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Abstract The contacts between cohesive, frictional par-
ticles with sizes in the range 0.1 to 10 µm are the subject
of this study. Discrete Element Model (DEM) simula-
tions rely on realistic contact force models – however,
too much details make both implementation and inter-
pretation prohibitively difficult. A rather simple, objec-
tive contact model is presented, involving the physical
properties of elastic-plastic repulsion, dissipation, adhe-
sion, friction as well as rolling- and torsion-resistance.
This contact model allows to model bulk properties like
friction, cohesion and yield-surfaces. Very loose pack-
ings and even fractal agglomerates have been reported
in earlier work. The same model also allows for pressure-
sintering and tensile strength tests as presented in this
study.
Keywords:
granular materials, molecular dynamics (MD) and dis-
crete element model (DEM) force-laws, friction, rolling-
and torsion-resistance, adhesion, plastic deformation

1 Introduction

Cohesive, frictional, fine powders show a peculiar flow
behavior that can be quantified by macroscopic bulk
properties as, among others, cohesion, friction, yield and
tensile strengths, dilatancy, stiffness, and anisotropy. The
information propagation in such granular media is not
completely understood, neither on the micro- nor on the
macro-level, especially when friction and other contact
mechanisms are involved. Nevertheless, the macroscopic
properties are controlled by the “microscopic” contact
forces and torques, involving, e.g., contact adhesion or
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friction. Molecular Dynamics (MD) or Discrete Element
Models (DEM) require the contact forces and torques as
the basic input, to solve the equations of motion for all
particles in the system. Alternative methods like event-
driven MD [38; 39; 41] or contact dynamics [55; 56; 63;
65; 28] are based on further simplifications, like the as-
sumption of instantaneous contacts or the perfect rigid-
ity of particles, but will not be discussed here.

Research challenges involve not only the realistic quan-
titative and predictive simulation of many-particle sys-
tems, their experimental validation, but also the tran-
sition from the microscopic contact properties to the
macroscopic flow behavior. This so-called micro-macro
transition should allow to understand the collective flow
behavior of many particles as function of their contact
properties.

The goal of this paper is to provide a minimal set
of contact models – as a compromise between a realistic
and an easy to handle modeling approach. Naturally the
contact model will be over-simplified, however, many de-
tails seem not to be important for the behavior on the
macroscopic level. A single contact-model allows to simu-
late various systems and structures, as mentioned above.
A better and deeper understanding of the relation be-
tween micro- and macro-properties will be facilitated by
simpler contact models – fine-tuning can be achieved in
a future step.

1.1 Frictional Contact Models

Typically the normal and tangential (frictional) contact
forces are dealt with separately. While the former are
subject of ongoing dispute, the latter are implemented
in a commonly accepted way, based on the first realistic
model for static friction, as introduced by Cundall and
Strack [12; 73; 64; 39; 6]: a virtual tangential spring is
attached to each contact and evolves while the contact
partners are moving and rotating, relative to each other,
due to the contact force and the many other forces from
other particles. Even though much more advanced mod-
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els were discussed in the literature, related to the early
works of Mindlin et al. [53; 54], Derjaguin et al. [15],
and Johnson et al. [26], the basic idea remains the same,
being complemented by additional effects like, e.g., hys-
teresis, non-linearity, and others [72; 93; 27; 83; 94; 84].
Advanced contact models are then applied to various sit-
uations in powder flow [95; 97; 73; 36; 80; 6; 29; 82]. The
present study will deal with the simplest linear visco-
elastic tangential spring only, however, involving the pos-
sibility for different coefficients of static and dynamic
friction as a new ingredient.

The tangential friction will lead to forces, but also
to torques on the contact partners. Rolling- and torsion-
resistance [62; 78; 2; 16; 44; 17] can play an important
role in particle systems, since they also lead to torques,
typically reducing the particles’ freedom to rotate. This
can be used to mimick the effects of surface roughness
and non-spherical shapes to some extent [59; 58; 57], but
naturally, non-spherical particles require more advanced
algorithms [31; 52; 89] – not discussed further in this
study.

The present implementation of rolling- and torsion-
resistance is based on the same ideas as the model for
static and dynamic friction – even the algorithm/subroutine
for the evolution of the tangential spring can be used for
rolling and torsion degrees of freedom – for both particle-
particle and particle-wall contacts. Note that one has to
assure that the contact models are objective, i.e., a rota-
tion of the frame of reference must not affect the result.

