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Very often when dealing with powder technology, a fundamental point is raised, what is the effect of contact
cohesion on the bulk behavior? A dimensionless parameter todetermine the intensity of cohesive forces is the
granular Bond number(Bo). Using DEM simulations, we investigate the effect of contact cohesion on slowly
sheared dense, dry, frictional-cohesive powders in a splitbottom Couette cell. Because of the geometry a wide
stable shear band forms and the steady state becomes the focus. The shear banding phenomenon is independent
of cohesion for Bond numberBo< 1 and dependent on cohesion forBo≥ 1, when cohesive forces start to play
an important role. Inside the shear band, we find that the meannormal contact force is independent of cohesion,
while the forces carried by contacts along the (compressiveand tensile) eigen-directions of the local strain rate
are cohesion dependent. Forces carried by contacts along the compressive and tensile directions are symmetric
about the mean force, while the force along the neutral direction is like the mean total force. The anisotropy
of the force network increases with cohesion. Cohesion alsoincreases the heterogeneous structures in both
compressive and tensile directions.

I. INTRODUCTION

Granular materials such as sand and limestone, neither be-
have like elastic solids nor like normal fluids, which makes
their motion difficult to predict. When they yield under slow
shear, the relative motion is confined to narrow regions (be-
tween large solid-like parts) called shear bands [1–3]. Shear
bands are observed in many complex materials, which range
from foams [4] and emulsions [5, 6] to colloids [7] and gran-
ular matter [1, 2, 8–17]. There has been tremendous effort to
understand the shear banding in flow of non-cohesive grains
[1, 2, 8–19]. However, real granular materials often experi-
ence inter-particle attractive forces due to many physicalphe-
nomena:van derWaals force due to atomic forces for small
grains [20–22],capillary forces due to presence of humidity
[23], solid bridges[24, 25], coagulation of particles [26], and
many more.

The question, arises how does the presence of attractive
forces affect shear banding? So far, only a few attempts have
been made to answer this question, concerning dense metal-
lic glasses [27, 28], adhesive emulsions [29, 30], attractive
colloids [31–33], cemented granular media [34], wet granular
media [35, 36] and clayey soils [37]. Recently, rheological
studies on adhesive emulsions and colloids [29–31, 33] re-
ported that the presence of attractive forces at contact affects
shear banding by affecting flow heterogeneity and wall slip.

Another unique yet not completely understood feature of
granular materials is their highly heterogeneous contact force
distribution. The heterogeneity in the force distributionhas
been observed in both experimental and numerical studies
[2, 38–46]. While huge effort has been made to understand
the force distribution of non-cohesive particles [2, 38–44, 47],
only limited studies have aimed to understand the same for as-
semblies with attractive interactions [21, 48–52]. Richefeu et
al. [49] studied the stress transmission in wet granular system
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subjected to isotropic compression. Gilabert et al. [50] fo-
cussed on a two-dimensional packing made of particles with
short-range interactions (cohesive powders) under weak com-
paction. Yang et al. [51] studied the effect of cohesion on
force structures in a static granular packing by changing the
particle size. In a previous study [53], the effect of dry co-
hesion at contact on the critical state yield stress was studied.
The critical-state yield stress shows a peculiar non-linear de-
pendence on the confining pressure related to cohesion. But
the microscopic origin was not studied.

In this paper, we report the effect of varying attractive
forces at contact on the steady state flow behavior and the
force structure in sheared dry cohesive powders. Discrete
Element Method (DEM) simulations are used to investigate
the system at micro (partial) and macro level. In order to
quantify the intensity of cohesion, a variation of thegranu-
lar Bond number[50, 54, 55] is introduced. We find that this
dimensionless number very well captures the transition from
a gravity/shear-dominated regime to the cohesion-dominated
regime. To understand this further we look at the effect of co-
hesion on the mean force and anisotropy, by investigating the
forces along the eigen-directions of the local strain rate ten-
sor. Intuitively, one would expect only the tensile direction to
be affected by cohesion, but the real behavior is more com-
plex. We also discuss the probability distributions and hetero-
geneities of the forces in different directions to completethe
picture.

The paper is organized in four main parts. Section II de-
scribes the model system in detail specifying the geometry,
details of particle properties, interaction laws. In section III,
the velocity profiles and shear band from samples with dif-
ferent contact cohesion are presented. In the same section,
the force anisotropy and probabilities are studied too. Finally,
section IV is dedicated to the discussion of the results, con-
clusions and an outlook.
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II. DISCRETE ELEMENT METHOD SIMULATION (DEM)

In this section, we explain our DEM simulations. We in-
troduce a model of cohesive grains in Sec. II A and show our
numerical setup in Sec. II B. In Sec. II C, we introduce a con-
trol parameter, i.e.global Bond number, which governs the
flow profiles and structure of the system.

A. Model

Discrete Element Methods (DEM), provide numerical so-
lutions of Newton’s equations of motion based on the spec-
ification of particle properties viz. stiffness, density, radius
and a certain type of interaction laws like Hertzian/Hookean
[56, 57]. Simulation methodology and material parameters
used in this study are the same as in our previous work
[53, 58]. The adhesive elasto-plastic contact model [59] is
used to simulate cohesive bulk flow, is briefly explained be-
low.

For fine, dry powders, adhesive properties due to van der
Waals forces and plasticity and irreversible deformation in the
vicinity of the contact have to be considered at the same time
[60, 61]. This complex behavior is modeled using a piece-
wise linear hysteretic spring model [59]. Few other contact
models in similar spirit are also recently proposed [62, 63].

