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Abstract.
Our mesoscale simulation method [M. Robinson, S. Luding, and M. Ramaioli, submitted (2013)] for multiphase fluid-

particle flows couples Smoothed Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM) and enjoys the
flexibility of meshless methods, such as being capable to handling free surface flows or flow around complex and/or moving
geometries. We use this method to simulate three different sedimentation test cases and compare the results to existing
analytical solutions. The grain velocity in Single Particle Sedimentation compares well (< 2% error) with the analytical
solution as long as the fluid resolution is coarser than two times the particle diameter. The multiple particle sedimentation
problem and Rayleigh Taylor Instability (RTI) also perform well against the theory, but it was found that the method is
susceptible to fluid velocity fluctuations in the presence of high porosity gradients. These fluctuations can be damped by the
addition of a dissipation term, which has no effect on the terminal velocity but can lead to slower growth rates for the RTI.
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INTRODUCTION

Fluid-particle systems are ubiquitous in nature and in-

dustry, occurring in sediment transport and erosion, the

rheology of avalanches, slurry flows and soils, industrial

fluidized beds and the dispersion and mixing of particles

in the food, chemical and painting industries.

The length-scale of interest determines the method

of simulation for fluid-particle systems. For very small

scale processes it is feasible to fully resolve the intersti-

tial fluid between the particles, but for many applications

this is infeasible and it becomes necessary to use unre-

solved, or mesoscale fluid simulations. Such a mesoscale

type method is the focus of this paper and the domain of

applicability for the SPH-DEM method.

Fluid-particle simulations at the mesoscale are often

given the term Discrete Particle Models (DPM). These

models fully resolve the individual solid particles using

a Lagrangian model for the solid phase. The fluid phase

does not resolve the interstitial fluid, but instead mod-

els the locally averaged Navier-Stokes equations and is

coupled to the solid particles using appropriate drag clo-

sures. Most of the prior work on DPMs have been done

using grid-based methods for the fluid phase, and a good

review of the area can be seen in Zhu et al. [1]

We present a DPM method based on the coupling of

Smoothed Particle Hydrodynamics (SPH) for the fluid

phase and DEM for the solid particles. This results in

a purely particle-based solution method and therefore

enjoys the flexibility that is inherent in these methods.

This is the primary advantage of this method over exist-

ing grid-based DPMs. In particular, the model described

in this paper is well suited for applications involving a

free surface, including (but not limited to) debris flows,

avalanches, landslides, sediment transport or erosion in

rivers and beaches, slurry transport in industrial pro-

cesses (e.g. SAG mills) and liquid-powder dispersion and

mixing in the food processing industry.

SPH FLUID PHASE

the block falls Here we briefly describe the governing

SPH equations for the fluid phase, based on the locally

averaged Navier-Stokes equations (LANSEs) derived by

Anderson and Jackson [2]. For more details see Robin-

son et al. [3], Robinson et al. [4].

We define a smooth porosity field by smoothing out

the DEM particle’s volumes according to the SPH inter-

polation kernel Wa j(h) =W (ra − r j,h)

εa = 1−∑
j

Wa j(h)V j, (1)

where V j is the volume of DEM particle j. For read-

ability, sums over SPH particles use the subscript b,

while sums over surrounding DEM particles use the sub-

script j.

To calculate the continuity and momentum equations

in the LANSEs, we first define a superficial fluid density

ρ equal to the intrinsic fluid density scaled by the local

porosity ρ = ερ f .

Substituting the superficial fluid density into the aver-

aged continuity and momentum equations reduces them

to the normal Navier-Stokes equations. Therefore, our



approach is to use the weakly compressible SPH equa-

tions with variable h (resolution/smoothing length) terms

[5, 6, 7] and adding fluid-particle drag terms (as specified

below).