1.2 Normal Contact Modeling

For fine particles, not only friction is relevant, but also
adhesive contact properties due to van der Waals forces.
Since effects like liquid and possibly solid bridges are not
subject of the present study, we refer to the detailed lit-
erature, see Refs. [87; 88; 24; 9; 68; 5; 74; 90; 20; 19; 69]
and references therein.
Also other phenomena are relevant for the normal force
model: Due to the very small contact areas, already mod-
erate forces will lead to plastic yield and plastic deforma-
tion of the material in the vicinity of the contact. This
will lead to a larger contact area with increased stiff-
ness and increased adhesion due to the van der Waals
forces. Like in the case of friction, plenty of models are
available, some of them based on visco-elasticity [32; 47;
76; 7] others on elasto-plasticity [93; 27; 25; 83; 94; 84].
For spheres, typically contact models in the spirit of
Hertz [22; 66; 4; 60; 35; 79; 70] seem appropriate – but
only when the forces are small enough so that the yield
stress is reached nowhere close to the contact surface. For
rather large metal spheres, the details of contact mod-
els are even measurable, when waves propagate along
chains of particles [49; 75; 10; 11], and a Hertz based
contact law is recommmended. However, Hertz models
will not be discussed in this study, since finer powders

only have a negligible range of elastic Hertz-like behavior
[87] and, furthermore, are never perfectly spherical at the
contact anyway. The present model is a piece-wise linear
generalization of the hysteretic model ideas of Walton
[94; 96], involving plastic deformations, nonlinear stiff-
ness and history dependent adhesion [44; 43].

When contact overlaps/deformations become too large,
the physics changes and the present model is limited by
a simple linear force displacement branch with the max-
imal contact stiffness. This is convenient, since it allows
to fix the time-step for numerical integration, however,
the model becomes questionable anyway in the regime
of large deformations.

1.3 Related issues in Brief

For techniques to perform the so-called micro-macro tran-
sition, see e.g. [91; 92; 40] and references therein. The
challenge here is to reduce the tremendous amount of
information on the contact level, like contact-orientation
and -force probability distribution functions [68], to the
relevant macroscopic properties related to bulk-moduli,
anisotropy and inhomogeneity in the contact network.
The quest for a macroscopic constitutive model based
on microscopic contact parameters is still ongoing.

Contact force measurements are rather simple for
larger particles [18; 37; 33], but for particles of microme-
ter size advanced techniques have to be applied, see e.g.
[30; 8; 20] and references therein. Even though contacts
can have a temperature and time-dependent behavior as
during sintering [50; 51; 46], this will not be the issue of
the present study. Since the model presented below al-
lows for pressure-sintering, a sample of particles can form
a solid block, if compressed strong enough. The solid,
sintered sample contains all memory of its history and
the primary particles are still separate entities. Such a
“granulate” can then be examined by a compressive and
tensile tests – and all this without the much more com-
plex modeling of non-spherical particles and without the
often used beam-like models for contact adhesion and
rolling resistance [89].

2 Soft Particle Molecular Dynamics (MD)

Many-particle simulation methods like MD are also re-
ferred to as discrete element models (DEM) [12; 3; 21;
81; 85; 91; 34]. They complement experiments on small
“representative volume elements” (REVs) by providing
deep and detailed insight into the kinematics and dy-
namics of the samples examined. Large scale industrial
applications, simulated particle by particle, are out of
reach of DEM, since much more than the typical easy-
to-deal-with million particles are involved in a silo or a
dam.
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2.1 Discrete Particle Model

The realistic and detailed modeling of the deformations
of particles in contact with each other is much too com-
plicated; therefore, we relate the interaction force to the
overlap δ of two particles, see Fig. 1. In tangential direc-
tion, the forces and torques also depend on the tangen-
tial displacement and the relative rotations of the parti-
cle surfaces – different rotational degrees of freedom are
responsible for sliding, rolling and torsion. Inter-particle
forces based on the overlap and relative motion might not
be sufficient to account for the inhomogeneous stress dis-
tribution inside the particles and possible multi-contact
effects. Thus, the results presented here are of the same
quality as the simplifying assumptions about the force-
overlap relations made. However, it is the only way to
model larger samples of particles with a minimal com-
plexity of the contact properties, taking into account the
relevant phenomena: non-linear contact elasticity, plastic
deformation, and adhesion.
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Fig. 1 (Left) Two particle contact with overlap δ in normal
direction. (Right) Schematic graph of the piece-wise linear,
hysteretic, adhesive force-displacement model in normal di-
rection.

2.2 Equations of Motion

Given the sum of forces f i acting on a particle i, either
from other particles, or from walls, the problem is re-
duced to the integration of Newton’s equations of motion
for the translational and rotational degrees of freedom:

mi

d2

dt2
ri = f i + mig , and Ii

d

dt
ωi = qi , (1)

with the mass mi of particle i, its position ri the to-
tal force f i =

∑

c fc
i , the acceleration due to volume

forces like gravity g, the particles moment of inertia
Ii, its angular velocity ωi and the total torque qi =

qfriction
i + q

rolling
i + qtorsion

i , as defined below.
The equations of motion are thus a system of D +

D(D−1)/2 coupled ordinary differential equations to be
solved in D dimensions, with D = 2 or D = 3. With

tools from numerical integration, as nicely described in
textbooks as [1; 67; 61], this is a straightforward ex-
ercise. The typically short-ranged interactions in gran-
ular media allow for optimization by using linked-cell
(LC) or alternative methods in order to make the neigh-
borhood search more efficient. In the case of interac-
tions that range longer than contact-interactions, (e.g.,
charged particles or van der Waals type forces) this is
not possible anymore, so that either a cut-off distance or
more advanced methods for speed-up have to be applied.

