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Abstract. Understanding the pre-failure, elastic behavior of dense granular systems is of
interest in many fields, such as soil mechanics, material science and physics. The main difficulty
is the discreteness and disorder in granular materials at the microscopic scale, which requires a
multi-scale approach. The Discrete Element Method (DEM) allows to inspect the influence of
microscopic contact properties of its individual constituents on the bulk behavior of granular
assemblies. In this study, isotropic deformations are applied to polydisperse packings of both
frictionless and frictional spheres; after preparation by isotropic compression of samples with
different contact friction, at various volume fractions, the effective bulk modulus is determined
from the incremental stress response to the application of strain-probes. As we are interested
first in the reversible, elastic response, the amplitude of the applied perturbations has to be
small enough to avoid much opening and closing of contacts, which would lead to irreversible
rearrangements in the sample. Counterintuitively, with increasing inter-particle contact friction,
the bulk modulus decreases for samples with the same volume fraction. We explain this by
differences in the microstructure (isotropic fabric) that characterize the samples state after
preparation.

1. INTRODUCTION
Granular materials behave differently from usual solids or fluids and show peculiar mechanical
properties like dilatancy, history dependence, ratcheting and anisotropy [?]. The behavior of
these materials is highly non-linear and involves irreversibility (plasticity), possibly already
at very small strains, due to rearrangements of the elementary particles [1, 3, 6, 10]. Many
industrial and geotechnical applications that are crucial for our society involve granular systems
at small strain levels. That is the case of structures designed to be far from failure (e.g. shallow
foundations or underlying infrastructure), strains in the soil are small and a sound knowledge of
the bulk stiffness is essential for the realistic prediction of ground movements [13]. Finite-element
analyses of tunnels depend on the model adopted for the pre-failure soil behaviour. When the
surface settlement is considered, the importance of modelling non-linear elasticity and the shear
modulus characterization become of outmost importance [?]. Design and licensing of critical
infrastructure such as nuclear plants and long span bridges is dependent on a robust knowledge
of elastic properties in order to calculate seismic ground motion site response characteristics and
to confirm geotechnical foundation conditions such as the risk of liquefaction and the presence of
anisotropic strata. Critically needed parameters include the seismic shear wave velocity profile
and shear moduli/damping characteristics of soil and rock.

When looking at natural flows, a complete description of the granular rheology should include
an elastic regime [16]. The onset of failure deserves particular attention in this context. Although



the definition of the elastic parameters have little influence on the predicted factor of safety in
classical slope stability analysis (e.g. Method of slices [19]), they have a profound influence
on the computed deformations prior to failure [17]. Information on the initial stiffness are
usually embedded into the value of the macroscopic friction angle, as obtained e.g. from shear
box experiments. However any predictive model must also describe the pre-failure deformation
behaviour of the soil. A large amount of study has been devoted on the pre-failure deformation
characteristics of geomaterials [20] Recent studies are aimed to relate commonly used intact rock
parameters of pre-failure (tangent moduli, secant moduli, peak strength) to the post-failure state
[18].

Finally, sediments are one example of particles of organic or inorganic origin that accumulate
in a loose, unconsolidated form before they are compacted and solidified; they can be classified as
a type of granular materials. Sediments are commonly found in the nature and the knowledge of
their mechanical behavior is important in industrial, geotechnical and geophysical applications.
For instance, the elastic properties of high-porosity ocean-bottom sediments have a massive
impact on unconventional resource exploration and exploitation by ocean drilling programs.

As first-step for a comprehensive modeling of the pre-failure, behavior of the granular soil,
we study the simplest case of isotropic material and we focus on the bulk modulus. Recent
works [2, 9, 7] show that along with the macroscopic properties (stress and volume fraction) also
the structure, quantified by the fabric tensor [5, 6] plays a crucial role, as it characterizes, on
average, the geometric arrangement of contacts, i.e. the microstructure of the particle packing.

In this study we use Discrete Element simulations to reproduce granular isotropic samples
and study the material behavior as resulting from the sample micro- and macro-characteristics.
In order to investigate the elastic response, we perform so-called strain probing tests along an
isotropic deformation (pre-strain) path [9, 6]. In the case of a finite assembly of particles, in
simulations, a finite elastic regime can always be detected and the elastic stiffnesses can thus
be measured by means of an applied very small strain perturbation. We scan a wide range of
inter-particle friction coefficients and volume fractions, in order to understand how the interplay
of contact and system properties affects the microstructure and thus the elastic moduli.