The adhesive, plastic (hysteretic) force is introduced by al-
lowing the normal unloading stiffness to depend on the history
of deformation. During initial loading the force increaseslin-
early with overlapδ alongk1, until the maximum overlapδmax
is reached, which acts as a history parameter. During unload-
ing the force decreases alongk2, the value of which depends
on the maximum overlapδmaxas given by Eq. (2). The overlap
when the unloading force reaches zero,δ0 = (1−k1/k2)δmax,
resembles the permanent plastic deformation and depends
nonlinearly on the previous maximal forcefmax= k1δmax. The
negative forces reached by further unloading are attractive, co-
hesion forces, which also increase nonlinearly with the pre-
vious maximum force experienced. The maximal cohesion
force that corresponds to the “pull–off”force, is given by

fm =−kcδmin, (1)

with δmin =
k2−k1
k2+kc

δmax.
Three physical phenomena: elasticity, plasticity and cohe-

sion are quantified by three material parameterskp, k1, andkc,
respectively. Plasticity disappears fork1 = kp and cohesion
vanishes forkc = 0.

In order to account for realistic load-dependent contact be-
havior, thek2 value is chosen to depend on the maximum over-
lapδmax, i.e.particles are more stiff for larger previous defor-
mation and the so dissipation is dependent on deformation.
The dependence ofk2 on overlapδmax is chosen empirically
as linear interpolation

k2(δmax) =







kp if δmax/δ p
max≥ 1

k1+(kp− k1)
δmax
δ p

max
if δmax/δ p

max< 1
(2)

FIG. 1: Schematic graph of the piece-wise linear, hysteretic,
and adhesive force-displacement model in normal direction.

As discussed in Ref. [59], very large deformations will leadto
a quantitatively different contact behavior, a maximal force
overlap δ p

max =
kp

kp−k1

2a1a2
a1+a2

φ f is defined (withφ f = 0.05).
Above this overlapk2 does not increase anymore and is set
to the maximal valuek2 = kp. This visco-elastic, reversible
branch is referred to as “limit branch” and is discussed in de-
tail in [59].

The contact friction is set toµ = 0.01, i.e. artificially small,
in order to be able to focus on the effect of contact cohesion
only. In order to study the influence of contact cohesion, we
analyzed the system for the following set of adhesivity param-
eterskc:

kc ∈ [0,5,10,25,33,50,75,100,200]Nm−1 , (3)

which has to be seen in relation tok1 = 100 Nm−1. Other
parameters, such as the jump–in forcefa [58] andφ f [58, 59]
are not varied here.

B. Split-bottom ring shear cell

Figure 2 is a sketch of our numerical setup (the geome-
try of the system is described in detail in Refs. [15, 64–67]).
In this figure, the inner, split, and outer radii are given by
Ri , Rs, andRo, respectively, where the concentric cylinders
rotate relative to each other around the symmetry axis (the
dot-dashed line). The ring shaped split at the bottom sepa-
rates the moving and static parts of the system, where a part
of the bottom and the outer cylinder rotate at the same rate.
The system is filled withN ≈ 3.7× 104 spherical particles
with densityρ = 2000 kg/m3 = 2 g/cm3 up to heightH. The
average size of particles isa0 = 1.1 mm, and the width of
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FIG. 2: (Color online) A sketch of our numerical setup
consisting of a fixed inner part (light blue shade) and a

rotating outer part (white). The white part of the base and the
outer cylinder rotate with the same angular velocityΩ around
the symmetry axis. The inner, split, and outer radii are given

by Ri = 0.0147m,Rs = 0.085 m, andRo = 0.11 m,
respectively, where each radius is measured from the

symmetry axis. The gravityg points downwards as shown by
arrow.

the homogeneous size-distribution (withamin/amax= 1/2) is
1−A = 1−〈a〉2/〈a2〉= 0.18922. The cylindrical walls and
the bottom are roughened due to some (about 3% of the total
number) attached/glued particles [65, 66].

When there is a relative motion at the split, a shear band
propagates from the split positionRs upwards and inwards,
remaining far away from cylinder-walls and bottom in most
cases. The qualitative behavior is governed by the ratioH/Rs
and three different regimes can be identified, as reported in
Refs. [67–70]. We keepH/Rs < 0.5, such that the shear band
reaches the free surface and stays away from inner wall [68,
69].

Translational invariance is assumed in the tangential
φ−direction, and the averaging is performed over toroidal
volumes, over many snapshots in time. This leads to fields
Q(r,z) as function of the radial and vertical positions. The
averaging procedure has been explained in detail for three di-
mensional systems in [53, 65, 66], and is not further discussed
here.

Since we are interested in the quasi-static regime, the rota-
tion rate of outer cylinder is chosen to be 0.01 s−1, such that
the inertial numberI = γ̇d√

p/ρ
[71] is I ≪ 1. The simulation

runs for more than 50 s.

C. Bond number

Intensity of cohesion can be quantified by a ratio of the
maximum attractive force to a typical force scale in the sys-
tem. For example, Nase et al. [54] introduced the granular
Bond number under gravity, which compares the maximum
attractive force at contact with the weight of a single grain.
For plane shear without gravity, other authors [50, 55] used
a ratio between the maximum attractive force and the aver-
age force due to the confining pressure. In our analysis, we

introduce aglobal Bond numberas

Bo=
fm
〈 f 〉 , (4)

where fm and〈 f 〉 are the maximum allowed attractive force
reached at a contact (given by the contact model, Eq. (1)) and
the mean force per contact reached close to the bottom, re-
spectively. For the calculation of mean force〈 f 〉, layer of two
particles diameters which is few particle diameter away from
bottom is chosen. Because the shear band initiates from the
bottom, we choose the mean force〈 f 〉 at the bottom to under-
stand the effect of cohesion on these shear bands.