2.3 Normal Contact Force Laws

Two spherical particles i and j, with radii ai and aj ,
respectively, interact only if they are in contact so that
their overlap

δ = (ai + aj) − (ri − rj) · n (2)

is positive, δ > 0, with the unit vector n = nij = (ri −
rj)/|ri − rj | pointing from j to i. The force on particle
i, from particle j, at contact c, can be decomposed into
a normal and a tangential part as fc := f c

i = fnn+f tt,
where n · t = 0. The tangential force leads to a torque
like rolling and torsion do, see below.

2.3.1 Linear Contact Model

The simplest normal contact force model, which takes
care of excluded volume, and thus the particle elastic-
ity and stiffness, as well as dissipation, involves a linear
repulsive and a linear viscous (velocity-dependent) force

fn = kδ + γ0vn , (3)

with a spring stiffness k, a viscous damping γ0, and the
relative velocity in normal direction vn = −vij · n =

−(vi − vj) · n = δ̇. This so-called linear spring dashpot
(LSD) model describes particle contacts as damped har-
monic oscillators, for which the half-period of a vibration
– around an equilibrium position with a certain contact
force – can be computed analytically [39]. The typical
response time, i.e. contact duration, is

tc =
π

ω
, with ω =

√

(k/m12) − η2
0 , (4)

the eigenfrequency of the contact, the rescaled damp-
ing coefficient η0 = γ0/(2mij), and the reduced mass
mij = mimj/(mi + mj). From the solution of the equa-
tion of a half period of the oscillation, one also obtains
the coefficient of restitution as the ratio between final
(primed) and initial velocity,

r = v′n/vn = exp (−πη0/ω) = exp (−η0tc) . (5)

The contact duration in Eq. (4) is also of practical techni-
cal importance, since the integration of the equations of
motion is stable only if the integration time-step ∆tMD

is much smaller than tc. Note that tc depends on the
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magnitude of dissipation: In the extreme case of an over-
damped spring, tc can become very large (which would
render the contact behavior artificial [47]). Thus, the use
of neither too weak nor too strong dissipation is recom-
mended; restitution coefficients between about 0.4 and
0.8 can be seen as “strong” dissipation. Lower values lead
to artificially strong viscous effects, while larger values
correspond to weaker and weaker dissipation, with r = 1,
the elastic limit.

2.3.2 Adhesive, Elasto-Plastic Contact Model

Here, a variant of the linear hysteretic spring model [98;
39; 87] is introduced. This model is the simpler version
of more complicated nonlinear-hysteretic force laws [98;
99; 71; 87; 88]. The adhesive, plastic (hysteretic) force is

fhys =







k1δ if k2(δ − δ0) ≥ k1δ
k2(δ − δ0) if k1δ > k2(δ − δ0) > −kcδ
−kcδ if − kcδ ≥ k2(δ − δ0)

(6)

with k1 ≤ k2 ≤ k̂2, see Fig. 1. The lines with slopes k1

and −kc define the range of possible force values. Be-
tween these two extremes, unloading and reloading fol-
low a line with slope k2, which interpolates between k1

and a maximum stiffness k̂2. Possible equilibrium states
are indicated as circles in Fig. 1, where the upper and
lower circle correspond to a pre-stressed and stress-free
state, respectively. Small perturbations lead, in general,
to small deviations along the line with slope k2 as indi-
cated by the arrows in Fig. 1.

During initial loading the force increases linearly with
the overlap δ, until the maximum overlap δmax is reached
(δmax is kept in memory as a history variable). The line
with slope k1 thus defines the maximum force possible
for a given δ.
During unloading the force drops on a line with slope
k2, which depends, in general, on δmax, see Eq. (8). The
force at δ = δmax decreases to zero, at overlap δ0 =
(1− k1/k2)δmax, which resembles the plastic contact de-
formation. Reloading at any instant leads to an increase
of the force along the same line with slope k2, until the
maximum force is reached; for still increasing δ, the force
follows again the line with slope k1 and δmax has to be
adjusted accordingly.

Unloading below δ0 leads to attractive adhesion forces
until the minimum force −kc δmin is reached at the over-
lap δmin = (k2 − k1)δmax/(k2 + kc), a function of the
model parameters k1, k2, kc, and the history parameter
δmax. Further unloading leads to attractive forces fhys =
−kcδ on the adhesive branch with slope −kc. The highest
possible attractive force, for given k1 and k2, is reached
for kc → ∞, so that one has fmin ≥ −(k2 − k1)δmax for
arbitrary kc.

