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Abstract. Fluid flow through particulate media is pivotal inany industrial processes, e.g. in fluidized bedanular
storage, industrial filtration and medical aerosblsw in these types of media is inherently com@ad challenging to
simulate, especially when the particulate phasmabile. The goals of this paper are twofold: (i§ therivation of
accurate correlations for the drag force, taking iaccount the effect of microstructure, to imprdkie higher scale
macro-models and (ii) incorporating such closurgs & “compatible” monolithic multi-phase/scale mbthat uses a
(particle-based) Delaunay triangulation (DT) of&pas basis — in future, possibly, involving aladtiple fields.

Keywords: FEM; DEM; Transport properties; Microstructure; Bas media; Drag force
PACS: 47.11.Fg; 74.25.F; 61.72.-y; 47.56.+r

INTRODUCTION primary force affecting, suspending and moving the
particles, with considerable influence on, e.g. bee
The modeling of realistic systems is already a expansion and stability of a suspension. The dvegef .
challenge when several fields are involved onlyson depends (among many parameters such as particle
single scale. Usually fields or phases, e.g. diecre Size/spatial distribution, particle  shape, and
particles, solid walls and fluids/gases, are caligled ~ Orientation, etc.) on the local relative velocigtieen
affect each other continuously at different length Phases and the average/effective local porosityl{4]
scales. Examples are fluidized bed reactors inWas shown in several case studies that the drag law
chemical engineering, mechanical engineering unit- €an have a significant influence on both qualitativ
processes like silos, mixers, ball-mills, or cormey and quantitative nature of the flow [10]. Therefore
belts, modern engineering materials like composite establishing accurate drag force relations is affor
materials, or geotechnical/physical systems [1-5]. obtaining good models and has challenged both
The particle (solid) phase is usually described by physics and engineering community for many years.
means of the so-called discrete element method This paper features a reformulated drag force
(DEM), where all information on particle position, mModel for monodisperse fiber arrays as function of
velocity and forces is available in detail [6]. DESI ~ Microstructural ~ parameters  that  improve the
essentially a numerical technique to model the omoti ~ COnsistency, accuracy and computational efficiency
of an assembly of particles interacting with eattrep ~ compared to those available until now, since italid
through contact forces. It is quite efficient for for all porosities. Furthermore, a coarse-grainiadef
investigating phenomena occurring at the lengthesca element (FE) framework based on coupling an
of a particle diameter and larger. On the otherdhan unstructured FE mesh and a soft-sphere DEM for
continuum methods are used for chemical engineeringMoving particles is proposed. The fluid-particle
applications like granular and gas-particle flow§ [ interactions are incorporated using the ab(_)ve drag
silos with unusual flow-zones and geometries [gjdf ~ closures. This approach allows computing the
flow, aerodynamics, and many others, on much dynamics of particles and fluid using a deforming
smaller or much larger scales. Attempts to couple mes_h, while resolving the fluid/gas flow around the
distinct particle- and continuum methods have beenparticles on the same scale.
successful [9] but are still subject of ongoinge@sh.

The prime difficulty of modeling two-phase DRAG FORCE MODEL
gas/fluid-solid flows is the interphase couplindigh
accounts for the effects of gas/fluid flow on tlodids The drag force accounts for the resistance to the

motion and vice versa. Among all the coupling terms flow through a porous media, and is inversely eslat
emerging from averaging (e.g. fluid-particle drag, to its permeability, K. The permeability is the
added-mass, lift, history, Magnus forces, and piarti  proportionality constant in Darcy's equation

and fluid phase stresses), the fluid-particle dsathe
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whereVp, u andU are pressure gradient, viscosity
and superficial fluid velocity, respectively. The
superficial velocity is defined as
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where V, Vi ande¢ = V; /V are total available
volume, the volume of fluid and porosity, respeetyv
Following Yazdchi et al. [2], the permeabiliti{ is
related to the drag coefficierttas
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where 1=K/d* represents the non-dimensional
permeability and is often used instead Kf in
literature. Ergun’s equation is a commonly usedydra
law, which is a non-linear function of porosityuifi
velocity and particle size. It accurately preditie
total drag force for a limited range of porosities3D.
An aptly modified version of this equation applitab
in 2D is deployed as suggested in [11]. By emplgyin
fully resolved FE simulations of flows through stat
regular and random arrays of cylinders, Yazdchilet

MATHEMATICAL FLUID MODEL

The governing equation for the multiphase flow is
a set of porosity scaled Navier-Stokes equations,
which define the flow of fluid in a particulate pars
media. Considering an incompressible fluid (i.ee th
density,p is constant) in an Eulerian flow domain,
we can write the equations of both fluid and solid
phase as
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wherep, 7andg are pressure, shear stress and the
acceleration due to gravity, respectively. For the

[3] showed that the mean values of the 2nd nearesfParticlesm, Ij, ri, Vi, U and « represent particle mass,

neighbor distances of fibres, (or equivalently the
shortest Delaunay triangulation (DT) edges) arelgic
correlated with? as
A=Cy*%x(y) with x(y)=1-05%, C-0.2. (4)
Astonishingly, this microstructural model, that
resembles lubrication theory, is valid at high and
moderate porosities for both ordered and random
configurations. Henceforth, the drag force dengity
the fluid, fiD is defined at a poin as

2= [10)-)olx-x,). ®

where u;, is the instantaneous velocity of th®
particle andy is a function describing the influence of
the force density in its neighborhood. While fér
several possibilities exist, we restrict ourselteg (x-
Xe)=0(X-Xe), i.€. the Dirac delta function.