The rate of change of superficial density becomes

Dρa

Dt
=

1

Ωa
∑
b

mbuab ·∇aWab(ha),

Ωa = 1−
∂ha

∂ρa
∑
b

mb

∂Wab(ha)

∂ha

. (2)

The SPH acceleration equation is given by

dua

dt
=−∑

b

mb

[(

Pa

Ωaρ2
a

+Πab

)

∇aWab(ha)+

(

Pb

Ωbρ2
b

+Πab

)

∇aWab(hb)

]

+ fa/ma, (3)

where fa is the coupling force on the SPH particle a due

to the DEM particles. The viscous term Πab models the

divergence of the viscous stress tensor and is calculated

here using the term proposed by Monaghan [8]

Πab =−α
usigun

2ρab|rab|
, (4)

where α = 10µ/(ρhcs), usig = cs + un/|rab| and ρab =
0.5(ρa +ρb).

The fluid pressure in Eq. (3) is calculated using the

weakly compressible equation of state where the refer-

ence density ρ0 is scaled by the local porosity to ensure

that the pressure is slowly varying with porosity as:

Pa = B

((

ρa

εaρ0

)γ

− 1

)

. (5)

The smoothing length ha varies according to the super-

ficial density (and hence with the porosity) and is calcu-

lated by ha = 1.5(ma/ρa)
1/3.

DEM SOLID PHASE

Given a DEM particle i with position ri, the equation of

motion is

mi
d2ri

dt2
= ∑

j

ci j + fi +mig, (6)

where mi is the mass of particle i, ci j is the contact

force between particles i and j (acting from j to i) and

fi is the fluid-particle coupling force on particle i. For

the simulations presented below, we have used the linear

spring dashpot contact model

ci j =−(kδ −β δ̇)ni j, (7)

where δ is the overlap between the two particles and

ni j is the unit normal vector pointing from j to i.

The force on each solid particle by the fluid is [2]

fi =Vi(−∇P+∇ · τ)i + fd(εi,us), (8)

where Vi is the volume of particle i. The first two terms

model the effect of the resolved fluid forces (buoyancy

and shear-stress) on the particle. The fluid pressure gra-

dient and the divergence of the stress tensor can be ob-

tained from the SPH momentum equation given in Eq.

(3), and are evaluated at each solid particle, using a Shep-

ard corrected [9] SPH interpolation.

The force fd models the drag effects of the unresolved

(i.e. smoothed) variations in the fluid variables and is

calculated from the local porosity εi and the superficial

velocity us = εi(u f −ui). These two values are calculated

at each DEM particle position, again using a Shepard

corrected SPH interpolation. For the results in this paper

we use both the simple Stokes drag force and a more

general drag law proposed by Di Felice [10]

The coupling force on SPH particle a is determined by

a weighted average of the fluid-particle coupling force on

the surrounding DEM particles.

fa =−
ma

ρa
∑

j

1

S j

f jWa j(hc), (9)

where f j is the coupling force calculated for each

DEM particle using Eq. (8) and S j = ∑b
mb
ρb

Wjb(hc) is a

correction factor to guarantee equal and opposite forces

between the two phases.

SINGLE PARTICLE SEDIMENTATION

The first test case models a single particle sedimenting

(SPS) in a 3D fluid column under gravity. The water

column has a height of h = 0.006m and the bottom

is a no-slip boundary. The boundaries in the x and y

directions are periodic with a width of w = 0.004 m

and gravity acts in the negative z direction. The single

DEM particle is initialised at z = 0.8h. It has a diameter

d = 10−4 m and a density ρp = 2500 kg/m3.

For the initial conditions of the simulation, the posi-

tion of the DEM particle is fixed and the SPH fluid is

allowed to reach hydrostatic equilibrium. The particle is

then released at t = 0 s.