A non-linear un-/re-loading behavior would be more
realistic, however, due to a lack of detailed experimental
informations, the piece-wise linear model is used as a
compromise. One reasonable refinement, which accounts

for an increasing stiffness with deformation, is a k2 value
dependent on the maximum overlap. This also implies
relatively small and large plastic deformations for weak
and strong contact forces, respectively. Unless a constant

k2 = k̂2 is used, the contact model [50; 44; 43], requires
an additional quantity, i.e., the plastic flow limit overlap

δ∗max =
k̂2

k̂2 − k1

φf

2a1a2

a1 + a2

, (7)

with the dimensionless plasticity depth, φf , defined rela-
tive to the reduced radius. If the overlap is larger than a
fraction φf of the particle radius (for a1 = a2), the (max-

imal) constant stiffness k̂2 is used. For different particle
radii, the reduced radius increases towards the diameter
of the smaller particles in the extreme case of particle-
wall contacts (where the wall-radius is assumed infinite).
This formulation is equivalent to earlier versions [44; 43]
for almost equal-sized particles, but has some advantages
for large size-differences.

Note that a limit stiffness k2 ≤ k̂2 is desirable for
practical reasons. If k2 would not be limited, the contact
duration could become very small so that the time step
would have to be reduced below reasonable values. For
overlaps smaller than δ∗max, the function k2(δmax) inter-
polates linearly between k1 and k2:

k2(δmax) =







k̂2 if δmax ≥ δ∗max

k1 + (k̂2 − k1)
δmax

δ∗

max

if δmax < δ∗max

. (8)

While in the case of collisions of particles with large
relative velocities – and thus large deformations – dis-
sipation takes place due to the hysteretic nature of the
force-law, reasonably strong dissipation of small ampli-
tude deformations is achieved by adding the viscous, ve-
locity dependent dissipative force from Eq. (3) to the
hysteretic force, such that fn = fhys + γ0vn.

In summary, the adhesive, plastic, hysteretic normal

contact model contains the five parameters k1, k̂2, kc,
φf , and γ0 that respectively account for (i) loading- and
(ii) reloading-stiffness and plastic deformation, (iii) adhe-
sion strength, (iv) plastic overlap-range of the model, and
(v) viscous dissipation. Finally, we remark that the hys-
teretic model contains the linear contact model as special

case k1/k̂2 = 1 for which kc and φf become meaningless.
Normal van der Waals type particle interactions that

lead to attractive forces already when the particles are
still separated are not discussed here, for details see [43]
and references therein.

2.4 Tangential Contact Force Laws

For the tangential degrees of freedom, there are three
different force- and torque-laws to be implemented: (i)
friction, (ii) rolling resistance, and (iii) torsion resistance.
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2.4.1 Sliding

For dynamic (sliding) and static friction, the relative
tangential velocity of the contact points,

vt = vij − n(n · vij) , (9)

is to be considered for the force and torque computations
in subsection 2.5, with the total relative velocity of the
particle surfaces at the contact

vij = vi − vj + a′

in × ωi + a′

jn × ωj , (10)

with the corrected radius relative to the contact point
a′

α = aα − δ/2, for α = i, j. Tangential forces acting on
the contacting particles are computed from the accumu-
lated sliding of the contact points along each other, as
described in detail in subsection 2.5.1.

2.4.2 Objectivity

In general, two particles can rotate together, due to both
a rotation of the reference frame or a non-central “colli-
sion”. The angular velocity ω0 = ωn

0 +ωt
0, of the rotating

reference has the tangential-plane component

ωt
0 =

n × (vi − vj)

a′

i + a′

j

, (11)

which is related to the relative velocity, while the normal
component, ωn

0 , is not. Inserting ωi = ωj = ωt
0, from Eq.

(11), into Eq. (10) leads to zero sliding velocity, proving
that the above relations are objective. Tangential forces
and torques due to sliding can become active only when
the particles are rotating with respect to the common
rotating reference frame. 1

Since action should be equal to reaction, the tan-
gential forces are equally strong, but opposite, i.e., f t

j =

−f t
i, while the corresponding torques are parallel but not

necessarily equal in magnitude: qfriction
i = −a′

in×f i, and
qfriction

j = (a′

j/a′

i)q
friction
i . Note that tangential forces

and torques together conserve the total angular momen-
tum about the pair center of mass

Lij = Li + Lj + mir
2
icmωt

0 + mjr
2
jcmωt

0 , (12)

with the rotational contributions Lα = Iαωα, for α =
i, j, and the distances rαcm = |rα−rcm| from the particle
centers to the center of mass rcm = (miri+mjrj)/(mi+
mj), see Ref. [39]. The change of angular momentum con-
sists of the change of particle spins (first term) and of the
change of the angular momentum of the two masses ro-
tating about their common center of mass (second term):

dLij

dt
= qfriction

i

(

1 +
a′

j

a′

i

)

+
(

mir
2
icm + mjr

2
jcm

) dωt
0

dt
,(13)

1 For rolling and torsion, there is no similar relation be-
tween rotational and tangential degrees of freedom: for any
rotating reference frame, torques due to rolling and torsion
can become active only due to rotation relative to the com-
mon reference frame, see below.

which both contribute, but exactly cancel each other,
since

qfriction
i

(

1 +
a′

j

a′

i

)

= −(a′

i + a′

j)n × f i (14)

= −
(

mir
2
icm + mjr

2
jcm

) dωt
0

dt
,

see [43] for more details.

