cohesion. The decreasing fitting exponent hints eigenvalues.

stronger fluctuations in the force distribution. A Gaussah

of the probability distribution would indicate a more honeeg

neous random spatial distribution of forces. The deviatiion [N our system, both compressive forces and shear play a

wards an exponential distribution can be linked to an inezea Combined role, where the neutral direction gets a contiobut

in heterogeneity in the spatial force distribution; as reered ~ from external compressive force only, while the two princi-

in previous studies [77=79]. Therefore, we conclude that Pal (compressive and tensile) directions get contribstioom

tail of the PDF becomes more exponential with increasing coboth shear and external compressive force. Because the cohe

hesion, which implies a heterogeneous spatial distrimsiof ~ Sive force is activated by unloading, it should affect theéo

strong forces along the tensile direction. Note that the shear band he@t is
Also we observe that the fitting exponent decreases wittyertical, instead its orientation changes with depth asvsho

increasing pressure, which implies that at high pressuezevh in the schematic in Fig. 17. In this figure, the eigen-diretti

cohesion is more active due to the contact model the spati@f the neutral (zero) eigenvalue (green arrow) moves wigh th

distribution is more heterogeneous compared to that for lovwshear band. This turning of the neutral eigen-directionesak
pressure. the shear plane tilt as well (which is shown by the yellow

shaded regions). To extract the contacts aligned along thes

directions at a given pressure in the system, we first calcu-
C. Anisotropy of force chain networks in shear bands late the local strain rate tensor and extract the three eigen

directionsn,. Next, we look for contacts with unit contact

In the case of simple shear, there are two non-zero eige8¢tor Ne, which satisfy the conditiofne.n,| > 0.9 . The
values of the strain rate tensor, which are equal in magaitudCcOntacts which satisfy the condition for compressive eigen
but opposite in sign, and the third eigenvalue is zero. Thélirectionare termed compressive, and tensile and newtmal ¢
plane containing the eigen-vectors with non-zero eigeragl (acts are defined similarly. The forces carried by compvessi
is called the “shear plane”, where the eigen-vector witto zer €nsile, and neutral contacts are denoteddy, fren, andfneu
eigenvalue is perpendicular to this plane (parallel to treas ~ réspectively. _
band). We call the eigen-directions with positive, negativ Figure[13 /shows the mean forces relative to overa_ll local
and zero eigenvalues as tbempressivetensile andneutral ~ mean forcef., .0 ney = (fcomyten/new — (f), plotted against
direptions, respect.ively. Since th_e compressive.andlmd'si pressure for different values &o. We find thatf(’:om(> 0)
rections are gsgoglatgq with Io:_;ldlng and unloading of etsita 5,4 ft/en(< 0) are symmetric about zero, arféeu ~ 0. Be-
respectively, it is intuitive that in the absence of any &x# 5 ,se the mean force along the neutral direction is indepen-
force, the mean force would be positive in compressive direCygnt oo, the cohesion does not affect the neutral direction

tion, negative in tensile direction, and almost zero in redut (due to the absence of shear in this direction). Howef\(/g{
direction. '
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overall mean force plotted against the local pressure in the w0t
system. Different symbols represent the global Bond number ©

Bo(as given in the inset).

. N /. .
decreases with pressure and cohesion, whilg, increases

g o3
to keep the mean overall force to stay independent of cohe- N R R N R RET R
sion. Both positive and negative forces are present in all di f
rections. However, the positive and negative forces dotaina (b)
in the compressive and tensile directions, respectivélye
anisotropy of forces is more pronounced with increasingpre FIG. 19: (Color online) Probability distributions of
sure and cohesigras observed in Fif] 8. normalized force$* = f /(f) in compressive, tensile, and