It is important to mention that the mean compressive force
(at the bottom) corresponds to the weight of the material
above, whereas the maximum attractive force corresponds to
the pull-off force, which is directly related to the surfaceen-
ergy of the particles. These two material and particle proper-
ties are easily accessible experimentally.

The Bond number is a measure of the importance of ad-
hesive forces compared to compressive forces. A low Bond
number indicates that the system is relatively unaffected by
attractive force effects; a high number (typically larger than
one) indicates that attractive forces dominate. Intermediate
numbers indicate a non-trivial balance between the two ef-
fects.

In parallel with the global Bond number as defined above,
we also define two local variants of this quantity. A local sim-
ulation based Bond numberBos

l (P) = f s
m(P)/〈 f (P)〉 can be

define by comparing the maximum attractive force reached at
a given pressure (which can be less than or equal to the maxi-
mum allowed attractive force given by the contact model) with
the mean force at that pressure (subscriptl represents the local
quantity, while superscripts denotes that this definition takes
input from simulation data). Another variant of thisBoa

l (P) is
defined in the Appendix, which compares the analytical pre-
diction for the maximum attractive force with mean force at
that pressure.

Figure 3 displays the global Bond numberBoand the mean
values ofBos

l (P) and Boa
l (P) (averaged over different pres-

sure) as functions of the adhesivity parameterkc, where the
figure shows that local and global quantities are comparable
with slight divergence for high cohesionkc. For the sake of
simplicity in the rest of this paper, we use the global Bond
numberBo to quantify the intensity of cohesion.

III. RESULTS

In this section, we present our results of DEM simulations.
In Sec. III A, we analyze the flow profiles and shear banding
in our system. In Sec. III B, we study distributions and struc-
tures of force chain networks in shear bands. In Sec. III C, we
explain anisotropic features of the force chain networks.
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FIG. 3: (Color online) Variants of granular Bond number
plotted against cohesive strengthkc, where the red circles

represent the global Bond numberBo, while the blue squares
and green triangles represent the average values ofBos

l (P)
andBoa

l (P), respectively.

FIG. 4: (Color online) Snapshots from simulations with different
cohesion strengths, but the same number of mobile particles

N = 34518, seen from the top (Top) and from the front (Bottom).
The material is (a) without cohesionBo= 0, and (b) with strong

cohesionBo= 4.86. The colors blue, green, and orange denote the
particles with displacements in tangential direction per second
r dφ ≤ 0.5 mm,r dφ ≤ 2 mm,r dφ ≤ 4 mm, andr dφ > 4 mm,

respectively

A. Effect of cohesion on Flow Profiles

Figure 4 displays both top- and front-view of samples with
the same filling height, i.e. the same number of particles, and
different global Bond numbers,Bo= (left) 0 and (right) 4.86,
respectively, where the color code represents the azimuthal
displacement rate of the particles. From the front-view, the
shear band (green colored area) moves inwards and gets wider
with increasing “height”, while the shear band also moves in-
wards and becomes wider with increasing “Bond number”.

Figure 5 shows the non-dimensional angular velocity pro-
files at the top surface against radial coordinate normalized
with mean particle diameter〈d〉, where we assume transla-
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FIG. 5: (Color online) Non-dimensional angular velocity
profileω at the top surface plotted against the radial

coordinater scaled by the mean diameter〈d〉. Different
symbols represent different values of the global Bond

number given in the inset, where the solid lines represent the
corresponding fits to Eq. (5).

tional invariance in the azimuthal direction and take averages
over the toroidal volumes as well as many snapshots in time
[13]. The angular velocity profile can be well approximated
by an error function

ω = A1+A2erf

(

r −Rc

W

)

(5)

as in the case of non-cohesive materials [15, 64–67], where
Rc andW are the position and width of the shear band, re-
spectively. Here, we use the dimensionless amplitudes,A1 =
A2 ≈ 0.5, for the whole range of the Bond numbers, while
we useA1 = 0.6 andA2 = 0.4 for the strong cohesion with
Bo= 4.86. The dimensionless amplitudes,A1 andA2 (along
with estimated errors), are summarized in Table I. Figure 6
shows the position of the shear band relative to the split at
bottomRs−Rc and the width of shear bandW (both scaled
by mean particle diameter) at the top surface against the Bond
number. Here, within the error-bars, both the position and
width are independent of cohesion ifBo< 1. However, the
shear band moves inside and becomes wider with the Bond
number ifBo> 1.

Both the position and width of shear band also depend
on the height (z) in the system. Figure 7 displays the non-
dimensional position and width of the shear band for different
values ofBo as functions of the height scaled by the filling
height, i.e. z/H. In this figure, the shear band moves closer
to the inner cylinder and gets wider while approaching to the
top layer, which is consistent with previous cohesive and non-
cohesive studies [15, 53, 64–67, 70]. In Fig. 7(a), the linesare
the prediction by Unger et al. [68]:

z= H −Rc

{

1− Rs

Rc

[

1−
(

H
Rs

)β
]}1/β

, (6)

where the exponent is given byβ = 2.5 for non-cohesive par-
ticles. If the Bond number is less than one, our numerical data
show very good agreement with Eq. (6). AboveBo= 1, how-
ever, the exponentβ decreases with the global Bond number
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FIG. 6: (Color online) (a) Position and (b) width (both scaled
by mean particle diameter) of shear band at the top surface

plotted against the global Bond number. Symbols with
error-bars are the data, while the lines are only a guide to eye.