In Figure 1 the evolution of a DEM particle’s verti-

cal speed in water is shown for one-way and two-way

coupling and for a reference fluid with parameters cor-

responding to water. We have performed similar simula-

tions (data not shown) with fluids corresponding to air

and a water-glycerol mixture [3]. The SPH-DEM results

reproduce the analytical velocity curve within 0.3-1% er-
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FIGURE 1. Sedimentation velocity for a single particle in
water falling from rest with both one-way and two-way cou-
pling. The dashed line is the theoretical result integrating
Stokes law. The y-axis shows the particle vertical velocity
scaled by the expected terminal velocity ut = |ut | and the x-
axis shows time scaled by the drag relaxation time td . The
inset shows the percentage error between the SPH-DEM and
the theoretically expected trajectory.

ror besides short-lived higher deviations at the initial on-

set of motion (approx 5%).

One of the key assumptions of the SPH-DEM method

(and any fluid-particle method that uses an unresolved

fluid phase) is that the fluid resolution is sufficiently

greater than the DEM particle diameter d. This ensures a

smooth porosity field calculated via Eq. (1). By varying

the fluid resolution h, we have found that accurate results

are achieved as long as h ≥ 2d.

SEDIMENTATION OF A CONSTANT

POROSITY BLOCK (CPB)

The second test case follows the sedimentation of a rigid

porous block with constant porosity ε , here called a Con-

stant Porosity Block (CPB). It has a cuboid shape with a

width and depth equal to the water column and a height

of h/2. The CPB is modelled by a regular grid of DEM

particle that cannot move relative to each other, with a

separation determined by ε . As the CPB falls, the fluid

is displaced by its volume and flows upward through the

DEM particles, affecting the terminal velocity. All the

simulations use the Di Felice drag law, which is neces-

sary to incorporate the effects of neighbouring particles

(lower porosity) on the drag force.

Varying the block porosity ε allows us to evaluate the

accuracy of the SPH-DEM model at different porosities.

Figure 2 shows the average terminal velocity of the CPB

over a range of porosities from ε = 0.6 to 1.0. Results

using both water as the interstitial fluid are shown on the
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FIGURE 2. Average terminal velocity (scaled by |ut |, the
expected terminal velocity of a single DEM particle) of the
Constant Porosity Block (CPB) in water for varying porosity
and h/d = 2 and 6.

same plot by scaling the y-axis by the expected terminal

velocity of a single DEM particle. The average terminal

velocity is taken after the CPB has reached a steady

terminal velocity.

The results for two different fluid resolutions are

shown, h/d = 2 and 6. The lower resolution results show

a systematically increased terminal velocity due to re-

duced drag at the edges of the block. This is caused by

an excessive smoothing of the porosity discontinuity by

the large width of the smoothing kernel, a feature not re-

stricted to SPH-DEM but common to any fluid-particle

method that uses an unresolved fluid phase. However, re-

ducing the fluid resolution to h/d = 2 gives results better

than 5% deviation (for the smallest ε) over the range of

porosities tested.

At lower porosities the vertical velocity of the block

suffers from increasing fluctuation around the mean. This

is a consequence of fluctuations in the fluid velocity near

the edges of the block. We have found that large porosity

gradients cause an instability in the SPH particles. For

this test case it was sufficient to add a small amount of

artificial viscosity (we increased α by αart = 0.1 in Eq.

(4)) to the simulations to ensure accurate results.

RAYLEIGH-TAYLOR INSTABILITY

(RTI)

The third test case is identical to the CPB, but now

the particles are allowed to move freely. This setup is

similar in nature to the classical Rayleigh-Taylor (RT)

instability, where a dense fluid is accelerated (normally

via gravity) into a less dense fluid. The combination of

particles and fluid can be modelled as a two-fluid system

with the upper "fluid" (suspension) having an effective
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FIGURE 3. Growth of Rayleigh-Taylor instability using wa-
ter. The red pluses and green crosses show the position of
the lowest DEM particle when the artificial viscosity is either
added or not. The two reference lines show the expected lower
and upper bounds on the growth rate.

density ρd , and an effective viscosity µd , both higher

than the properties of the lower fluid without particles.

From this an expected growth rate can be calculated for

the instability and compared with the simulated growth

rate.