2.4.3 Rolling

A rolling velocity v0
r = −a′

in×ωi +a′

jn×ωj , defined in
analogy to the sliding velocity, is not objective in general
[17; 43] – only in the special cases of (i) equal-sized par-
ticles or (ii) for a particle rolling on a fixed flat surface.

The rolling velocity should quantify the distance the
two surfaces roll over each other (without sliding). There-
fore, it is equal for both particles by definition. An ob-
jective rolling velocity is obtained by using the reduced
radius, a′

ij = a′

ia
′

j/(a′

i + a′

j), so that

vr = −a′

ij (n × ωi − n × ωj) . (15)

This definition is objective since any common rotation
of the two particles vanishes by construction. A more
detailed discussion of this issue is beyond the scope of
this paper, rather see [17; 43] and the references therein.

A rolling velocity will activate torques, acting against
the rolling motion, e.g., when two particles are rotating
anti-parallel with spins in the tangential plane. These
torques are then equal in magnitude and opposite in di-

rection, i.e., q
rolling
i = −q

rolling
j = aij n × fr, with the

quasi-force fr, computed in analogy to the friction force,
as function of the rolling velocity vr in subsection 2.5.2;
the quasi-forces for both particles are equal and do not
act on the centers of mass. Therefore, the total momenta
(translational and angular) are conserved.

2.4.4 Torsion

For torsion resistance, the relative spin along the normal
direction

vo = aij (n · ωi − n · ωj)n , (16)

is to be considered, which activates torques when two
particles are rotating anti-parallel with spins parallel to
the normal direction. Torsion is not activated by a com-
mon rotation of the particles around the normal direc-
tion n · ω0 = n · (ωi + ωj) /2, which makes the torsion
resistance objective.

The torsion torques are equal in magnitude and di-
rected in opposite directions, i.e., qtorsion

i = −qtorsion
j =

aij fo, with the quasi-force fo, computed from the tor-
sion velocity in subsection 2.5.3, and also not changing
the translational momentum. Like for rolling, the torsion
torques conserve the total angular momentum.
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2.4.5 Summary

The implementation of the tangential force computations
for f t, f r, and f o as based on vt, vr, and vo, respec-
tively, is assumed to be identical, i.e., even the same sub-
routine is used, but with different parameters as specified
below. The difference is that friction leads to a force in
the tangential plane (changing both translational and an-
gular momentum), while rolling- and torsion-resistance
lead to quasi-forces in the tangential plane and the nor-
mal direction, respectively, changing the particles’ an-
gular momentum only. For more details on tangential
contact models, friction, rolling and torsion, see Refs.
[2; 16; 44; 43; 17].

2.5 The tangential contact model

The tangential contact model presented now is a single
procedure (subroutine) that can be used to compute ei-
ther sliding, rolling, or torsion resistance. The subroutine
needs a relative velocity as input and returns the respec-
tive force or quasi-force as function of the accumulated
deformation. The sliding/sticking friction model will be
introduced in detail, while rolling and torsion resistance
are discussed where different.

2.5.1 Slidingi/Sticking Friction Model

The tangential force is coupled to the normal force via
Coulomb’s law, f t ≤ fs

C := µsfn, where for the sliding
case one has dynamic friction with f t = f t

C := µdfn.
The dynamic and the static friction coefficients follow,
in general, the relation µd ≤ µs. The static situation
requires an elastic spring in order to allow for a restoring
force, i.e., a non-zero remaining tangential force in static
equilibrium due to activated Coulomb friction.

If a purely repulsive contact is established, fn > 0,
and the tangential force is active. For an adhesive con-
tact, Coulombs law has to be modified in so far that fn

is replaced by fn + kcδ. In this model, the reference for
a contact is no longer the zero force level, but it is the
adhesive, attractive force level along −kcδ.
If a contact is active, one has to project (or better rotate)
the tangential spring into the actual tangential plane,
since the frame of reference of the contact may have ro-
tated since the last time-step. The tangential spring

ξ = ξ′ − n(n · ξ′) , (17)

is used for the actual computation, where ξ′ is the old
spring from the last iteration, with |ξ| = |ξ′| enforced
by appropriate scaling/rotation. If the spring is new, the
tangential spring-length is zero, but its change is well
defined after the first, initiation step. In order to compute
the changes of the tangential spring, a tangential test-
force is first computed as the sum of the tangential spring

force and a tangential viscous force (in analogy to the
normal viscous force)

f t
0 = −kt ξ − γtvt , (18)

with the tangential spring stiffness kt, the tangential dis-
sipation parameter γt, and vt from Eq. (9). As long as
|f t

0| ≤ fs
C , with fs

C = µs(fn+kcδ), one has static friction

and, on the other hand, for |f t
0| > fs

C , sliding friction be-

comes active. As soon as |f t
0| gets smaller than fd

C , static
friction becomes active again.

