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Abstract

Dynamic simulations of wave propagation are performed in dense granular media
with a narrow polydisperse size-distribution and a linear contact-force law. A small
perturbation is created on one side of a static packing and its propagation, for
both P- and S-waves, is examined. A size variation comparable to the typical con-
tact deformation already changes sound propagation considerably. The transmission
spectrum becomes discontinuous, i.e., a lower frequency band is transmitted well,
while higher frequencies are not, possibly due to attenuation and scattering.

This behaviour is qualitatively reproduced for (i) Hertz non-linear contacts, for
(ii) frictional contacts, (iii) for a range of smaller amplitudes, or (iv) for larger
systems. This proves that the observed wave propagation and dispersion behaviour
is intrinsic and not just an artifact of (i) a linear model, (ii) a frictionless packing,
(iii) a large amplitude non-linear wave, or (iv) a finite size effect.

Key words: DEM simulation, granular matter, sound propagation, friction,
non-linear phenomena
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1 Introduction

The stress-wave (sound) propagation through dense granular matter is the
superposition of many complex phenomena, which are caused by the discrete,
inhomogeneous, anisotropic and dissipative structure of this class of materials
on the microscopic, contact scale [1,2,3,4,5]. Non-linear contacts [6,7], force-
chains [8], frequency-dependence [9,10] and also scattering and attenuation in
other “particle type” materials [11] are reported. Ballistic pulse propagation
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can co-exist with a slower multiply scattered, coda-like signal [4,12], and the
stress- and frequency-dependence of the wave propagation features are subject
of ongoing discussion [3,4] in static and shaken packings as well.

A continuum description of granular materials is generally needed in field
applications (like oil recovery) due to the huge system-size. On this macro-
scopic scale, the properties of such waves are strongly affected by phenomena
like attenuation, scattering, and dispersion [4]. Starting from simulations at
the particle level, which are necessary to gain insight into the role of the
micro-parameters, a “micro-macro” transition [13,14] can provide a contin-
uum, macroscopic description (at least for quasi-static deformations). The ul-
timate goal is to find micro-based macroscopic constitutive relations, superior
to the empirical ones typically used, also for dynamic and possibly non-linear
deformation and propagation modes [3,4,16].

The use of a three-dimensional discrete element method (DEM) [7,17,18,19,20,21]
allows the study of the role of various micro-parameters in detail. Except for
a regular crystal structure of exactly equal sized particles, geometrical (and
hence contact) disorder is intrinsic to granular systems. The wave propaga-
tion properties are examined in the following, starting from a regular structure
and slowly increasing the amount of disorder involved. The system size and
the amplitude are varied as well as the non-linearity and friction in order to
understand their effect on the wave-propagation characteristics.

2 Simulation setup

2.1 DEM Model

The elementary units of granular materials are mesoscopic grains, which de-
form locally under the forces/stresses acting at their contacts. Since the re-
alistic modeling of the internal deformation of the particles is too expensive,
the normal interaction force is only related to the “overlap” of two (spherical)
particles, while the tangential forces involve an elastic and a frictional element.
If the sum of all forces, fi, acting on particle i, either from other particles,
from boundaries or from external forces, is known, the problem is reduced
to the integration of Newton’s equations of motion for the translational and
rotational degrees of freedom:

mi
d2

dt2
ri = f i , and Ii

d

dt
ωi = ti , (1)
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with the mass mi of particle i, its position ri, its moment of inertia Ii, its
angular velocity ωi, and the total torque ti. Note that the above equation is
only valid for isotropic bodies, like spheres as also used in the following [17,20].

A simple linear spring is used for the normal force |f | = kδ, with the con-
tact stiffness k (=105 N/m), corresponding approximately to the stiffness of
a Plexiglas bead (detailed in section 2.3). If the overlap is positive, the force
acts, if the overlap is negative the force is f ≡ 0. For the simulations where
friction is active, the force in the tangential direction, f t, is implemented in
the spirit of Ref. [18], where a tangential spring (with stiffness kt = 0.2k) was
introduced to account for static friction [17]. The tangential contact forces are
related to the normal forces via Coulombs law, i.e., f t ≤ µfn, with µ = 0.5
for both sliding and sticking. In some simulations, a non-linear spring model
(according to Hertz) was used, with the normal force |f | = kH

(

δ3/2

)

, with

kH = 4.5 107 N/m3/2.