as in Table I. Note that Eq. (6) slightly deviates from the re-
sults near the top surface if the cohesion is strong (Bo= 2.22
and 2.85). In Fig. 7(b), the lines are the prediction by Ries. et
al. [70] for non-cohesive system:

W(z) =Wtop

[

1−
(

1− z
H

)2
]γ

, (7)

whereWtop is the width at the top surface and the exponent is
given byγ = 0.5 for non-cohesive particles. IfBo< 1, Eq. (7)
with Wtop = 0.012 andγ = 0.5±0.1 well agrees with our re-
sults. However, forBo> 1, both the widthWtop and exponent
γ increase with the global Bond number as in Table I. In addi-
tion, Eq. (7) deviates from the results near the top layer if the
cohesion is strong (Bo= 2.22 and 2.85), where the width ini-
tially increases with the height, but saturates abovez/H ≃ 0.6.
Hence forBo> 1, we choose width at that height to beWtop
and useγ = 0.66 and 0.7 for Bo= 2.22 and 2.85, respectively.

From the above results, we find that the cohesive forces be-
tween particles drastically affect the flow profiles. Eqs. (6)
and (7) very well predict the position and width of the shear
bands, respectively forBo< 1. For largeBo these equations
do not work anymore at large heights since the shear band in-
terferes with the inner cylinder. The shear band, which is the
region with a large velocity gradient, is caused bysliding mo-
tions of particles. However, strong cohesive forces connect
particles in contacts (in other words, the cohesive forces pro-
motecollective motionsof particles) and prevent them from
sliding. As a result, the velocity gradient is smoothened and
the width of shear-band is broadened. This observation is
consistent with previous studies on adhesive dense emulsions
[72]. Interestingly, such an effect of cohesion is suppressed
if the global Bond number is less than one, where our nu-
merical data agrees well with previous theoretical/numerical
studies on non-cohesive particles [68, 70]. Hence, we show
that the global Bond number,Bo, captures the transition be-
tween essentially non-cohesive free-flowing granular assem-
blies(Bo< 1) to cohesive ones(Bo> 1).
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FIG. 7: (Color online) (a) Position and (b) width (both scaled
by mean particle diameter) of shear band in the cell plotted

against heightzscaled by the filling heightH. Different
symbols correspond to values of the global Bond number

given in the inset. The lines in (a) and (b) are the predictions,
Eqs. (6) and (7), respectively.

FIG. 8: (Color online) Force chain networks of positive
normal forces forBo= (a) 0.33 and (b) 2.85, and negative

normal forces forBo= (c) 0.33 and (d) 2.85 at height
0.02< z< 0.05 m, respectively.
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Bo A1 A2 H β z
H rangeWtop γ

0 0.50± 0.0005 0.500± 0.0005 0.0365 2.52 0.1-1 0.0117 0.507
0.17 0.50± 0.0005 0.499± 0.0005 0.0365 2.52 0.1-1 0.0118 0.523
0.33 0.49± 0.0007 0.500± 0.0007 0.0365 2.512 0.1-1 0.0118 0.555
0.81 0.49± 0.0008 0.500± 0.0008 0.0361 2.494 0.1-1 0.0119 0.583
1.05 0.49± 0.001 0.501± 0.001 0.0359 2.510 0.1-1 0.0120 0.582
1.50 0.49± 0.002 0.501± 0.002 0.0364 2.453 0.1-0.8 0.0126 0.613
2.22 0.49± 0.003 0.501± 0.003 0.0368 2.367 0.1-0.6 0.0138 0.667
2.85 0.49± 0.005 0.502± 0.005 0.0369 2.259 0.1-0.6 0.0160 0.713

TABLE I: Table showing filling height of the systemH, and fitting rangez/H for Eqs. (6) and (7), together with the fit
parametersA1, A2 in Eq. (5),β in Eq. (6),Wtop andγ in Eq. (7).
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FIG. 9: (Color online) Scatter plots of overlaps and forces
between all contacts inside (left) and outside (right) of the
shear bands for differentBo= 0.33 and 2.85. The different
symbols represent a zoom into the vertical rangesz= 8 mm
±1 mm (green stars), 15 mm±1 mm (blue circles), 22 mm
±1 mm (magenta dots), 29 mm±1 mm (cyan squares), with

approximate pressure as given in the inset. Note that the
points do not collapse on the linekp(δ − δ f ) due to the finite

width of the size distribution: pairs of larger than average
particles fall out of the indicated triangle. Radial range

0.075 m≤ r ≤ 0.085 m (left) signifies data points inside the
shear band, while the radial range 0.055 m≤ r ≤ 0.065 m

(right) signifies the data points outside the shear band.

B. Structure and distribution of forces in shear bands

To understand the microscopic origin of the anomalous flow
profiles of cohesive aggregates, we study the force network
and statistics of the interparticle normal forces. Recently
Wang et al. [73] reported the shape of probability distribu-
tion function (PDF) as an indicator for transition of flow from
quasistatic to inertial flows. In this section, we use a similar
philosophy to determine if there is any change in the shape of

PDFs as the cohesive strength is increased.
Figure 8 shows force chains of positive ((a) and (b)) and

negative ((c) and (d)) normal forces in the systems with low
cohesion ((a) and (c)) and strong cohesion ((b) and (d)). Grey
color shows the weak forces, while red and blue colors show
the strong positive and negative forces respectively. The
strong or weak positive forces are forces larger or smaller than
the mean positive forcefpos. A similar approach is adopted to
identify the strong/weak negative forces. In this figure, we
observe that both positive and negative forces are fully devel-
oped in the cohesive system ((b) and (d)), where the intensity
of the positive/negative force inside the shear band is stronger
than outside. In addition, the strong (positive/negative)force
chains are percolated through the shear band region. As ex-
plained in Sec. III C, we can also see that the positive and
negative force chains are aligned in their preferred directions,
i.e. compressive and tensile directions, respectively.