In the static friction case, below the Coulomb limit,
the tangential spring is incremented

ξ
′ = ξ + vt ∆tMD , (19)

to be used in the next iteration in Eq. (17), and the
tangential force f t = f t

0 from Eq. (18) is used. In the
sliding friction case, the tangential spring is adjusted to
a length consistent with Coulombs condition, so that

ξ′ = −
1

kt

(

fd
C t + γtvt

)

, (20)

with the tangential unit vector, t = f
t
0/|f

t
0|, defined by

Eq. (18), and thus the magnitude of the Coulomb force is
used. Inserting ξ

′ from Eq. (20) into Eq. (18) during the
next iteration will lead to f t

0 ≈ fd
Ct. Note that f t

0 and vt

are not necessarily parallel in three dimensions. However,
the mapping in Eq. (20) works always, rotating the new
spring such that the direction of the frictional force is
unchanged and, at the same time, limiting the spring in
length according to Coulombs law. In short notation the
tangential contact law reads

f
t = f tt = +min

(

fC , |f t
0|

)

t , (21)

where fC follows the static/dynamic selection rules de-
scribed above. The torque on a particle due to frictional
forces at this contact is qfriction = lci × fc

i , where lci is
the branch vector, connecting the center of the particle
with the contact point. Note that the torque on the con-
tact partner is generally different in magnitude, since l

c
i

can be different, but points in the same direction; see
subsection 2.4.2 for details on this.

The four parameters for the friction law are kt, µs,
φd = µd/µs, and γt, accounting for tangential stiffness,
the static friction coefficient, the dynamic friction ratio,
and the tangential viscosity, respectively. Note that the
tangential force described above is identical to the classi-
cal Cundall-Strack spring only in the limits µ = µs = µd,
i.e., φd = 1, and γt = 0. The sequence of computations
and the definitions and mappings into the tangential di-
rection can be used in 3D as well as in 2D.

2.5.2 Rolling Resistance Model

The three new parameters for rolling resistance are kr,
µr, and γr, while φr = φd is used from the friction law.
The new parameters account for rolling stiffness, a static
rolling “friction” coefficient, and rolling viscosity, respec-
tively. In the subroutine called, the rolling velocity vr is
used instead of vt and the computed quasi-force fr is
used to compute the torques, qrolling, on the particles.
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2.5.3 Torsion Resistance Model

The three new parameters for rolling resistance are ko,
µo, and γo, while φo = φd is used from the friction law.
The new parameters account for torsion stiffness, a static
torsion “friction” coefficient, and torsion viscosity, re-
spectively. In the subroutine, the torsion velocity vo is
used instead of vt and the projection is a projection along
the normal unit-vector, not into the tangential plane as
for the other two models. The computed quasi-force fo

is then used to compute the torques, qtorsion, on the par-
ticles.

2.6 Background Friction

Note that the viscous dissipation takes place in a two-
particle contact. In the bulk material, where many parti-
cles are in contact with each other, this dissipation mode
is very inefficient for long-wavelength cooperative modes
of motion [48; 47]. Therefore, an additional damping with
the background can be introduced, so that the total force
on particle i is

f i =
∑

j

(

fnn + f tt
)

− γbvi , (22)

and the total torque

qi =
∑

j

(

qfriction + qrolling + qtorsion
)

− γbra
2
i ωi , (23)

with the damping artificially enhanced in the spirit of
a rapid relaxation and equilibration. The sum in Eqs.
(22) and (23) takes into account all contact partners j
of particle i, but the background dissipation can be at-
tributed to the medium between the particles. Note that
the effect of γb and γbr should be checked for each set of
parameters: it should be small in order to exclude artifi-
cial over-damping. The set of parameters is summarized
in table 1. Note that only a few parameters are specified
with dimensions, while the other paramters are expressed
as ratios.

3 Tension Test Simulation Results

In this section, uni-axial tension tests and a few com-
pression tests are presented. The tests consists of three
stages: (i) pressure sintering, (ii) stress-relaxation, and
(iii) the compression- or tension-test itself. The contact
parameters, as introduced in the previous section, are
summarized in table 1 and typical values are given in
table 2. These parameters are used for particle-particle
contacts, the same for all tests, unless explicitly speci-
fied.