2.2 Particle packing

The geometrical configuration considered in this study is a dense, static pack-
ing of grains, with radii a0 (=0.001m), arranged in a Face Centered Cubic
(FCC) structure (with density, i.e., volume fraction of ν ≈ 0.74), where square
layers in the x-y-plane (4×4 particles) are stacked in the z-direction (200 lay-
ers), see Fig. 1 for a snapshot of a part of the system. The larger systems
examined are double-sized in the cross-section (8×8 particles). This regular,
ordered system is rather thin but elongated in the z-direction in order to allow
the wave to propagate for some time, before it hits the wall on the opposite
side. Each particle has four contacts inside each square-layer, and eight with
particles in the neighbouring layers (4 each), corresponding to a coordination
number of C = 12. All particles have the same overlap δ/a0 ≈ 10−3 and (due
to periodic boundaries) see the same environment (except those in the first
and last mobile layer).

Fig. 1. FCC-structured packing, thin (4×4 periodic) in the x- and y-directions, and
elongated (non-periodic) in the z-direction; the black particles indicate the “zero-th”
layer of fixed particles that make up the z = z0 boundary.
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Polydisperse packings are obtained by randomly changing the particle sizes
according to a narrow size distribution, which is homogeneous, centered at a0,
and has a width 2(∆a) of the order of the mean overlap δ and then allowing the
system to relax to a new, slightly disordered equilibrium configuration with
the same volume. More precisely four different cases, with (∆a) = 0, δ/2, δ and
2δ are compared. Note that the polydisperse systems conserve their original
FCC structure at the grain scale (almost), since the radius variation is much
smaller than the particle sizes, however, strong differences are observed at the
contact level. This is because, a radius variation of (∆a) = 2δ, represents only
a small change of 0.2% at the grain level but a large change of 200% at the
contact level. This has a direct influence on the coordination numbers, which
drop down from C = 12 to C ≈ 11.99, 11.22, and 9.97, for the three (∆a),
respectively. For the last case this means a non-negligible reduction of about
17% of the total contacts of the monodisperse system. Since the effect of this
“tiny” radius variation is so strong, polydispersity should be seen as related
to the overlap rather than the particle size, as noted already in Ref. [22].

In order to examine the effect of more realistic contact models, one packing
with (∆a) = 2δ was relaxed with friction active, leading to an even smaller
coordination number of C ≈ 9.64. Another packing, also with (∆a) = 2δ was
relaxed using the Hertz contact-model, see section 2.1, so that, the coordina-
tion number was C ≈ 9.77, somewhat lower than for the packing with the
linear model (C ≈ 9.97). Note that all these packings are still much more
coordinated and denser than the theoretical isostatic limit cases of C = 6 and
C = 4 for frictionless and frictional packings, respectively.

2.3 Wave agitation

In order to agitate a plane wave in z-direction, an initial velocity v is given
to all the particles that make up the source, i.e., the first x-y-layer with z =
z1, in contact with the fixed particles at z = z0. This velocity either points
in z-direction, v = vzẑ, or in x-direction, v = vxx̂, creating a compressive
(P), or a x-polarized shear (S) wave, respectively. If not mentioned, explicitly,
vz = vx = 0.01m/s are used, which create a maximum particle displacement
umax ≈ 5 10−8 m, during the simulations. Relating the layer distance lz = z1 −
z0 =

√
2a0 and the “contact duration” (Ref. [17]) tc ≈ 2.03 10−5 s, leads to a

velocity vc = lz/tc ≈ 70.7 m/s. The chosen contact stiffness, k (=105 N/m), as
mentioned earlier, correspond to the stiffness of a Plexiglas bead. Meaning that
this value is close to the stiffness of the non-linear spring model (using Plexiglas
elastic constants), calculated at the packing overlap in the monodisperse case,
here δ/a0 ≈ 10−3. At this overlap, the stiffness and the contact duration of a
particle-particle collision appear to be of the same order for both linear and
non-linear model.
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3 Results