Figure 9 displays scatter plots of the interparticle forces
against overlaps between the particles in contacts, where each
point corresponds to a contact and different colors represent
different height, i.e. pressure level in the system. The left and
right columns are the results of inside and outside the shear
bands, respectively. Higher the pressurep, higher is the aver-
age force (or overlap), to sustain a pressure due to the weight
of the particles. For almost all values ofBo, the density of
points towards unloadingkp branch inside the shear band is
higher compared to the points outside. We also observe that
with increasingBo, most contacts (except for small pressure)
drift towards and collapse around the limit branch of the con-
tact model (especially inside the shear band). This implies
that the cohesive forces are more pronounced in shear bands
rather than outside.

1. Mean force and overlap in shear bands

Figure 10 displays the mean normal forces,〈 f 〉, in the shear
band plotted against pressure,P, for different values of the
global Bond number, where the solid line is the prediction by
Shaebani et al. [74] for non-cohesive granular systems as

〈 f 〉 = 4π〈a2〉
φCg2

〈P〉 (8)

with the 2nd moment of the size distribution〈a2〉, coordina-
tion numberC, volume fractionφ , and mean pressure〈P〉.
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represent the global Bond number (as given in the inset) and

the solid line is given by Eq. (8).
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FIG. 11: (Color online) The mean (a) positive and (b)
negative forces inside the shear band plotted against pressure,
where different symbols represent the global Bond number

(as given in the inset).

Notably, the mean normal force is almost independent of co-
hesionand linearly increases with pressure as in the cases of
static non-cohesive [39, 45] and cohesive systems [51]. We
also observe that for low pressure, Eq. (8) slightly over pre-
dicts the value of the mean force, while for higher pressure
the prediction well captures the data. While the mean value is
insensitive to cohesion, the mean positive and negative normal
forces,〈 fpos〉 and〈 fneg〉, strongly depend on cohesion. Figure
11 shows the mean positive and negative forces against pres-
sure for different values ofBo, wherethe intensities increase
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FIG. 12: (Color online) The fractions of (a) positive and (b)
negative contacts inside the shear band plotted against

pressure, where different symbols represent the global Bond
number (as given in the inset).

with cohesionin agreement with Fig. 8. Note that the mean
positive force is linear with pressure and independent of cohe-
sion belowBo= 1, while its dependence on pressure becomes
nonlinear aboveBo= 1. Though the origin of this nonlinear-
ity is not clear, it is readily understood that cohesion enhances
the collective motion of the particles, i.e. the particles rear-
range less and the system is in a mechanically constrained
state. Because increasing cohesion increases the magnitude
of negative forces, both the positive and negative force chains
are strong to balance each other. It is noteworthy that in Fig.
9, the increase ofBo increases the density of points in both
positive and negative extremes, inside the shear band.

The cohesive force seems not to affect the average number
of contacts, see Ref. [58], where we reported that cohesion
had practically no effect on the contact number density (volu-
metric fabric) in the same system. Fig. 12 shows the fractions
of repulsive and attractive contacts against pressure for dif-
ferent Bond numbers, together with the overall coordination
number. An increase of cohesion generates more attractive
contacts while it decreases the number of repulsive contacts.
Interestingly, the overall mean force remains independentof
cohesion and contacts simply redistribute between the repul-
sive and attractive directions.

In contrast to the mean force, the mean overlap between
particles in contact depends on cohesion non-linearly, as
shown in Fig. 13. In our model of cohesive particles [59],
overlaps are always positive for both positive and negative
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FIG. 14: (Color online) Probability distribution of the
normalized force for (a) cohesion-lessBo= 0 and (b) highly

cohesiveBo= 2.85 systems at different pressures in the
system. Different symbols represent value of local pressure

(as given in the inset).

forces. It is worth mentioning that for lowBo, the time evo-
lution of 〈δ 〉 saturates quickly, while forBo= 1.5,2.22,2.85
it takes longer to longer to reach the steady state due to the
plastic increase of the overlap in average [53].
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FIG. 15: (Color online) Probability distribution of
normalized forcef ∗ for (a) low pressurep= 50 Nm−2 (close

to top) and (b) high pressurep= 400 Nm−2 (close to
bottom) in the system for data inside the shear band.

Different symbols represent the global Bond numberBo (as
given in the inset).

2. PDFs of forces and structures of strong force chains in shear
bands

The probability distribution function (PDF) of forces are
also strongly affected by cohesion. Figure 14 shows the PDFs
of normal forces in shear bands for different pressure and co-
hesion, where the forces are scaled by the mean normal force,
i.e. f ∗ ≡ f/〈 f 〉. As can be seen, the PDF in the shear band for
cohesion-less particles is almost independent of pressure(Fig.
14(a)), while itdepends on pressureif the cohesive forces are
very strong (Fig. 14(b)). Figure 15 displays the variations
of the PDFs for different intensities of cohesion, where we
find that the PDF becomes broad with increasing cohesion for
Bo> 1. Therefore,strong cohesion, which leads the system
to a “mechanically frustrated state” induces larger fluctua-
tions of positive/negative forces. We note that Yang et al. [51]
also found similar trends in static three-dimensional packings
for small sized particles, where the PDF becomes broader, as
particle size decreases, i.e. cohesion increases. Broadening
of the PDFs was also observed by Luding et al. [75] during
cooling down of a sintered system.