Next, we study the PDFs of forces in the compressive, ten-neutral directions inside the shear bands. Here, we show the
sile, and neutral directions. Figurel19 displays the PD&isgal  results for high pressure in (a) non-coheddae= 0 and (b)
each direction for non-cohesiBo = 0 and highly cohesive  high cohesiveBo= 2.85 systems. The PDFs of the overall
Bo = 2.85 systems, where the forces along different direc- normalized forces are shown as dashed line.
tions are normalized by the overall mean force. In a non-
cohesive system (Fif. 19]a)), we observe thatffox 1, the
PDF along the tensile direction is higher compared to that fostructure increases.
the compressive direction, which is intuitive as the ma&yaof The results in this section, suggest that for IBe, com-
contacts will have smaller forces in the tensile directibor ~ pressive forces and shear dominates and governs the distrib
f* > 1, however, the PDF along the compressive direction igion of forces along compressive and tensile directionse Th
higher compared to that along the tensile direction, aseforcforces respond to external compression and shear, i.etpdue
along the compressive direction should be stronger cordpareshear, particles can rearrange and avoid very large foines.
to that along the tensile direction [80]. For a highly cokesi contrast, for highBo, cohesion dominates over external com-
system (Fig[ I9(®)), a similar behavior is observed for posipression and the contact forces respond mainly to cohesion
tive forces, while for small positive and negative forcesed and shear. Due to the sticky nature of cohesive forces, rear-
to attractive forces the probability is higher along thesilen  rangements of the contact network become difficult, and very
direction compared to the compressive direction. The PDFfarge contact forces as well as strong sticking forces occur
of forces in the neutral direction lie in between those in eom together, and hence the contact network becomes more het-
pressive and tensile directions, suggesting a close t@geer erogeneous.
distribution of forces in the neutral direction.

Figure 20 shows the variations of the PDFs along compres-

sive and tensile directions for different valuefaf If Bo< 1, IV. DISCUSSION AND CONCLUSION
the PDFs collapse on top of each other. However, the PDFs
getwider with increasing cohesion abde= 1 (such widen- In this paper, we have studied the effect of cohesion on

ing is more prominent for positive and negative forces in theshear banding in dry cohesive powders. We used a dimen-
compressive and tensile directions, respectively). Aga®  sjonless parameter the globBbnd number Bdo quantify
confirm that strong cohesion leads to an increases of pesitivhow strong cohesive forces are relative to compressiveforc
and negative forces in the compressive and tensile diretio We found thaBo~ 1, very well predicts the transition from a
respectively. Thereforéhe force distributions in the principal free-flowing, non-cohesive system to a cohesive systerar-Int
directions gets more heterogeneous with increasing cohesi estingly, we found that also many other features of the syste
for Bo > 1, and hence the heterogeneity of the overall forceshow a transition a8o~ 1.
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B0g=0.00

Bog=0.17 - enced along both tensile and compressive directions.
% ESB;%E E The mean force carried by contacts along compressive and
- 7 ggég:gg — | tensile directions isymmetricabout the mean overall force.
. \/A Bog 285 = ForBo< 1, this difference i.e. anisotropy of the force network
= | is independent of cohesion, while Bo > 1 the anisotropy in
w2l [/ the force network increases with cohesion. Macroscopicall
this anisotropy in force is directly related to the sheagsgr
: | the trend in force anisotropy is very similar to the trendsfo
103 in the shear stress in previous work|[53].

4 2 0 2,4 6 8 10 c. Force probability distribution Since granular systems
are known to be heterogeneous in nature, we also analyzed
the effect of cohesion on the force probability distribngo

10 X Bodigy For non cohesive systems, no prominent effect of pressure on
A Bo033 - force distributions could be seen. For high cohe®on> 1,
) / Boslos o pressure affected the distribution of forces, by makingalie
10" \( R longer as compared to the case Bo < 1. The distribution

of forces showed that cohesion makes the force distribution
wide, and more symmetriSplitting up the force distributions
along the compressive and tensile directions revealedftirat
Bo < 1, the distributions are almost independent of cohesion.
For higheBo, cohesion broadens the force distributions along

W 2 6 8 10 tensile direction, which in turn affects the distributiolorag
f; the compressive direction. This suggests, an increasetin he
(b) erogeneity in forces fadBo > 1 along compressive and tensile
directions. For lowBo, the dynamics helps the particles to re-
FIG. 20: (Color online) Probability distributions of arrange and avoid very strong forces. In contrast, for Bigh

normalized forces in (a) compressivig = f¢/(f)) and (b) cohesion induces stickiness at the contacts so that regrran
tensile ¢ = fi;/(f)) directions inside the shear bands. Here, ments are suppressed, increasing heterogeneity of trensyst
we show the results for high pressure and different strengthwhich is evident from longer tails of the probability disuwi

of cohesion, where different symbols represent the global tion for system with higheBo.

