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An Event-Driven Algorithm for Fractal Cluster Formation

S. Gonzalez, A. R. Thornton, S. Luding

Multi Scale Mechanichs,
P.O.Box 217, 7500 AE En:

TS CTW, UTwente
schede, Netherlands

Abstract

A new cluster based event-driven algorithm is developednulgate the formation of clusters in a two dimensional geetiples
move freely until they collide and “stick” together irregdsly. These clusters aggregate into bigger structuresirsatropic
(random) way, forming fractal structures whose fractaletision depends on the initial density of the system.

Keywords: fractals, event-driven simulation, granular matter, agggration, cluster formation

1. Introduction

Cluster formation is an important subject in various ardas o
physics; for example, in astronomy, ice clusters are betlev
to aggregate into planetesimals [1], the base of todaysfdan
In granular materials, the main theme of this paper, tinyoran
Newton forces are responsible for macroscopic clusterem f
falling jets [2]. These are similar to those that appear incha
jets from plasma physics [3]. Clusters are also found ingjaan
avalanches [4], and air-driven granular beds [5].

Motivated by nanoaerosols [6], a cluster based event-drive
algorithm is developed to simulate the formation of clusiar
a 2D gas with periodic boundary conditions: particles move
freely until they collide and “stick” together irreversybimov-
ing as one cluster. The dynamics of the clusters is uttenty si
plified in our model. Conserving only linear momentum during
collisions, angular momentum is disregarded. These chiste
evolve and aggregate into bigger fractal structures, whibse
mensiond; is found to be in the ranged < d; < 2; in con-
trast, to the case of flusion-limited aggregation (DLA), where
ds = 1.67 [7]. Here, we keep track of the dynamics of the clus-
ters instead of adding particles one by one like in DLA. This

it is related to the classical event-driven model. Aftertthee
present a selection of numerical simulations. Finally,abot-
ing remarks and plans for future work are discussed.

2. Algorithm

By event-driven we mean that the state of the system is
evolved in time from one event to the next. After each event,
the time of the next event is calculated and the system aéganc
For the details of the algorithm we refer the reader to stahda
papers and books, see e.g. Re®s1R]. In brief, the algorithm
consists of:

1. Given the instantaneous positions and velocities ofal p
ticles in the system,

2. predict the time of the next collision,

3. advance the time of the system to that instant, and

4. update the velocities of the particles that collide with a
given collision rule, and repeat from 1.

The event-driven algorithm presented here builds on previ-
ous work, where the static phase in dense granular systems wa
simulated with a dferent dynamics, also improving the perfor-

procedure can be seen as a mix between irreversible coalegrance [13]. This is a necessary step towards a multiplescal

cence [8], and a lattice-free version of a cluster-clustgre-
gation model [9].

event-driven simulation for granular matter, where eacistelr
can have its own dynamics and collision rules.

Implementing clusters in an event-driven algorithm has two The kind of clusters we are interested in at the moment are,

advantages: Firstly, defining clusters of particles avdis
need to predict the events between particles of the sameclus
Since particles in a cluster move together as a rigid sdiiely t
cannot collide. This alone decreases the computatidfadte
required to simulate the clusters, where in standard edevn
models most of the collisions occur [10]. Secondly, the emtc
of clusters appears in a wide range of particulate physiesi-g
ular structures develop long correlations in space and thee
for example, Key=t. al., Ref. [5], where it is found that par-
ticles move in one-dimensional paths (“strings”) that aggte
into clusters.

e.g., suspensions of nanopatrticles in a gas, which sticktheg
at contact due to Van der Waals forces (as in Ref. [14]). In
reality, clusters of particles conserve angular momentumarw
they collide, which results in rotating clusters. For thkesaf
simplicity, and since (at the moment) we are mainly inteyest
in the algorithm rather than in recovering the right physies
will disregard rotations of the clusters and, hence, carsidly
translational motion. Note that, anyway, no considerabia-r
tion of large clusters is expected in a gas.