The cohesive forces change not only the shapes of the
PDFs, but also their asymptotic behavior, i.e. the structure of
strong force chains. At first, we fit their tails by a stretched
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FIG. 16: (Color online) Fit parameters (a)α and (b) f0
plotted against Bond numberBo. Different symbols represent

value of local pressure (as given in the inset).

exponential function [76]

P( f ∗)∼ e−( f ∗/ f0)
α

(9)

with a characteristic forcef0 and a fitting exponentα. Figure
16 displays the characteristic force and the exponent against
the global Bond numberBo. If Bo < 1, we obtain f0 =
1.4±0.1 andα = 1.6±0.1, which is very close to that pre-
dicted by Eerd et al. [76] for three-dimensional non-cohesive
ensemble generated by MD simulations. ForBo> 1, however,
both characteristic force and fitting exponent decrease with
increasing cohesion. The decreasing fitting exponent hintsat
stronger fluctuations in the force distribution. A Gaussiantail
of the probability distribution would indicate a more homoge-
neous random spatial distribution of forces. The deviationto-
wards an exponential distribution can be linked to an increase
in heterogeneity in the spatial force distribution; as mentioned
in previous studies [77–79]. Therefore, we conclude thatthe
tail of the PDF becomes more exponential with increasing co-
hesion, which implies a heterogeneous spatial distributions of
strong forces.

Also we observe that the fitting exponent decreases with
increasing pressure, which implies that at high pressure where
cohesion is more active due to the contact model the spatial
distribution is more heterogeneous compared to that for low
pressure.

C. Anisotropy of force chain networks in shear bands

In the case of simple shear, there are two non-zero eigen-
values of the strain rate tensor, which are equal in magnitude
but opposite in sign, and the third eigenvalue is zero. The
plane containing the eigen-vectors with non-zero eigenvalues
is called the “shear plane”, where the eigen-vector with zero
eigenvalue is perpendicular to this plane (parallel to the shear
band). We call the eigen-directions with positive, negative,
and zero eigenvalues as thecompressive, tensile, andneutral
directions, respectively. Since the compressive and tensile di-
rections are associated with loading and unloading of contacts,
respectively, it is intuitive that in the absence of any external
force, the mean force would be positive in compressive direc-
tion, negative in tensile direction, and almost zero in neutral
direction.

FIG. 17: (Color online) A sketch showing the shear band as
dotted line, shear plane, and three eigen-directions of the

strain rate tensor. Grey lines show inner and outer cylinders,
while solid brown line shows the split, dashed black line
shows the shear band which initiates at the split at bottom
and moves towards inner cylinder as it moves towards the
top. Green arrow represents the eigen-direction for neutral

eigenvalue of the strain rate tensor, which is tangential tothe
shear band, perpendicular to this vector is the shear plane

(yellow shaded region), which contains the eigen-directions
for compression (red arrow) and tensile (blue arrow)

eigenvalues.

In our system, both compressive forces and shear play a
combined role, where the neutral direction gets a contribution
from external compressive force only, while the two princi-
pal (compressive and tensile) directions get contributions from
both shear and external compressive force. Because the cohe-
sive force is activated by unloading, it should affect the force
along the tensile direction. Note that the shear band here isnot
vertical, instead its orientation changes with depth as shown
in the schematic in Fig. 17. In this figure, the eigen-direction
of the neutral (zero) eigenvalue (green arrow) moves with the
shear band. This turning of the neutral eigen-direction makes
the shear plane tilt as well (which is shown by the yellow
shaded regions). To extract the contacts aligned along these
directions at a given pressure in the system, we first calcu-
late the local strain rate tensor and extract the three eigen-
directionsnγ . Next, we look for contacts with unit contact
vector nc, which satisfy the condition|nc.nγ | ≥ 0.9 . The
contacts which satisfy the condition for compressive eigen-
direction are termed compressive, and tensile and neutral con-
tacts are defined similarly. The forces carried by compressive,
tensile, and neutral contacts are denoted byfcom, ften, and fneu
respectively.

Figure 18 shows the mean forces relative to overall local
mean force,f

′
com/ten/neu≡ 〈 fcom/ten/neu〉−〈 f 〉, plotted against

pressure for different values ofBo. We find that f
′
com(> 0)

and f
′
ten(< 0) are symmetric about zero, andf

′
neu≃ 0. Be-

cause the mean force along the neutral direction is indepen-
dent ofBo, the cohesion does not affect the neutral direction
(due to the absence of shear in this direction). However,f

′
ten
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FIG. 18: (Color online) Mean forces in different
eigen-directions of the strain rate tensor, relative to the

overall mean force plotted against the local pressure in the
system. Different symbols represent the global Bond number

Bo (as given in the inset).

decreases with pressure and cohesion, whilef
′
com increases

to keep the mean overall force to stay independent of cohe-
sion. Both positive and negative forces are present in all di-
rections. However, the positive and negative forces dominate
in the compressive and tensile directions, respectively.The
anisotropy of forces is more pronounced with increasing pres-
sure and cohesion, as observed in Fig. 8.