2. NUMERICAL SIMULATION
The Discrete Element Method (DEM) [6, 8] can help to understand the response to deformation
of particle systems. At the basis of DEM are force laws that relate the interaction force to the
overlap and tangential displacement of two particle contact surfaces. If all forces fi acting on
particle i are known, the problem is reduced to the integration of Newton’s equations of motion
for the translational and rotational degrees of freedom.

2.1. Contact model
For the sake of simplicity, the linear visco-elastic contact model for the normal component of
force is used. The simplest normal contact force model is given by fn = kδ+ γδ̇, where k is the
spring stiffness, γ is the contact viscosity parameter, δ = (di + dj) /2− (ri − rj) .n̂ is the overlap
between two interacting particles i and j, with diameters di and dj , with contact normal vector

n̂ = (ri − rj) / |(ri − rj)|, and δ̇ is the relative velocity in the normal direction. In order to reduce
dynamical effects and shorten relaxation times, an artificial viscous background dissipation force
fb = −γbvi proportional to the moving velocity vi of particle i is added, resembling the damping
due to a background medium, as e.g. a fluid. The tangential force model introduced in Ref. [8]
is used and thus will not be detailed here.

The standard simulation parameters are N = 4096(= 163) particles with average radius
〈r〉 = 1 [mm], density ρ = 2000 [kg/m3], elastic stiffness k = 108 [kg/s2], particle damping
coefficient γ = 1 [kg/s], and background dissipation γb = 0.1 [kg/s]. This corresponds to a
contact duration tc = 0.64 [µs] and coefficient of restitution e = 0.92 for two typical particles.
The tangential stiffness and viscosity are set as kt/k = 0.2 and γt/γn = 0.2, while the coefficient



of friction µ is varied. Note that the polydispersity of the system is quantified by the width
(w = rmax/rmin = 3) of a uniform size distribution, where rmax and rmin are the radii of the
biggest and smallest particles respectively. For details about other time scales present in the
system, see [4, 6].

2.2. Macroscopic (tensorial) quantities
Here, we define averaged tensorial macroscopic quantities – including strain-, stress- and fabric
(structure) tensors – that provide information about the state of the packing and reveal the
interesting bulk features.

By speaking about the strain tensor E, we refer to the external (global) strain that
we apply to the sample. The isotropic part of the infinitesimal strain, εv, is defined as:
εv = ε̇vdt = − (εxx + εyy + εzz) /3 = tr(−E)/3 = tr(−Ėdt)/3, where εαα= ε̇ααdt with αα
= xx, yy and zz as the diagonal components of the tensor in the Cartesian x− y − z reference
system where ε̇v is the strain-rate applied during a time-step dt. The trace integral of 3εv is
denoted as εvol, the true or logarithmic volumetric strain, i.e., the volume change of the system,
relative to the initial reference volume, V0.

On the other hand, from DEM simulations, one can measure the ‘static’ stress in the system

σ = (1/V )
∑
c∈V

lc ⊗ f c, (1)

averaged over all contacts in the volume V , with the dyadic product between the contact force
f c and the branch vector lc, where the contribution of the kinetic fluctuation energy has been
neglected [4, 5]. The isotropic component of the stress is the pressure P = tr(σ)/3.

In order to characterize the geometry/structure of the static aggregate at microscopic level,
we measure the fabric tensor

F =
1

V

∑
P∈V

V P
∑
c∈P

nc ⊗ nc , (2)

weighted according to V P , the particle volume of particle P, for all particles inside the averaging
volume V , the normal unit branch-vector nc pointing from center of particle P to contact c [6].
The isotropic fabric is proportional to the volume fraction ν and the coordination number C.

Fv = tr(F) = g3νC , (3)

with a function g3 of moments of the size distribution and g3 ≈ 1.22 for polydispersity w = 3.
Note that in this work we use k∗ = k/ (2〈r〉) to non-dimensionalize the stress, i.e. σ∗ = σ/k∗.

