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Abstract.  Fluid flow through particulate media is pivotal in many industrial processes, e.g. in fluidized beds, granular 
storage, industrial filtration and medical aerosols. Flow in these types of media is inherently complex and challenging to 
simulate, especially when the particulate phase is mobile. The goals of this paper are twofold: (i) the derivation of 
accurate correlations for the drag force, taking into account the effect of microstructure, to improve the higher scale 
macro-models and (ii) incorporating such closures into a “compatible” monolithic multi-phase/scale model that uses a 
(particle-based) Delaunay triangulation (DT) of space as basis – in future, possibly, involving also multiple fields. 
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INTRODUCTION 

The modeling of realistic systems is already a 
challenge when several fields are involved only on a 
single scale. Usually fields or phases, e.g. discrete 
particles, solid walls and fluids/gases, are coupled and 
affect each other continuously at different length 
scales. Examples are fluidized bed reactors in 
chemical engineering, mechanical engineering unit-
processes like silos, mixers, ball-mills, or conveyor 
belts, modern engineering materials like composite 
materials, or geotechnical/physical systems [1-5].  

The particle (solid) phase is usually described by 
means of the so-called discrete element method 
(DEM), where all information on particle position, 
velocity and forces is available in detail [6]. DEM is 
essentially a numerical technique to model the motion 
of an assembly of particles interacting with each other 
through contact forces. It is quite efficient for 
investigating phenomena occurring at the length scale 
of a particle diameter and larger. On the other hand, 
continuum methods are used for chemical engineering 
applications like granular and gas-particle flows [7] 
silos with unusual flow-zones and geometries [8], fluid 
flow, aerodynamics, and many others, on much 
smaller or much larger scales. Attempts to couple 
distinct particle- and continuum methods have been 
successful [9] but are still subject of ongoing research.  

The prime difficulty of modeling two-phase 
gas/fluid-solid flows is the interphase coupling, which 
accounts for the effects of gas/fluid flow on the solids 
motion and vice versa. Among all the coupling terms 
emerging from averaging (e.g. fluid-particle drag, 
added-mass, lift, history, Magnus forces, and particle 
and fluid phase stresses), the fluid-particle drag is the 

primary force affecting, suspending and moving the 
particles, with considerable influence on, e.g. the bed 
expansion and stability of a suspension. The drag force 
depends (among many parameters such as particle 
size/spatial distribution, particle shape, and 
orientation, etc.) on the local relative velocity between 
phases and the average/effective local porosity [4]. It 
was shown in several case studies that the drag law 
can have a significant influence on both qualitative 
and quantitative nature of the flow [10]. Therefore, 
establishing accurate drag force relations is crucial for 
obtaining good models and has challenged both 
physics and engineering community for many years.  

This paper features a reformulated drag force 
model for monodisperse fiber arrays as function of 
microstructural parameters that improve the 
consistency, accuracy and computational efficiency 
compared to those available until now, since it is valid 
for all porosities. Furthermore, a coarse-grained finite 
element (FE) framework based on coupling an 
unstructured FE mesh and a soft-sphere DEM for 
moving particles is proposed. The fluid-particle 
interactions are incorporated using the above drag 
closures. This approach allows computing the 
dynamics of particles and fluid using a deforming 
mesh, while resolving the fluid/gas flow around the 
particles on the same scale. 

DRAG FORCE MODEL 

The drag force accounts for the resistance to the 
flow through a porous media, and is inversely related 
to its permeability, K. The permeability is the 
proportionality constant in Darcy's equation 
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where “p, µ and U  are pressure gradient, viscosity 

and superficial fluid velocity, respectively. The 
superficial velocity is defined as 
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where V, Vf  and ε = Vf /V are total available 

volume, the volume of fluid and porosity, respectively. 
Following Yazdchi et al. [2], the permeability, K is 
related to the drag coefficient, b as 
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where l=K/d2 represents the non-dimensional 

permeability and is often used instead of K in 
literature. Ergun’s equation is a commonly used drag 
law, which is a non-linear function of porosity, fluid 
velocity and particle size. It accurately predicts the 
total drag force for a limited range of porosities in 3D. 
An aptly modified version of this equation applicable 
in 2D is deployed as suggested in [11]. By employing 
fully resolved FE simulations of flows through static, 
regular and random arrays of cylinders, Yazdchi et al. 
[3] showed that the mean values of the 2nd nearest 
neighbor distances of fibres, g (or equivalently the 
shortest Delaunay triangulation (DT) edges) are nicely 
correlated with l as  

 

( )2.5Cλ γ χ γ=  with ( ) 31 0.5e γχ γ −= − ,  C~0.2.     (4) 

 
Astonishingly, this microstructural model, that 

resembles lubrication theory, is valid at high and 
moderate porosities for both ordered and random 
configurations. Henceforth, the drag force density in 
the fluid, 

�

f
i
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where ui is the instantaneous velocity of the ith 
particle and y is a function describing the influence of 
the force density in its neighborhood. While for y 
several possibilities exist, we restrict ourselves to y(x-
xe)=d(x-xe), i.e. the Dirac delta function. 

 In the next section the above drag force density is 
used to explicitly couple the fluid and particle 
dynamics. 