In the following, the stress-time response to the initial perturbation is recorded
at each layer with a large binning rate, ∆t = 10−6 s, in a time-window of
T = 0.0015 s, to be further analyzed for all systems described above in section
2.2. Note that even though the boundary conditions and the excitation method
both influence the stress-time signal shape (data not shown), we only use
the velocity-pulse method in this study for convenience; a detailed study of
different pulse methods will be published elsewhere.

3.1 Linear model

3.1.1 From order to weak disorder

The stress-response – ten layers from the source – is plotted against time in Fig.
2 (Left) for the monodisperse and the polydisperse situation with (∆a) = 2δ
(for more details see Refs. [19,20,21]). Only these two last cases will be shown
in this study, since the case (∆a) = δ/2 resembles the monodisperse system,
and the case (∆a) = δ behaves similar to the case (∆a) = 2δ. Qualitatively,
signals arrives later in the polydisperse system, which is consistent with a lower
propagation speed (see Ref. [21]) due to the smaller coordination number, as
compared to the monodisperse system. The signal amplitude is smaller in the
polydisperse system, which indicates that some energy has been transferred
(scattered) to other types of motion (waves of different nature, like shear
waves, and/or with different propagation direction). Finally, the coda of the
signal in the polydisperse packing is clearly irregular, while it is periodic in
the monodisperse case.
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Fig. 2. (Left) Normal stress (σzz) scaled by the equilibrium stress (σ0
zz) as function

of time at a distance of 10 layers from the source for the monodisperse (dashed line)
and a polydisperse (solid line) system. (Right) Fourier power spectrum of the two
stress-time signals from the left figure.

In order to analyze the two signals in more detail, the frequency content is
examined from the Fourier power spectrum in time, see Fig. 2 (Right). The
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monodisperse system shows a smooth spectrum, while in the polydisperse
system, due to the disorder present at the contact level, some frequencies
seem to be filtered stronger than others, i.e., the spectrum shows peaks and
valleys.

In order to understand the propagation properties of the wave-components
with different frequencies, the frequency power spectra are plotted (vertical)
against the position in z-direction (horizontal) in Fig. 3 in grey-scale.

In the monodisperse case (Left), frequencies above about 49 kHz are immedi-
ately attenuated, since the packing cannot transmit frequencies higher than
the (largest) eigen-frequency of a single layer. From the third layer on, the
range of frequencies present in the time signal is conserved during the prop-
agation. Note that the bending observed, beginning at about 50 layers from
the source, is only due to the limited time window of the collected data, i.e.,
for larger time windows, the bending starts later. This bending, top right, is
consistent with a smaller propagation speed of higher frequency wave compo-
nents.

In the polydisperse case (Right), the power spectrum shows a strongly reduced
range of transmitted frequencies as the wave propagates away from the source.
Frequency transmission over large distances is observed under about 8 kHz
and the higher frequencies (about 8− 46 kHz), present near the source, decay
exponentially (data not shown) between layers 20-40. Note that some special
frequencies propagate deeper into the system than others, as the band around
35 kHz (eigen-frequency of a double layer) for example.
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Fig. 3. Frequency-space diagram (darkness corresponds to the amplitude, absolute
value, of the Fourier coefficients, black is large and white is small) for a P-wave
propagating in z-direction in the monodisperse (Left) and the polydisperse (Right)
packing from Fig. 2.