For pressure sintering, a loose assembly of particles

is first compressed with an isotropic stress ps2a/k̂2 ≈
0.02 in a cuboid volume. The adhesive contact forces are

Property Symbol

Time unit tu

Length unit xu

Mass unit mu

Particle radius a0

Material density ρ
Elastic stiffness (variable) k2

Maximal elastic stiffness k = k̂2

Plastic stiffness k1/k
Adhesion “stiffness” kc/k
Friction stiffness kt/k
Rolling stiffness kr/k
Torsion stiffness ko/k
Plasticity depth φf

Coulomb friction coefficient µ = µd = µs

Dynamic to static Friction ratio φd = µd/µs

Rolling “friction” coefficient µr

Torsion “friction” coefficient µo

Normal viscosity γ = γn

Friction viscosity γt/γ
Rolling viscosity γr/γ
Torsion viscosity γo/γ
Background viscosity γb/γ
Background viscous torque γbr/γ

Table 1 The microscopic contact model parameters.

activated this way. Two of the six walls are adhesive, with

kwall
c /k̂2 = 20, so that the sample sticks to them, while all

other walls are adhesionless, so that they can be easily
removed in the second step. (During compression and
sintering, the walls could all be without adhesion, since
the high pressure used keeps the sample together anyway
– only later for relaxation, adhesion must switched on. If
not the sample does not remain a solid, and it also could
lose contact with the walls, which are later used to apply
the tensile strain.)
Note that all walls are frictionless during sintering, while
the particles are slightly adhesive and frictional. (If the
walls would be frictional, the pressure from a certain wall
would not be transferred completely to the respective
opposite wall, since frictional forces carry part of the
load – an effect that is known since the early work of
Janssen [23; 77; 86].)
Pressure-sintering is stopped when the kinetic energy of
the sample is many orders of magnitude smaller than the
potential energy – typically 10 orders of magnitude.

During stress-relaxation all wall stresses are slowly
released to pr/ps ≪ 1 and the sample is relaxed until
the kinetic energy is much smaller than the potential en-
ergy. The sample is ready for the tension tests. In fact,
the same initial configuration is used for all the tests pre-
sented below. Note that the non-adhesive side walls still
feel a very small external stress that is not big enough
to affect the dynamics of the tension test, it is just con-
venient to keep the walls close to the sample.

For the tension test wall friction is typically active,
but some variation does not show a big effect. One of the
sticky walls is slowly and smoothly moved outwards like
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described and applied in earlier studies [45; 42], following
a prescribed cosine-function with time.

3.1 Model Parameters

The system contains N = 1728 particles with radii ai

drawn from a Gaussian distribution around a = 0.005mm
[13; 14]. The contact model parameters are summarized
in tables 1 and 2. The volume fraction, ν =

∑

i V (ai)/V ,
with the particle volume V (ai) = (4/3)πa3

i , reached dur-

ing pressure sintering with 2aps/k̂2 = 0.01 is νs = 0.6754.
The coordination number is C ≈ 7.16 in this state. After
stress-relaxation, these values have changed to ν ≈ 0.629
and C ≈ 6.19. A different preparation procedure (with

adhesion kc/k̂2 = 0 during sintering) does not lead to
a difference in density after sintering. However, one ob-
serves ν ≈ 0.630 and C ≈ 6.23 after relaxation. For both
preparation procedures the tension test results are vir-
tually identical, so that only the first procedure is used
in the following.

Symbol Value rescaled units SI-units

tu 1 1µs 10−6 s
xu 1 1mm 10−3 m
mu 1 1mg 10−6 kg
a0 0.005 5µm 5.10−6m
ρ 2 2 mg/mm3 2000 kg/m3

k = k̂2 5 5mg/µs2 5.106 kg/s2

k1/k 0.5
kc/k 0.5
kt/k 0.2
kr/k = ko/k 0.1
φf 0.05
µ = µd = µs 1
φd = µd/µs 1
µr = µo 0.1
γ = γn 5.10−5 5.10−5 mg/µs 5.101 kg/s
γt/γ 0.2
γr/γ = γo/γ 0.05
γb/γ 4.0
γbr/γ 1.0

Table 2 Microscopic material parameters used (second col-
umn), if not explicitly specified. The third column contains
these values in the appropriate units, i.e., when the time-,
length-, and mass-unit are µs, mm, and mg, respectively. Col-
umn four contains the parameters in SI-units. Energy, force,
acceleration, and stress have to be scaled with factors of 1,
103, 109, and 109, respectively, for a transition from reduced
to SI-units.

The material parameters used for the particle con-
tacts are given in table 2. The particle-wall contact pa-
rameters are the same, except for cohesion and friction,

for which kwall
c /k̂2 = 20 and µwall = 10 are used – the

former during all stages, the latter only during tensile
testing.

The choice of numbers and units is such that the
particles correspond spheres with several microns in ra-
dius. The magnitude of stiffness k cannot be compared
directly with the material bulk modulus C, since it is
a contact property. However, there are relations from
micro-macro transition analysis, which allow to relate k
and C ∼ kCa2/V [42].

Using the parameter k = k̂2 in Eq. (4) leads to a
typical contact duration (half-period) tc ≈ 6.5 10−4 µs,
for a normal collision of a large and a small particle
with γ = 0. Accordingly, an integration time-step of
tMD = 5.10−6 µs is used, in order to allow for a “safe”
integration of the equations of motion. Note that not
only the normal “eigenfrequency” but also the eigen-
frequencies in tangential and rotational direction have
to be considered as well as the viscous response times
tγ ≈ m/γ. All of the physical time-scales should be con-
siderably larger than tMD, whereas the viscous response
times should be even larger, so that tγ > tc > tMD. A
more detailed discussion of all the effects due to the in-
terplay between the model parameters and the related
times is, however, far from the scope of this paper.