MATHEMATICAL FLUID MODEL 

The governing equation for the multiphase flow is 
a set of porosity scaled Navier-Stokes equations, 
which define the flow of fluid in a particulate porous 
media. Considering an incompressible fluid (i.e. the 
density, ρ is constant) in an Eulerian flow domain, W, 
we can write the equations of both fluid and solid 
phase as 
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Solid phase: 
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where p, t and g are pressure,  shear stress and the 

acceleration due to gravity, respectively. For the 
particles m, Ii, ri, Vi, ui and  wi represent particle mass, 
moment of inertia, radius, volume, translational and 
angular velocity, respectively. The 

�

F
ij
C  represents the 

inter-particle/wall contact force and nij is the unit 
vector pointing from the center of the particle to the 
contact point (with particle j). A linear spring-dashpot 
model was used for the contact force. Finally, 

�

f
i
D  and 

�

F
i
D  represent the drag force per unit volume on the 

fluid due to interaction with the ith particle and the 
total drag force acting on the ith particle, defined in 
previous section. In the angular momentum equation, 

D
iT  represents the torque experienced by the ith particle 

due to fluid drag when flow around the particle 
becomes asymmetric. The pressure gradient term in 
Eq. (6) accounts for the net buoyancy force on each 
particle passing through its center. Since Eq. (6) is a 
system of ordinary differential equations in time, it can 
be integrated using a suitable numerical integrator. For 
accuracy and conservation properties, we use the 
velocity-Verlet time integrator, which is second order 
accurate in time. 

The FE mesh adapted in the above formulation is a 
Delaunay triangulation (DT) based on the particle 
locations, which serves both as a contact detection tool 



and a FEM mesh. This implies that all interior vertex 
nodes of the mesh are occupied by particles at all 
times, while the boundary nodes are inserted only for 
the convenience of computation and application of 
boundary conditions, see Fig. 1. In the following, this 
computational framework will be used to simulate 
several test cases for both static and moving particles. 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
FIGURE 1. Finite element mesh based on 800 randomly 
distributed particles at porosity 0.6. (Top) complete mesh; 
(Bottom) Zoomed in, lower right corner, which shows the 
added boundary nodes (red points) to define the grid, 
distributed at equal distances of ~2d. 

Static Particles 

For this test case in a square domain, the top and 
the bottom boundaries have no-slip boundary 
conditions, while the left and right boundaries 
maintain a pressure gradient of 5 [kg/(m2s2)], see the 
inset of Fig 2. With decreasing porosity, the flow 
gradually confines itself between the walls and the top 
and bottom rows of particles as the interior becomes 
less and less permeable. For comparison purposes the 
average flow velocity is computed for the entire 
domain and compared with finely resolved FEM 
simulations in Fig. 2. The average flow predictions for 
both the ordered and random case agree well with data 
from finely resolved FEM simulations. The overall fit 
follows the finely resolved curve. Note that the fully 

resolved simulations are geometrically correct, i.e. 
particles are represented by holes with no-slip 
boundary conditions and contain more than 105 
degrees of freedom (dof). Our coupled simulation, in 
contrast, relies only on a few hundred dofs of the DT. 
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FIGURE 2. Average horizontal fluid velocity plotted against 
porosity through (a) ordered and (b) random fibre arrays. 

Moving Particles 

A particle under gravity in a viscous fluid, both 
initially at rest, will fall until it has reached the 
settling/terminal velocity, us calculated using the drag 
law prescribed in [12]. No slip boundary conditions 
are used at the top and bottom walls, while friction-
less (no shear stress) boundary conditions are used 
along the left and right walls. The particle is released 
from Z0 = 0.6H, where H = 2 [m] is the height of the 
box, see Fig. 3. The mesh is based on a single particle 
location (corner points and two additional boundary 
points on each wall) and consists of only 12 triangular 
elements, which is rather coarse. Here we switch to 4th 
order polynomials for an increased flow resolution. 
The settling velocity can be computed when the 
frictional force, fD, combined with the buoyancy force 
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exactly balance the gravitational force (mg) and is 
equal to us~0.17 [m/s]. Fig. 3 shows the deforming 
mesh as the particle follows its trajectory. Near the 
particle surface a halo region with non-zero upwards 
fluid velocity appears due to the drag exerted by the 
falling particle. A trail of this halo is not evident since 
viscosity is large and our approach does not fully 
resolve the flow. Note that for this particular case no 
re-meshing was required as the mesh does not entangle 
or deteriorate throughout the simulation. 
 

 
 

 
 

FIGURE 3. Deforming mesh with velocity contours for 1 
particle settling using 4th order basis functions at (a) t = 0.25 
[s] and (b) t = 2 [s]. The velocity of the falling particle 
quickly attains its settling velocity of us~0.17 [m/s]. 

SUMMARY AND CONCLUSIONS 

We present a monolithic method for two-way fluid-
particle coupling on an unstructured mesoscopically 
coarse mesh. In this approach, a higher order finite 
element method (FEM) on a moving mesh for the fluid 
phase is combined with a soft sphere discrete element 
method (DEM) for the particles. The main feature of 
our approach is a deforming Delaunay triangulation 
based on the particle centers of mass, which is utilized 
as an efficient contact detection tool for the moving 
particles and as the FE mesh for discretizing the 
Navier-Stokes equations. Two-way momentum 

exchange is implemented using semi-empirical drag 
laws, for which the microstructure has a strong effect. 
Lubrication theory works astonishingly well, when the 
2nd nearest neighbor distances (or equivalently the 
shortest Delaunay edges) are considered, since they 
represent the relevant network for the flow. We 
validate the methodology with several test cases, 
including flow through porous media, which is 
compared against finely resolved FEM simulations. 
The real two-way coupling for moving grains and 
adaption to more interesting/relevant situations (such 
as fluidized beds with heat/mass transfer) is part of an 
ongoing research [13]. Moreover, applying such a 
computational framework in more complex situations 
involving deformable granular solids is still a 
challenge for future study. 
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