2.3. Sample preparation and test procedure
In this subsection, we first describe the preparation procedure and then the details of
the numerical isotropic test. The preparation procedure is an essential step in any
physical/numerical experiment to obtain reproducible and reliable results, especially when
friction is involved. The initial configurations is such that spherical particles are randomly
generated, with low volume fraction and rather large random velocities in a periodic 3D box,
such that they have sufficient space and time to exchange places and to randomize themselves.
The initial configurations are obtained by first homogeneously compressing a granular gas up
to a volume fraction below the jamming fraction. The system is then relaxed to allow the
particles to dissipate kinetic energy and achieve a zero-pressure static configuration [4, 6, 15].
This is followed by an isotropic compression-decompression cycle up to a desired maximum
volume fraction νmax = 0.82, as depicted into Fig.1.a [4, 6, 15], using different coefficients of
friction (varying from µ = 0 to 10). Note that this preparation is carried out with strain-control,
where at every time-step the particles are moved according to the momentary strain-rate tensor
(isotropic, with ε̇vol = 38.0 [µs−1]). In Fig.1.b, we show the evolution of the volumetric fabric



Fv with volume fraction ν during decompression for different coefficients of friction (µ = 0, 0.1
and 1). The isotropic fabric at νmax decreases systematically with the coefficient of friction and
decreases with decreasing volume fraction ν, due to the decrease of the coordination number,
before it suddenly drops to zero at the jamming point.

(a) (b)

Figure 1. (a) Evolution of volume fraction as a function of time during sample preparation: (1)
A frictional granular gas is homogeneously compressed from ν = 0.3 to ν = 0.5; and (2) relaxed
at ν = 0.5; (3) the sample is compressed from ν = 0.5 to ν = 0.82; (4) finally, the sample is
decompressed from ν = 0.82 to ν = 0.5. Black crosses ’×’ represent the chosen configurations
for further tests. (b) Evolution of isotropic fabric Fv with volume fraction along preparation
path for packings with different coefficients of friction (µ = 0, 0.1, 1).

3. BULK MODULUS
We now study the incremental response as function of the contact-friction during isotropic
compression.

Various configurations are chosen at different volume fractions above jamming, along the
unloading branch, from preparations with different friction. Sufficient relaxation is applied to
allow the particles to achieve a static configuration in mechanical equilibrium, before we probe
these relaxed samples by applying small strain perturbations thus measuring the incremental
stress responses [4, 5, 6, 9]. For each friction we apply an identical strain-rate value ε̇vol = 10.0
[µs−1]. After probing the configurations, the effective bulk modulus of the granular assembly
is obtained as the ratio between the measured increment in pressure and the applied isotropic
strain:

B = δP ∗/3δεvol (4)

where P ∗ is the non-dimensional pressure, P ∗ = P/k∗.

3.1. Evolution of the bulk modulus
As we are interested in the elastic response, we first have to identify the elastic regime, the
marginal regime and the plastic regime [6]. For the modulus results presented below, the applied
infinitesimal strain step is kept small enough to avoid strong, irreversible particle rearrangements;
plasticity (irreversibility) develops in the sample as soon as those rearrangements happen. The
bulk modulus and the isotropic fabric for different amplitudes of the applied isotropic strain,
δεvol, are depicted for chosen configurations (ν = 0.82, µ = 0.0001 and µ = 1) during probing in



Fig.2. B stays practically constant for small amplitudes (δεvol < 10−4) and the regime can be
considered to be elastic [12]. By increasing the amplitudes of the perturbation, δεvol, B starts to
increase non-linearly. Comparing Fig.2.a and 2.b, shows that the non-linearity of B is associated
with the change in volumetric fabric. The insets in Fig.2.a and 2.b show that for B and ∆Fv,
the elastic regime is wider when the friction coefficient is larger, partly due to larger distance
from jamming [4].
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Figure 2. Evolution of (a) bulk modulus B and (b) change in isotropic fabric ∆Fv with
volume fraction ν for a configuration at ν = 0.82 and coefficient of friction, µ = 0.0001 and 1,
respectively. Note that the x-axis in on log-scale, with inset plots in linear scale.

3.2. Effect of inter-particle contact friction on the bulk modulus
In Fig.3.a, we plot the variation of the bulk modulus B, with volume fraction for packings with
different coefficients of friction µ. The bulk modulus always increases with increasing density.
However, the increase of the bulk modulus is slower for packings with high friction. We can relate
this behavior to a higher average number of contacts (i.e. higher Fv) for samples prepared with
low friction (Fig.3.b) at the same volume fraction. The value of the initial fabric is proportional
to the number of contacts, and influences the subsequent evolution of the stiffness properties
[12].

When the bulk modulus is plotted not against volume fraction, but against the isotropic
fabric Fv in Fig.3.b, the data for large µ ≥ 0.05 approximately collapse on an unique curve,
implying a general relation between bulk stiffness and isotropic micro-structure. The coefficient
of friction has no direct influence on the bulk modulus as sliding is not activated in the elastic
regime for isotropic pre-strain, but rather it effects B indirectly through the preparation that
leads to a different state variable Fv.