Next, we study the PDFs of forces in the compressive, ten-
sile, and neutral directions. Figure 19 displays the PDFs along
each direction for non-cohesiveBo= 0 and highly cohesive
Bo = 2.85 systems, where the forces along different direc-
tions are normalized by the overall mean force. In a non-
cohesive system (Fig. 19(a)), we observe that forf ∗ < 1, the
PDF along the tensile direction is higher compared to that for
the compressive direction, which is intuitive as the majority of
contacts will have smaller forces in the tensile direction.For
f ∗ > 1, however, the PDF along the compressive direction is
higher compared to that along the tensile direction, as force
along the compressive direction should be stronger compared
to that along the tensile direction [80]. For a highly cohesive
system (Fig. 19(b)), a similar behavior is observed for posi-
tive forces, while for small positive and negative forces, due
to attractive forces the probability is higher along the tensile
direction compared to the compressive direction. The PDFs
of forces in the neutral direction lie in between those in com-
pressive and tensile directions, suggesting a close to average
distribution of forces in the neutral direction.

Figure 20 shows the variations of the PDFs along compres-
sive and tensile directions for different values ofBo. If Bo< 1,
the PDFs collapse on top of each other. However, the PDFs
get wider with increasing cohesion aboveBo= 1 (such widen-
ing is more prominent for positive and negative forces in the
compressive and tensile directions, respectively). Again, we
confirm that strong cohesion leads to an increases of positive
and negative forces in the compressive and tensile directions,
respectively. Therefore,the force distributions in the principal
directions gets more heterogeneous with increasing cohesion
for Bo> 1, and hence the heterogeneity of the overall force
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FIG. 19: (Color online) Probability distributions of
normalized forcesf ∗ = f/〈 f 〉 in compressive, tensile, and

neutral directions inside the shear bands. Here, we show the
results for high pressure in (a) non-cohesiveBo= 0 and (b)
high cohesiveBo= 2.85 systems. The PDFs of the overall

normalized forces are shown as dashed line.

structure increases.
The results in this section, suggest that for lowBo, com-

pressive forces and shear dominates and governs the distribu-
tion of forces along compressive and tensile directions. The
forces respond to external compression and shear, i.e., dueto
shear, particles can rearrange and avoid very large forces.In
contrast, for highBo, cohesion dominates over external com-
pression and the contact forces respond mainly to cohesion
and shear. Due to the sticky nature of cohesive forces, rear-
rangements of the contact network become difficult, and very
large contact forces as well as strong sticking forces occur
together, and hence the contact network becomes more het-
erogeneous.

IV. DISCUSSION AND CONCLUSION

In this paper, we have studied the effect of cohesion on
shear banding in dry cohesive powders. We used a dimen-
sionless parameter the globalBond number Boto quantify
how strong cohesive forces are relative to compressive forces.
We found thatBo≃ 1, very well predicts the transition from a
free-flowing, non-cohesive system to a cohesive system. Inter-
estingly, we found that also many other features of the system
show a transition atBo≈ 1.
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FIG. 20: (Color online) Probability distributions of
normalized forces in (a) compressive (f ∗c = fc/〈 f 〉) and (b)

tensile (f ∗t = ft/〈 f 〉) directions inside the shear bands. Here,
we show the results for high pressure and different strength
of cohesion, where different symbols represent the global

Bond numberBo (as given in the inset).

a. Shear band Width and center position of the shear
band forBo< 1 stay fairly the same as for non-cohesive ma-
terials, and show a dependence on cohesion only forBo≥ 1.
Cohesive forces tend to keep the particles in contact to be con-
nected, i.e., the cohesive forces assist the “collective motion”
of particles. Thus the shear band, i.e., the velocity gradient,
tends to be reduced. As a result, the width of the shear band
increases with the strength of cohesion, i.e., the Bond number.
This would imply that the presence of attractive forces works
against the localization of shear.

b. Forces and their direction dependenceThe mean
force 〈 f 〉(P) (with P ∝ H − z) is found to be independent of
cohesion, like the number of contacts. With increasingBo,
stronger attractive negative forces are possible at the contact
(which is intuitive). However, these negative forces must be
balanced by some positive forces to maintain the same overall
mean force. Therefore, the positive forces also must become
larger as compared to non-cohesive systems.

Because we apply shear, compressive/tensile contact forces
are induced in the system in compressive/tensile eigen–
directions of the local strain rate tensor. However, there exists
a direction along which no shear takes place. We observe that
the mean force along this direction remains unaffected by co-
hesion, which implies that cohesive forces in the system are
induced by shear. Both negative and positive forces are influ-

enced along both tensile and compressive directions.
The mean force carried by contacts along compressive and

tensile directions issymmetricabout the mean overall force.
ForBo≤ 1, this difference i.e. anisotropy of the force network
is independent of cohesion, while forBo> 1 the anisotropy in
the force network increases with cohesion. Macroscopically,
this anisotropy in force is directly related to the shear stress;
the trend in force anisotropy is very similar to the trends found
in the shear stress in previous work [53].

c. Force probability distribution Since granular systems
are known to be heterogeneous in nature, we also analyzed
the effect of cohesion on the force probability distributions.
For non cohesive systems, no prominent effect of pressure on
force distributions could be seen. For high cohesionBo> 1,
pressure affected the distribution of forces, by making thetails
longer as compared to the case forBo≤ 1. The distribution
of forces showed that cohesion makes the force distribution
wide, and more symmetric. Splitting up the force distributions
along the compressive and tensile directions revealed that, for
Bo≤ 1, the distributions are almost independent of cohesion.
For higherBo, cohesion broadens the force distributions along
tensile direction, which in turn affects the distribution along
the compressive direction. This suggests, an increase in het-
erogeneity in forces forBo> 1 along compressive and tensile
directions. For lowBo, the dynamics helps the particles to re-
arrange and avoid very strong forces. In contrast, for highBo,
cohesion induces stickiness at the contacts so that rearrange-
ments are suppressed, increasing heterogeneity of the system,
which is evident from longer tails of the probability distribu-
tion for system with higherBo.