Bond numbeBo (as given in the inset). In conclusion, we have reported that both the flow profiles
properties of the system (shear banding) and the force-struc
ture are unaffected by cohesion féo < 1. In contrast, for

a. Shear band Width and center position of the shear Bo> 1, cohesion strongly affects the flow, the anisotropy, and
band forBo < 1 stay fairly the same as for non-cohesive ma-the internal force structure. Attractive forces have beemt
terials, and show a dependence on cohesion onlfor 1.  to reduce shear localization f@&o > 1. In the same regime,
Cohesive forces tend to keep the particles in contact to be co cohesion also promoted heterogeneity of the forces. These
nected, i.e., the cohesive forces assist the “collectiviand  two observations independently are consistent with previo
of particles. Thus the shear band, i.e., the velocity gradie Studies with attractive forces, concerning rheoldgy [303 a
tends to be reduced. As a result, the width of the shear barf@rce structures for static packings [51].
increases with the strength of cohesion, i.e., the Bond mumb  As speculation for a wider view, our results can be inter-
This would imply that the presence of attractive forces work preted as follows: In the language of statistical mechaiios
against the localization of shear. corresponds to a “control parameter” aBd = 1 to a “crit-

b. Forces and their direction dependenc&he mean ical point”. The critical changes in the characteristiccior
force (f)(P) (with P O H — 2) is found to be independent of and the fitting exponent show a small pressure dependence,
cohesion, like the number of contacts. With increaddmy  which could be better predicted using a pressure dependent
stronger attractive negative forces are possible at theacon local Bond number. Since the lodab are close to the global
(which is intuitive). However, these negative forces muest b Bo, the system can be classified by the latter. In our case, the
balanced by some positive forces to maintain the same dverahacroscopic properties (position and width of shear-bpnds
mean force. Therefore, the positive forces also must becom@nd structural signatures (the tails of the PDFs) graduialy
larger as compared to non-cohesive systems. crease fronBo= 1. This implies, that this increase, behaves

Because we apply shear, compressive/tensile contacsforcéike a “second-order transition”. Confirming this would dee
are induced in the system in compressive/tensile eigena further detailed study. Also, experiments performed with
directions of the local strain rate tensor. However, theiste ~ controlled cohesive strength would be exciting to confirmd an
a direction along which no shear takes place. We observe thaglidate our results. Finally it would be interesting to nep
the mean force along this direction remains unaffected by coduce our findings with different contact models, such as cap-
hesion, which implies that cohesive forces in the system ar#élary bridges or even simpler linear contacts models.
induced by shear. Both negative and positive forces are-influ
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as explained in [88, 59]. The corresponding maximal attrac-

tive force isfm = —Keom = —kcg'zjrtg Omax- If we assume that

the maximal overlagihay is realized under a given external

i P Omax
then we can mferprTax = 5P

hWith pressurep beingp = kidmax/A, A being a representative

area. This leads to realized maximal attractive force being

(ke—ki) p
i = —ke 21 _P_5p
m kc(kZJrkc) Pmax max

Using Eq.[(A) in Eq.[TAR), we get

(A.2)

The extreme loading and unloading branches are reflected

by the outer triangle in Fid.]1. Starting from a realized maxi

mum overlap during loadin@max < dhax the unloading hap-

pens within the triangle, as can be characterized by a branch

with stiffness

ka2 = ki + (kp — K1) Omax/ Ohax (A.1)

2
K — Kq)Pmax (_P_
fm:—kc( v o) (pma*)p . (A.3)
Ke+ki+ (kp—ki)

Pmax

This definition can be used to define a local Bond number as
Bof'(P) = fm(P)/(f(P)), where mean force at that pressure is

(as given in[[58]). The elastic, reversible force along thisdiscussed in SeETIIC. This Bond number would be compared
branch is given b (5 — &) [5€,[59]. The intermediate stiff- with various other definitions in Selc. Tl C.

nessk; follows from a linear interpolation betwedn andkp,
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