In order to understand possible relations between frequencies and wave-numbers,
the two-dimensional Fourier transform in time and space is calculated from
the same data as before. The dispersion relation in the monodisperse packing
(angular frequency ω = 2πf versus angular wavenumber k = 2πk = 2π/λ)
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has a perfect sine-shape ω(k) = ω0 sin(lzk/2), with layer-width in z-direction,
lz =

√
2a0, and P-wave speed, VP = ω0(lz/2) ≈ 219m/s, where ω0 = 2πf0,

with f0 ≈ 49 kHz, see Fig. 4 and Refs. [20,21]. The minimal wave-length
can be obtained from the maximum of the dispersion relation, lzkmax/2 =
(πlz)/λmin = π/2, so that λmin = 2lz.

For the polydisperse packing, with (∆a) = 2δ, the dispersion relation has
generally smaller intensity, is smeared out much broader, and is more noisy,
even though the sine-shape is still visible. Some band gaps appear, and one of
them indicates the definite end of the linear behaviour (with a corresponding
wave speed VP ≈ 174m/s) in the “low frequency/large wavelength” regime,
somewhat smaller than for the monodisperse packing.

In order to analyze this peculiar dispersion relation, the mean wavenumber
corresponding to a certain frequency, weighted only above a suited cut-off (here
six times the average value of all Fourier-coefficients), is plotted on top of the
dispersion relation as white dots in Fig. 4 (Right). The dots underline the linear
regime, corresponding to the transmission-band at small frequencies, and also
indicate the band-gaps in the cases where all Fourier coefficients corresponding
to one frequency are smaller than the cut-off value. In the frequency range
from 2 − 8 kHz the dots are nicely linear, with a slope VP ≈ 174m/s. At
higher frequencies, the dots (mean wave-numbers) are no longer falling on a
straight line and band gaps as well as transmission bands appear. The clear
band gap observed between 18 − 21 kHz is also visible in Fig. 3 in so far that
these frequencies penetrate least into the system.

Wavenumber in m−1

F
re

qu
en

cy
 in

 k
H

z

50 100 150 200 250 300 350

10

20

30

40

50

60

Wavenumber in m−1

F
re

qu
en

cy
 in

 k
H

z

50 100 150 200 250 300 350

10

20

30

40

50

60

Fig. 4. Dispersion relation (darkness corresponds to the amplitude, absolute value, of
the Fourier coefficients, black is large and white is small) for the same data as in Fig.
3, for the (Left) monodisperse, and the (Right) polydisperse cases. The amplitude of
the left sine is 49 kHz, while the slope for small frequencies and large wave-lengths,
is VP ≈ 219 m/s. The white dots in the right figure indicate the cut-off-weighted
averaged wave-number per frequency, and their slope from 2-8kHz is VP ≈ 174 m/s.
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3.1.2 System size

In order to study the influence of the system size on the wave propagation,
simulations have been performed in systems with a four times larger area in
the x-y-plane. The z-system size determines the smallest wavenumber (largest
wavelength) present in the system: kmin−z = 1/λmax ≈ 1.77 m−1 with λmax =
2Lz, where Lz is the length of the system. The x-y-system-size (Lx = Ly =
8a0 or 16a0) corresponds to the wave-numbers kmin−x = 1/(2Lx) ≈ 62.5m −1

and ≈ 31.25m −1 for the small and large systems, respectively. If the x-y
system size has an effect, one should expect special features at these wave-
numbers, or the shift of features to smaller wave-numbers when the system size
is increased. However, the results obtained with the larger system are much
similar to those obtained with the smaller system, see Fig. 5. The band of
transmitted frequencies is about the same, up to 8 kHz, and also the band-gap
around 18 kHz is obtained independent of the system-size. Most differences
are observed in the higher frequency range, where the signal is more noisy
anyway. Due to the better statistics, the plots look smoother and less noisy
for the larger system. In conclusion, changing the system size by a factor of
two should reveal finite size effects of the dispersion relation: transmission
bands and band-gaps should be found at different wave-numbers, however,
the size of the system perpendicular to the P-wave propagation direction has
no visible effect.
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Fig. 5. Frequency-space diagram (Left) and dispersion relation (Right), (darkness
corresponds to the amplitude, as in Figs. 3 and 4) of a P-wave for the polydisperse
packing (∆a) = 2δ with a larger section area of 8×8 particles. The slope of the
dispersion relation leads to VP ≈ 174 m/s in agreement with the smaller system
from Fig. 4.