3.2 Tensile strength and contact adhesion

The tensile (compressive) test is performed uni-axially in
x-direction by increasing (reducing) slowly and smoothly
the distance between the two sticky walls. (The same ini-

tial sample, prepared with kc/k̂2 = 1/2, is used for all
tests reported here.) The stress-strain curves for differ-
ent cohesion are plotted in Fig. 2, for both tension and
compression.

The axial tensile stress initially increases linearly with
strain, practically independent from the contact adhe-
sion strength. With increasing strain, a considerable num-
ber of contacts are opened due to tension – contacts open
more easily for smaller adhesion (data not shown). This
leads to a decrease of the stress-strain slope, then the
stress reaches a maximum and, for larger strain, turns
into a softening failure mode. As expected, the maxi-

mal stress is increasing with contact adhesion kc/k̂2. The
compressive strength is 6 − 7 times larger than the ten-
sile strength, and a larger adhesion force also allows for
larger deformation before failure. The sample with weak-

est adhesion, kc/k̂2 = 1/2, shows tensile and compressive
failure at strains εxx ≈ −0.006 and εxx ≈ 0.045, respec-
tively.

Note that for tension, the post-peak behavior for the

test with kc/k̂2 = 20 is different from the other two cases,
due to the strong particle-particle contact adhesion. In
this case, the tensile fracture occurs at the wall (except
for a few particles that remain in contact with the wall).
This is in contrast to the other two cases with smaller
bulk-adhesion, where the fracture occurs in the bulk, see
Fig. 3.
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Fig. 2 (Top) Axial tensile stress plotted against tensile
strain for simulations with weak, moderate and strong parti-

cle contact adhesion; the kc/k̂2 values are given in the in-
set. The line gives a fit to the linear elastic regime with
Ct = 3.1011 N/m2. (Bottom) Axial compressive stress plot-
ted against compressive strain for two of the parameter sets
from the top panel. The initial slope is the same as in the top
panel, indicating that the linear elastic regime is identical for
tension and compression.

3.3 Tensile strength and friction

In Fig. 4, the rather weak effect of various values of fric-
tion, rolling- and torsion-resistance becomes evident. For
the tensile tests presented here, even the largest fric-
tion, rolling- and torsion-resistance used µ = µr = µo =
100 does not lead to a considerable increase of tensile
strength. Furthermore, simulations with different static
and dynamic friction coefficientsi, µs = 1 and µd = 0.5,
also do not lead to different behavior under tension; they
rather show, that the contact model is able to deal with
different coefficients.

Fig. 3 (Color online) Snapshot from a tensile test with

kc/k̂2 = 1/2 at horizontal strain of εxx ≈ 0.8. The color
code denotes the distance from the viewer: blue, green, and
red correspond to large, moderate, and short distance.

4 Conclusion

The present study reviews many issues related to soft
particle force models. As compromise between simplic-
ity and reality, a special contact model is introduced,
involving elastic-visco-plastic normal contact forces, ad-
hesion, friction, and rolling- as well as torsion resistance
– all in one. A set of exemplary parameters is used to
model cohesive powder in the 3-7 micro-meter range.
The powder-sample is first pressure-sintered, then the
walls are removed from the solid cuboid sample, and fi-
nally the sample is subjected to strain-controlled tension
until it fails. Stronger contact adhesion leads to consid-
erably larger tensile strength, while the effect of rolling-
and torsion-resistance is very weak for the parameter
combinations used here – for related results, see Refs.
[44; 43; 51; 46].

The samples are sintered using the force- and torque-
models described in section 2 – most parameters are kept
constant throughout the three phases of the tensile test,
proving that the advanced model is able to mimick a
wealth of different behavior without further adjustments.
The contact model presented here, besides many model
assumptions, still involves a considerable number of pa-
rameters. As the tension test has shown, some of them
(rolling- and torsion-resistance) seem less important for
specific physical properties than others. Naturally, con-
tact adhesion is most important for the tensile strength
of the material, but also friction shows an effect to be ex-
amined further. Note that some important model param-
eters, like the ratios k1/k and kt/k were not yet studied
in detail.
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Fig. 4 (Top) Tensile stress plotted against tensile strain for

simulations with weak contact adhesion kc/k̂2 = 1/2, and
with different rolling- and torsion friction coefficients, as given
in the inset. The line shows the same fit as in the figures
above.

The quantitative tuning of the DEM model to real
experimental data remains the challenge for future re-
search. The results presented here have units that were
not supposed to exactly mimick a real material, but
should be rather close to some fine powders. Some tun-
ing can be done by rescaling, but a real fine-adjustement
will require a more systematic study of all contact model
parameters – to be done in the future.
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