In normal event-driven algorithms one has to predict the nex
collision between all two-particle pairs. In this versiove in-

In the next section we explain the algorithm used and hoviroduce a new object called cluster (which may consist df jus
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one particle or many), and only collisions between theseaibj [ i o T "
have to be computed. Since a cluster consists of a finite num- | oo
ber of particles, the position of a partiglevithin a clustelC, is %
given by w 7
Fic(t) = fo + Vct, 0
whereVc is the linear velocity of the cluster. The time is mea- oo S & ol J
sured since its last collision, amglis the center of mass of the a b c

cluster at that instant.
Now that we have defined the evolution of particles within aFigure 1: Three snapshots during the evolution of a systelh0#00 particles
cluster, collisions between particles irffiérent clusters can be " bPox of sizel = 1041, a packing fraction of ~ 0.03. Each color represents
' L . . . .. a different cluster. Time increases from left to right.
detected. This is a massive time saving as collision between
particles within the same cluster do not have to be checked
for, and as the size of the clusters increases the total nuafibe cles are monodisperse with diameteand massn. The pack-

checks decreases. Once the collision of two clusters has beghg fraction of the system is given by= Nxd?/(4L2). In order

carried out, the colliding particles “stick” together amgttwo  to start with a homogeneous configuration, we let the system

clusters are combined into a single larger one. The veladity equilibrate: starting from a square lattice, each partice

the newly formed cluster is calculated by considering the-co |ides at least 10 times elastically until a homogeneousmegs

servation of linear momentum only. This process is repeategeached with average velocity. Once thermalized, the clus-

until the system consists only of a single cluster. tering algorithm is switched on, and the simulation runslunt
The classical event-driven model needs to deal with &ne big cluster is formed.

quadratic equation, both in the case with or without gravity

Like in the classical case, here we have to find the time of-coll

sion between two particlesj by (analytically) finding the first

(smallest) positive root of

3.1. Temporal Evolution

The natural time scale is the initial Boltzmann mean calhsi
P (t) — Fi (O = o, time (as defined in [8])7o = (4dr?/v3)*?/v, with v the packing
) ) ] ] ] ] fraction, andg(v) ~ 1 for low densities.
with d the diameter of a particle. The inclusion of rotating clus- The scaling behavior of the energy was studied. For dilute

tgrs in. the simu_lation makes the equation to find the collisio systems, the mean kinetic energy per particle follows a powe
time hlgh.ly nonlmee}r. Rgcently, methods havg been deeelop law (Ex)/(Ex)o « 79, with 6 = 1.3 for almost four decades,
to deal with these situations [15, 16], but the inclusionaif ¢ o pe seen in figure 2. This results is similar to the one

tion is beyqnpl the scope of .this Paper. _ from Ref. [8], where a scaling with = 1.12 was found. This
Summarizing the simulation procedure, one has to: scaling breaks down when the number of clusters is small and

1. Start with an initial configuration of particles, finite size dfects become important, leading to bad statistics,

2. find the time for the next collision in the system. since we did not employ ensemble averaging.

3. Advance the system to that instant and merge the two par- For these systems, the average cluster size also follows a
ticles (clusters) into a single cluster, power law scalingSc) « ¢ with ¢ = 1, which corresponds

4. predict the next event with the new configuration, and  exactly to the mean field predictions in Ref. [17].
5. repeat until all the energy is dissipated and a singlaetus

is present in the simulation (the simulations are run in the
center of mass reference frame).

Three snapshots of a simulation are shown in Fig. 1. At the be- 0L

ginning of the simulation, (a) particles are arranged inwzase 001 L
lattice with random velocities (each component of the veloc
ity is take from an uniform distribution with zero mean). The
color code representsftirent clusters in the simulation. At
this initial time, every cluster correspond to strictly asingle
particle. At a later time, (b) clusters offtBrent size coexist in 10
the simulation and aggregate as soon as they are in contact. F |
nally, (c) the system contains only two clusters that willide 001 . o Y . e
in the next event of the simulation, form one cluster, and end

the aggregation process.

0.001 ¢

(Ex)/(Ex)o

1074 L

T

Figure 2: Energy as a function of the non-dimensional time t/zo for five
3. Experiments systems withiN = 10° and packing fractions in the ranged008< v < 0.012.
The energy follows a power la¥Ex )/(Ex Yo o« ¢ with § = 1.3, as indicated

The simulation consists of a system Mfparticles in a ® by the dashed line
square box of sizé& with periodic boundary conditions. Parti-

2
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3.2. Cluster size distribution 0.1

As the simulation evolves, the distribution of clusterselev
ops fromN clusters of size one (free particles), to one cluster
of sizeN. The change of the cluster size distribution as a func-
tion of time is plotted in figure 3. Since the raw probability
density function (PDF) is noisy, see Fig. 4, we plot the cumu- 2 o.001 ¢
lative distribution function (CDF) as a function of clustgze
for different non-dimensional times. The data presented here
correspond tdN = 1P and a fairly dilute packing fraction of
v = 0.0097. As time increases the number of clusters decreases
and the distribution broadens, i.e. thdfeience between the 105
biggest cluster and the smallest becomes larger, reachiaga
imum aroundr ~ 924,