In Figure 3, the growth of the RT instability versus

time for ε = 0.8, fluid resolution h/d = 2 is shown us-

ing water as the surrounding fluid. The symbols show

the vertical position of the lowest DEM particle, which

provides an approximate measure of the instability am-

plitude. The two-fluid model [11] is included here as a

benchmark, but it should be noted that this model con-

tains some significant approximations and is not neces-

sarily more accurate than the SPH-DEM results. While

a constant porosity of 0.8 is used for the two-fluid RTI

model, the porosity of the DEM particles ranges from

0.8 ≤ ε ≤ 0.93 during the growth of the instability. To

account for this variation in porosity, we instead use the

analytical model to obtain upper (using ε = 0.93) and

lower (using ε = 0.8) bounds to the expected instability

growth.

The SPH-DEM results are shown for the cases where

the artificial viscosity is either applied (αart = 0.1) or

not used (αart = 0.0). In both cases there is a clear

exponential growth of the RT instability, but while the

αart = 0.0 case shows an accurate growth rate of the

instability, the addition of artificial viscosity slows down

the growth rate erroneously. Therefore, while for the

majority of applications (such as the CPB test case) the

addition of a small amount of artificial viscosity has

no significant effect on the results and is successful in

eliminating the problematic velocity fluctuations seen

near high porosity gradients, care must be taken when

the results are sensitive to the fluid viscosity.

CONCLUSION

We have presented an SPH implementation of the locally

averaged Navier Stokes equations and coupled this with a

DEM model in order to provide a simulation tool for one-

or two-way coupled fluid-particle systems. One notable

property of the resulting method is that it avoids the use

of a mesh and is completely particle-based. It is therefore

suitable for those applications where a mesh presents

additional problems, for example, free surface flow or

flow around complex and/or moving geometries.

The SPH-DEM formulation was applied to three 3D

sedimentation test cases and compares very favorably

with known analytical solutions. We are currently ap-

plying this method to the dispersion of solids in fluid

or fluid-gas environments. Other relevant directions

for future developments are: removal of SPH velocity

fluctuations near high porosity gradients; effects of

different drag laws and the inclusion of the added mass

and lift forces; the effects of different DEM particle

contact forces and the inclusion of friction and lubri-

cation forces; and the inclusion of surface tension effects.

Acknowledgment: This work is supported by the

PARDEM (www.pardem.eu) collaboration, which is a

EU Funded Framework 7, Marie Curie Initial Training

Network. Thanks to the use of the cluster supported by

STW grants by Bokhove, Kuipers, Van der Vegt and

Luding.

REFERENCES

1. H. Zhu, Z. Zhou, R. Yang, and A. Yu, Chemical
Engineering Science 62, 3378–3396 (2007).

2. T. B. Anderson, and R. Jackson, Industrial & Engineering
Chemistry Fundamentals 6, 527–539 (1967).

3. M. Robinson, S. Luding, and M. Ramaioli, submitted
(2013).

4. M. Robinson, S. Luding, and M. Ramaioli,
http://arxiv.org/abs/1301.0752 (2013).

5. J. J. Monaghan, Reports of Progress in Physics 68,
1703–1759 (2005).

6. M. Robinson, and J. Monaghan, International Journal for
Numerical Methods in Fluids 70, 37–55 (2011).

7. D. Price, Journal of Computational Physics 231, 759–794
(2012).

8. J. J. Monaghan, Journal of Computational Physics 136,
298–307 (1997).

9. D. Shepard, “A two-dimensional interpolation function
for irregularly-spaced data,” in Proceedings of the 1968
23rd ACM national conference, ACM, 1968, pp. 517–524.

10. R. Di Felice, International Journal of Multiphase Flow
20, 153–159 (1994), ISSN 03019322.

11. S. Chandrasekhar, Hydrodynamic and hydromagnetic
stability, Dover Publications, 1961, ISBN 048664071X.