3.1.3 P- and S-waves

The propagation of a S-wave in the (classical) monodisperse system was dis-
cussed in Ref. [20]. The ratio of P- to S-wave speeds was found to be VPz/VSz ≈√

2 – as expected from wave mechanics in crystals. The frequency range of
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possible S-waves ends at about 35 kHz (eigen-frequency of a single particle in
the x-direction) and, for a given wavenumber, the corresponding frequency is
higher for the P-wave than for the S-wave (data not shown).
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Fig. 6. Frequency-space diagram (Left) and dispersion relation (Right), (grey scale
and symbols as in Fig. 5) of a shear wave for the polydisperse packing with
(∆a) = 2δ.

The propagation of a S-wave in the polydisperse system, with (∆a) = 2δ,
leads to the same dispersion behaviour as observed for the P-wave. The band
of transmitted frequencies is also below 8 kHz and the higher frequencies are
limited by 35 kHz, like in the monodisperse case. More explicitly, the wave
speeds are VS ≈ 125m/s and VP ≈ 175 m/s for S- and P-waves, respectively,
which is consistent with VP/VS ≈

√
2; thus no surprises are evidenced for

S-waves in slightly polydisperse systems.

Finally, mode conversion was observed in the simulations, where S- to P-wave
conversion appeared to be stronger than the P- to S-wave conversion. Since
wave conversion contributes to the attenuation behavior (especially of the S-
wave), a future more detailed study is needed to analyze this issue further,
including a possible frequency-dependence.

3.2 Frictional packing

When the particle contacts are frictional, i.e., a tangential spring, kt = 0.2k,
with Coulomb friction criterion, µ = 0.5, is added, see section 2.1 and Ref. [17],
the overall frequency spectrum extends to higher frequencies, around 54 kHz,
as a consequence of the tangential spring at the contact, which induces a
higher particle (or layer) “eigenfrequency”. However, the higher frequencies
of the wave vanish earlier than in the frictionless case (between layers 15-
25), while the remaining low frequency band is broader and extends until
about 12 kHz, see Fig. 7 (Left). The linear regime of the dispersion relation
corresponds to a wave speed of VP ≈ 200m/s, i.e., somewhat slower than in
the monodisperse case, but faster than in the polydisperse, frictionless case.
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Fig. 7. Frequency-space diagram (Left) and dispersion relation (Right), (grey-scale
and symbols as in Fig. 5), for a P-wave in the polydisperse packing (∆a) = 2δ with
friction.

The presence of friction, see Fig. 7, seems to extend or stabilize the linear
dispersion regime for P-waves. The non-linear, non-propagating regime with
friction, is characterized by a relatively weaker signal. This might be due to the
fact that in addition to the geometrical dispersion, which is also present in the
frictionless case, friction enhances the compressive- to shear-mode conversion
and also activates rotational modes to which part of the energy is lost. For
shear waves in the monodisperse packing, in Ref. [20], an additional branch
(rotational modes) in the dispersion relation was found (data not shown here),
however, for the polydisperse packing (∆a) = 2δ this could not be confirmed
– thus remaining an issue for future studies.

3.3 The Hertz contact model

As it is reported in Refs. [7,24], the choice of the contact model has an influence
on the frequency-dependent response of the system. Therefore, a simulation
with another packing, prepared with the Hertz contact model, is performed.
Qualitatively, the same wave propagation characteristics is observed as for the
linear model. However, as consequence of a different initial state and due to
the different nature (non-linear) of the contact model, the results obtained
are quantitatively different. Due to a somewhat lower coordination number,
C ≈ 9.77, and thus some decreased packing stiffness in the z-direction, the
wave travels a little slower, both for the P-wave, VP ≈ 156m/s, see Fig.
8, and for the S-wave VS ≈ 106m/s (data not shown). Whether the ratio,
VP /VS ≥

√
2, has a meaning, cannot be evidenced from our data.