In conclusion, we have reported that both the flow profiles
properties of the system (shear banding) and the force struc-
ture are unaffected by cohesion forBo≤ 1. In contrast, for
Bo> 1, cohesion strongly affects the flow, the anisotropy, and
the internal force structure. Attractive forces have been found
to reduce shear localization forBo> 1. In the same regime,
cohesion also promoted heterogeneity of the forces. These
two observations independently are consistent with previous
studies with attractive forces, concerning rheology [30] and
force structures for static packings [51].

As speculation for a wider view, our results can be inter-
preted as follows: In the language of statistical mechanics, Bo
corresponds to a “control parameter” andBo= 1 to a “crit-
ical point”. The critical changes in the characteristic force
and the fitting exponent show a small pressure dependence,
which could be better predicted using a pressure dependent
local Bond number. Since the localBo are close to the global
Bo, the system can be classified by the latter. In our case, the
macroscopic properties (position and width of shear-bands)
and structural signatures (the tails of the PDFs) graduallyin-
crease fromBo= 1. This implies, that this increase, behaves
like a “second-order transition”. Confirming this would need
a further detailed study. Also, experiments performed with
controlled cohesive strength would be exciting to confirm and
validate our results. Finally it would be interesting to repro-
duce our findings with different contact models, such as cap-
illary bridges or even simpler linear contacts models.
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Appendix: Maximum attractive force

The extreme loading and unloading branches are reflected
by the outer triangle in Fig. 1. Starting from a realized maxi-
mum overlap during loading,δmax< δ p

max, the unloading hap-
pens within the triangle, as can be characterized by a branch
with stiffness

k2 = k1+(kp− k1)δmax/δ p
max (A.1)

(as given in [58]). The elastic, reversible force along this
branch is given byk2(δ −δ0) [58, 59]. The intermediate stiff-
nessk2 follows from a linear interpolation betweenk1 andkp,

as explained in [58, 59]. The corresponding maximal attrac-
tive force isfm =−kcδm =−kc

(k2−k1)
(k2+kc)

δmax. If we assume that

the maximal overlapδ p
max is realized under a given external

(compressive) pressurepmax, then we can infer p
pmax

= δmax
δ p

max
,

with pressurep beingp= k1δmax/A, A being a representative
area. This leads to realized maximal attractive force being

fm =−kc
(k2− k1)

(k2+ kc)

p
pmax

δ p
max (A.2)

Using Eq. (A.1) in Eq. (A.2), we get

fm =−kc

(kp− k1)
pmax
k1

(

p
pmax

)2

kc+ k1+(kp− k1)
p

pmax

. (A.3)

This definition can be used to define a local Bond number as
Boa

l (P) = fm(P)/〈 f (P)〉, where mean force at that pressure is
discussed in Sec. II C. This Bond number would be compared
with various other definitions in Sec. II C.
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E. Azéma, and S. El Youssoufi, AIP Conf. Proc.1227, 240
(2010).

[53] S. Luding and F. Alonso-Marroquı́n, Granular Matter13, 109
(2011).

[54] S. T. Nase, W. L. Vargas, A. A. Abatan, and J. McCarthy, Pow-
der Technol.116, 214 (2001).

[55] P. G. Rognon, J. Roux, and M. Naaı́m, J. of Fluid Mech.596,
21 (2008).

[56] M. P. Allen and D. J. Tildesley,Computer Simulation of Liquids
(Oxford University Press, 1987).

[57] P. A. Cundall, inProc. Symp. Int. Rock Mech., Vol. 2 (Nancy,
1971).

[58] A. Singh, V. Magnanimo, and S. Luding, AIP Conf. Proc.1542,
682 (2013).

[59] S. Luding, Granular Matter10, 235 (2008).

[60] J. Tomas, Granular Matter6, 75 (2004).
[61] C. Thornton and Z. Ning, Powder Technology12 (1998).
[62] S. C. Thakur, H. Ahmadian, J. Sun, and J. Y. Ooi, Particuol-

ogy(2013).
[63] M. Pasha, S. Dogbe, C. Hare, A. Hassanpour, and M. Ghadiri,

Granular Matter16, 151 (2014).
[64] D. Fenistein, J. W. van de Meent, and M. van Hecke, Phys. Rev.

Lett. 92, 094301 (2004).
[65] S. Luding, Particulate Science and Technology26, 33 (2008).
[66] S. Luding, Particuology6, 501 (2008).
[67] J. A. Dijksman and M. van Hecke, Soft Matter6, 2901 (2010).
[68] T. Unger, J. Török, J. Kertész, and D. E. Wolf, Phys. Rev. Lett.

92, 214301 (2004).
[69] D. Fenistein, J.-W. van de Meent, and M. van Hecke, Phys.Rev.

Lett. 96, 118001 (2006).
[70] A. Ries, D. E. Wolf, and T. Unger, Phys. Rev. E76, 051301

(2007).
[71] F. da Cruz, S. Emam, M. Prochnow, J.-N. Roux, and F. Chevoir,

Phys. Rev. E72, 021309 (2005).
[72] G. Ovarlez, S. Rodts, A. Ragouilliaux, P. Coussot, J. Goyon,

and A. Colin, Phys. Rev. E78, 036307 (2008).
[73] X. Wang, H. P. Zhu, S. Luding, and A. B. Yu, Phys. Rev. E88,

032203 (2013).
[74] M. R. Shaebani, M. Madadi, S. Luding, and D. E. Wolf, Phys.

Rev. E85, 011301 (2012).
[75] S. Luding, K. Manetsberger, and J. Müllers,
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