Note that frictionless and frictional curves show qualitatively different behavior, associated
with the activation of stronger and stronger tangential forces. In general, one can observe three
regimes, frictionless, low (0 < µ < 0.001) and higher friction (0.001 ≤ µ). The low friction
packings behave in a similar fashion to the frictionless ones in the loose regime (close to the
jamming volume fraction), but follow the behavior of systems with stronger friction when they
are far from the jamming point.

4. CONCLUSIONS
In a triaxial box, the bulk modulus is measured, which describes the incremental, elastic pressure-
response of relaxed granular materials to applied small strain perturbations. The tested states
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Figure 3. (a) Evolution of the bulk modulus B with volume fraction ν for different coefficients
of friction, µ, as shown in the legend. (b) Evolution of the bulk modulus B versus isotropic
fabric Fv for various volume fractions and different µ, as shown in the legend.

have experienced different deformation history, since the particles have different properties
already during preparation of the tests, like the coefficient of inter-particle contact friction.
In this paper, we have focused on the effect of friction on the macroscopic bulk modulus over a
wide range of volume fractions.

A relation between the bulk modulus and the isotropic fabric is established in agreement
with [6, 14]. Surprisingly, this relation for frictional packings does not follow the same trend
as for frictionless packings. The tangential force plays a crucial role in establishing the contact
network and thus is very important for the mechanical properties of granular materials. Since
frictionless particles are an unrealistic limit-case material, this is a big step towards realistic
materials. The tangential force has to be taken into account, even though it carries relatively
small magnitudes of force, in the case of low coefficients of friction.

Extension of the work to investigate the influence of inter-particle contact friction on the shear
modulus and structural anisotropy is in progress, using the same probing approach. Additional
work will focus on establishing a micro-mechanical based constitutive model, involving the elastic
regime, with goal to predict the pre-failure behavior of geomaterials.

5. ACKNOWLEDGEMENTS
The financial support of the European-Union Marie Curie Initial Training Network, T-MAPPP,
funded by FP7 (ITN 607453), is appreciated, see http://www.t-mappp.eu/ for more information.

References
[1] J. P. Bardet (1994). Numerical simulations of the incremental responses of idealized granular materials. Int.

J. of Plasticity, 10(8), 879-904.
[2] A. Ezaoui and H. Di Benedetto (2009). Experimental measurements of the global anisotropic elastic behaviour

of dry Hostun sand during triaxial tests, and effect of sample preparation. Geotechnique, 59(7), 621-635.
[3] J. D. Goddard (1990). Nonlinear Elasticity and Pressure-Dependent Wave Speeds in Granular Media. Proc.

R. Soc. Lond. A, 430(1878), 105-131.
[4] O. I. Imole, N. Kumar, V. Magnanimo, and S. Luding (2013). Hydrostatic and Shear Behavior of Frictionless

Granular Assemblies Under Different Deformation Conditions. KONA, 30, 84-108.
[5] O. I. Imole, V. Magnanimo, and S. Luding (2014). Micro-Macro Correlations and Anisotropy in Granular

Assemblies under Uniaxial Loading and Unloading, Phys. Rev. E 89, 042210.
[6] N. Kumar, S. Luding & V. Magnanimo (2014). Macroscopic model with anisotropy based on micro-macro

informations. Acta Mechanica, 225(8), 2319-2343.



[7] L. La Ragione and V. Magnanimo (2012). Contact anisotropy and coordination number for a granular
assembly: A comparison of distinct-element-method simulations and theory. Phys. Rev. E., 85(3).

[8] S. Luding (2008). Cohesive frictional powders: Contact models for tension Granular Matter 10(4), 235-246.
[9] V. Magnanimo, L. La Ragione, J.T Jenkins, P. Wang & H.A. Makse (2008). Characterizing the shear and

bulk moduli of an idealized granular material. Europhys. Lett., 81, 34006.
[10] L. Sibille, F. Nicot, F.-V. Donzoe, and F. Darve (2009). Analysis of failure occurrence from direct simulations.

Eur. J. Env. Civ. Eng., 13(2), 187-201.
[11] C. Thornton and L. Zhang (2010). On the evolution of stress and microstructure during general 3D deviatoric

straining of granular media. Géotechnique, 60(5), 333-341.
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