A more detailed study of the shape of the wave-front and coda, e.g., under
different stress conditions is far from the scope of this study.

10



Space in layers

F
re

qu
en

cy
 in

 k
H

z

20 40 60 80 100 120 140

10

20

30

40

50

60

Wavenumber in m−1

F
re

qu
en

cy
 in

 k
H

z

50 100 150 200 250 300 350

10

20

30

40

50

60

Fig. 8. Frequency-space diagram and dispersion relation (grey-scale and symbols as
in Fig. 5), for a polydisperse packing with (∆a) = 2δ and the Hertz contact model.

3.4 Discussion of non-linearity and disorder

The attenuation of frequencies, when the wave is propagating in a slightly
polydisperse system, is a consequence of the change of the geometry and the
corresponding material properties. The polydisperse systems are characterized
by two main features: (i) a local (contact level) geometrical disorder, and (ii)
the presence of clapping contacts, opening and closing while a wave is passing
by.
This strong non-linearity at the contact level is specific to granular materials.
It has, according to, Ref. [25,16], its signature in the frequency content of the
wave, closing contacts can generate high frequency signals, but opening con-
tacts also interfere. In order to study the influence of the clapping contacts on
the wave-propagation, in parallel to the polydisperse simulation from Figs. 3
(Right) and 4 (Right), two additional simulations have been performed. Ev-
erything was identical, only a 10 and 100 times smaller initial velocity vz was
used, leading to less clapping contacts. In the case of the smallest velocity, only
two contacts are clapping in the whole system, while for the largest velocity
it is about 20 contacts (0.1%).
The analysis of the frequency-space diagrams of these simulations, shows no
qualitative difference for the dispersion, as compared to the previous simu-
lations. The smaller vz, the larger are (relatively) the lowest frequency and
lowest wavenumber Fourier coefficients, so that the cut-off averaging can be
applied in the range f > 3 kHz and k > 12m−1 only. The corresponding
cut-offs used are proportional to the velocity amplitude and lead to cut-off
weighted wave-numbers per frequency that are slightly decreasing with the
initial velocity. However, this effect is very weak (comparable to the spacing
between the data) and the dispersion curve (dots) always remains below the
envelope of the monodisperse case. Thus, even though clapping contacts con-
tribute to the non-linear response of the system, they do not play a key role
in the observed attenuation of the higher frequency bands, given the present
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conditions (small amplitude umax/δ ≈ 5 10−2 with only 0.1% of clapping con-
tacts).
Having reduced the clapping contact non-linearity by using smaller amplitudes
and also having used linear as well as non-linear contact laws, the conclusion is
that the geometrical disorder at the contact level is responsible for the atten-
uation of the higher frequencies of the wave in weakly polydisperse packings.
Since more strongly disordered (polydisperse or not) packings would imply this
same local (contact level) geometrical disorder, similar results are expected for
such, more realistic, packings – as to be studied in the future.

4 Summary and Conclusions

Wave propagation was examined in three-dimensional ordered (crystal) pack-
ings with monodisperse, and with slightly polydisperse packings of spheres.
The later involve contact level geometrical disorder, but are still close to a
crystal structure. Compressive (P) and shear (S) waves were examined with
and without friction; the system size and the initial agitation amplitude were
varied and a non-linear Hertz type contact law was applied.

In all disordered cases (with size variation comparable to or larger than the
typical contact deformation), a low frequency band transmits waves well, while
most higher frequencies are attenuated or scattered within several tens of lay-
ers. Disorder (less contacts) leads to a reduced propagation speed of the wave,
whereas friction (due to tangential elasticity) leads to an increased wave speed
– and also to a broader transmission band. Also, the confining pressure, di-
rectly related to the static deformation of the contacts, should have an influ-
ence on the results and will be analyzed in a future study.

Having started with monodisperse situations and slowly increasing polydis-
persity, the natural next step is to confirm these observations also in the case
of full disorder and wider size-distributions. The interesting transmission be-
havior in such more realistic granular packings can then be studied concerning
friction, cohesion and rotational degrees of freedom.
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