In the next section the above drag force density i
used to explicitly couple the fluid and particle
dynamics.

moment of inertia, radius, volume, translationatl an
angular velocity, respectively. Thp?.ijC represents the

inter-particle/wall contact force and; is the unit
vector pointing from the center of the particletie
contact point (with particlg). A linear spring-dashpot
model was used for the contact force. Finalﬂy, and

lfiD represent the drag force per unit volume on the

fluid due to interaction with thé" particle and the
total drag force acting on th& particle, defined in
previous section. In the angular momentum equation,
TP represents the torque experienced byithearticle

due to fluid drag when flow around the particle
becomes asymmetric. The pressure gradient term in
Eq. (6) accounts for the net buoyancy force on each
particle passing through its center. Since Eq.ig6
system of ordinary differential equations in tiritegan
be integrated using a suitable numerical integrdtor
accuracy and conservation properties, we use the
velocity-Verlet time integrator, which is secondier
accurate in time.

The FE mesh adapted in the above formulation is a
Delaunay triangulation (DT) based on the particle
locations, which serves both as a contact detetioin



and a FEM mesh. This implies that all interior e&rt  resolved simulations are geometrically correct, i.e
nodes of the mesh are occupied by particles at allparticles are represented by holes with no-slip
times, while the boundary nodes are inserted amly f boundary conditions and contain more than® 10
the convenience of computation and application of degrees of freedom (dof). Our coupled simulation, i
boundary conditions, see Fig. 1. In the followitlgs contrast, relies only on a few hundred dofs offifie
computational framework will be used to simulate

several test cases for both static and movinggbesti o7 ‘ ‘
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FIGURE 1. Finite element mesh based on 800 randomly  ol—. e o o TR
distributed particles at porosity 0.6. (Top) contlenesh; ’ ' " Porosity (¢) '
(Bottom) Zoomed in, lower right corner, which shothe FIGURE 2. Average horizontal fluid velocity plotted against

added boundary nodes (red points) to define thd, gri porosity through (a) ordered and (b) random fisrayes.
distributed at equal distances ofd-2
Moving Particles
Static Particles
A particle under gravity in a viscous fluid, both

For this test case in a square domain, the top andnitially at rest, will fall until it has reachedhe
the bottom boundaries have no-slip boundary settling/terminal velocityys calculated using the drag
conditions, while the left and right boundaries law prescribed in [12]. No slip boundary conditions
maintain a pressure gradient of 5 [kg7§Ai, see the  are used at the top and bottom walls, while frictio
inset of Fig 2. With decreasing porosity, the flow less (no shear stress) boundary conditions are used
gradually confines itself between the walls andttpe along the left and right walls. The particle isessed
and bottom rows of particles as the interior become from Z, = 0.6H, whereH = 2 [m] is the height of the
less and less permeable. For comparison purposes thbox, see Fig. 3. The mesh is based on a singl&leart
average flow velocity is computed for the entire location (corner points and two additional boundary
domain and compared with finely resolved FEM points on each wall) and consists of only 12 tridag
simulations in Fig. 2. The average flow predictidois elements, which is rather coarse. Here we switct{'to
both the ordered and random case agree well with da order polynomials for an increased flow resolution.
from finely resolved FEM simulations. The overall f The settling velocity can be computed when the
follows the finely resolved curve. Note that thdlyfu  frictional force,f°, combined with the buoyancy force



exactly balance the gravitational forceng) and is
equal tous~0.17 [m/s]. Fig. 3 shows the deforming
mesh as the particle follows its trajectory. Nelae t
particle surface a halo region with non-zero upward
fluid velocity appears due to the drag exerted gy t
falling particle. A trail of this halo is not evidesince

exchange is implemented using semi-empirical drag
laws, for which the microstructure has a strongaff
Lubrication theory works astonishingly well, whéret

2nd nearest neighbor distances (or equivalently the
shortest Delaunay edges) are considered, since they
represent the relevant network for the flow. We

viscosity is large and our approach does not fully validate the methodology with several test cases,

resolve the flow. Note that for this particular eas

including flow through porous media, which is

re-meshing was required as the mesh does not éatang compared against finely resolved FEM simulations.

or deteriorate throughout the simulation.

FIGURE 3. Deforming mesh with velocity contours for 1
particle settling using"4order basis functions at (8} 0.25
[s] and (b)t = 2 [s]. The velocity of the falling particle
quickly attains its settling velocity o£~0.17 [m/s].

SUMMARY AND CONCLUSIONS

We present a monolithic method for two-way fluid-

The real two-way coupling for moving grains and
adaption to more interesting/relevant situationsclfs
as fluidized beds with heat/mass transfer) is phen
ongoing research [13]. Moreover, applying such a
computational framework in more complex situations
involving deformable granular solids is still a
challenge for future study.
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