The resulting PDF cannot be fitted by an exponential funcigure 4: Probability distribution function far = 7.12,36, and 182 and the
tion as in [8]. For intermediate times a fit of the foR(s; 1) = same system of Fig. 3. The distribution flattens and beconwe moisy as
a(r)S ) xp(-w(r)9), With a(r), y(r), andwkr) are time de- [mepasses, Tne <oud s soespond ot ;e o e
pendent free parameters, whiés the cluster size. This can og5;(1)5-046(1)g-00086(15. and p(s; 182) = 0.016(1)040We-09020(15 from
reproduce the qualitative behavior of the distributiong.F&  top to bottom.
shows the PDF for three intermediate times together with the
best fit. The numerical values for the ¢beients appear in the
caption of the figure.

0.01

10 20 50 100 200 500 1000
Cluster Size

dimension ofd; = 2 is expected for dense systems. For vanish-
ing density, we expect an asymptotic lower fractal dimemsio
since after some point the mean free path is much larger than
the cluster size, i.e., the system is so dilute that molechiaos
holds.

Figure 5 shows the fractal dimension plotted against the den

sity for different systems. To measure theet of the den-

sity, we vary the size of the system for a given number of
ey particlesN = 10°. The system sizes chosen are in the range

T~141

4000@ > L > 1004, corresponding to densities between

T~36

o 0.0005< v < 0.78. We have realized one simulation for each

-z system size, but gather statics by choosirtgdént central par-
ticles.
) 10° The error bars correspond to the fluctuations in the measure-
Cluster Size ment of the fractal dimension on a single simulation, and not
to different realizations for the same system. As expected, for
Figure 3: Cumulative d(i;tribl(ljtion fgrécgg;n f/fi;f?rfgti::rrel;isizﬂse?hseiogsmn;?zf high densities the fractal dimension approaches 2, nanoely f
glfgt; Sd)zeséfggs%ﬁ: ané th:ndigtribufion b;oadens, reaehingximum around d,f(o'78), = 197+ 001, that is, the cluster .a.pprpa_\ches a wo
© ~ 924. Eventually, just two clusters are present: (red) ssia@n the plot, ~ dimensional structure. For vanishing densities it is fothmat
each symbol (data point) represents one cluster, so we eathaeas long as  di(v — 0) does not reach a clear asymptotic value and de-
there are some free particles in the system, the distribisismooth. creases with density, at least for the few values studied.her
This fractal dimension is considerably smaller than the one
found, by Witten et al. for the dusion-limited aggregation
3.3. Fractal dimension and density process [7], where the fractal dimensiomliga = 1.67.
With the final configuration from each simulation, we count
the number of particles present in a circle of radiusround 4 ~onclusions
ten randomly chosen particles of the cluster. We do this to ob
tain the number distribution(r), whose exponent s the fractal  In this paper we have presented event-driven simulations of
dimension of the system. We confirmed that the fractal dimenireversibly aggregating clusters ilbXystems of various den-
sion was almost independent of the points selected, by ehoosities. These clusters have non-physical dynamics bu¢sepi
ing points in the inner third, and in the outer third of thectad:  a “toy” model that permits us to understand how to make clus-
both measurements lead to practically the same results; hetter simulations in an event-driven algorithm. The formatid
we present data fat; based on inner points. fractals was studied, and the exponent found depends $§frong
The fractal dimension we obtain is strongly dependent on then the initial density of the system, with dimensions in thiege
density of the system. If we start with a very dense systeml.4 < ds < 2. The denser the system, the closer to a two dimen-
there is no re-arrangement possible and the final state maittp  sional structure the fractal is. There remains the opentiues
tically coincide with the initial state. Due to this, an iggg  of what the smallest fractal dimension is that can be aclieve

7~ 0.0021

CDF

i L
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Figure 5: Fractal dimension as a function of packing fracfior systems with

N = 10P particles. The dots are the simulation results while thielsiole is just

a guide to the eye. The error bars correspond to the fluchsatissociated with
the measurement af; and not to ensemble averages. In the inset, two exam-
ples of the structures obtained for twdfdrent densitiesjjuie = 0.0035 and
vdense= 0.784, marked as red points on the plot. The structures areiznedb
from red to blue depending on the distance to the centraicfeart

with this algorithm. Besides the accumulation of bettetista
tics, the inclusion of more realistic dynamics and coliisiales
for the clusters is currently being investigated.
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