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Abstract. Fibrous porous materials are involved in a wide range of applications including composite materials, fuel 
cells, heat exchangers and (biological)filters. Fluid flow through these materials plays an important role in many 
engineering applications and processes, such as textiles and paper manufacturing or transport of (under)ground water 
and pollutants. While most porous materials have complex geometry, some can be seen as two-dimensional 
particulate/fibrous systems, in which we introduce several microscopic quantities, based on Voronoi and Delaunay 
tessellations, to characterize their microstructure. In particular, by analyzing the topological properties of Voronoi 
polygons, we observe a smooth transition from disorder to order, for increasing packing fraction. Using fully resolved 
finite element (FE) simulations of Newtonian, incompressible fluid flow perpendicular to the fibres, the macroscopic 
permeability is calculated in creeping flow regimes. The effect of fibre arrangement and local crystalline regions on the 
macroscopic permeability is discussed and the macroscopic property is linked to the microscopic structural quantities. 
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INTRODUCTION 

Fluid flows through fibrous materials occur in a 
class of natural and engineering systems, including 
filtration, biological interfaces, tissue engineering, fuel 
cell, fiber reinforcement composite and textile fabric. 
There has been significant progress during the past 
decades in our conceptual understanding of the physics 
of flow and heat/mass transfer in naturally 
heterogeneous or random porous media [1-6]. 
However, the relation between such macroscopic 
properties and the microstructure of such essentially 
two-dimensional particle systems is an open issue. 

The velocity, pressure, and the distribution of fluid 
flow in this kind of macro-porous medium are the 
important keys. Because of the important role of 
permeability, K in porous media, many studies have 
been devoted to predict its value for low to high 
porosity by empirical, analytical or numerical models. 
Well-known models in the granular porous media are 
(i) lubrication approximation valid for ordered 
structures at low porosities [7], (ii) the empirical 
models of Ergun and/or Carman–Kozeny relation valid 
at moderate porosities [8] and (iii) unit cell approach 
valid only at high porosities [9]. These models, based 
on the hydraulic radius model or capillary tube, predict 
the pressure drop through the porous media. By 
combining with Darcy’s law, one can estimate the 
permeability from these models.  

Despite all these models and attempts, the effect of 
microstructure (or fibre arrangements) on macroscopic 

permeability, as a unified relationship, is still unclear. 
To fill this gap, this paper aims at (i) computationally 
investigating transverse flow through random fibre 
arrays in a wide range of porosities, (ii) understanding 
and characterizing the microstructure, i.e. the ordered 
and disordered states, using several order parameters 
and (iii) establishing a unified relationship between 
macroscopic permeability and the microstructure of 
the fibrous,  2D granular material. 

MICROSTRUCTURAL ANALYSIS 

An important element in understanding of fibrous 
materials is the description of the local fibre 
arrangements and the possible correlations between 
their positions. The classical way for characterizing 
the structure, like disorder to order transition, is by 
inspection of its radial distribution function, g(r) 
which is defined as the probability of finding the 
centre of a fibre inside an annulus of internal radius, r 
and thickness dr [2]. As the crystallization begins to 
occur at moderate porosities, peaks appear for values 
of r which correspond to the second (linear) neighbors 
in a hexagonal lattice in 2D or a FCC or HCP 
arrangements in 3D. The complete randomness of the 
fibre distribution on larger scale will assure that 
g(r)=1. However, as pointed out by Rintoul and 
Torquato [10], this method is unsatisfying for two 
reasons: on the one hand the absence of clear peaks 
does not necessarily mean the absence of 



crystallization, and on the other hand it is difficult to 
determine exactly when the peak appears.  

As an alternative, the Voronoi tessellation can be 
used to study the local and/or global ordering of 
packings of discs/spheres in 2D/3D. Motivation stems 
from their variety of applications in studying 
correlations in packings of spheres, analysis for 
crystalline solids and super-cooled liquids, the growth 
of cellular materials and the geometrical analysis of 
colloidal aggregation and plasma dust crystals [11].  

For equal discs, as considered here, given a set of 
two or more but a finite number of distinct points 
(generators) in the Euclidean plane, we associate all 
locations in that space with the closest member(s) of 
the point set with respect to the Euclidean distance. 
The result is a tessellation, called Voronoi diagram, of 
the plane into a set of regions associated with members 
of the point set, see red lines in Fig. 1. This 
construction is unique and fills the whole space with 
convex polygons. In a hexagonally close packed 
(densest) configuration, i.e.  , the Voronoi tessellation 
consists of regular hexagons. It allows us to define the 
notion of ‘‘neighbor’’ without ambiguity for any 
packing fraction: two spheres/discs are neighbor if 
their Voronoi polyhedra share one face/edge.  

The Delaunay triangulation (DT) is the dual graph 
of the Voronoi diagram. This graph has a node for 
every Voronoi cell and has an edge between two nodes 
if the corresponding cells share an edge, see blue lines 
in Fig. 1. DT cells are always triangles in 2D, and are 
thus typically smaller than Voronoi cells. The 
Delaunay tessellation embodies the same information 
as the Voronoi tessellation. The properties of the latter 
have been studied before [11], however, it appears that 
the Voronoi tessellation does not provide information 
that is directly relevant to the connectivity of pores, 
which is found to be useful in analyzing the fluid flow 
in porous media. In the following, to gain further 
insight into the relative arrangement of the Voronoi 
cells, their topological correlations have been analyzed 
at various porosities.  

A Monte Carlo (MC) approach was used to 
generate randomly distributed, non-overlapping 
fibre/disc arrays, with N=3000 particles, in a square 
domain with length, L. Given an initial fibre 
configuration on a triangular lattice, the MC procedure 
perturbs fibre centre locations in randomly chosen 
directions and magnitudes. The perturbation was 
rejected if it leads to overlap with a neighboring disk 
(up to 104 perturbations were used in our simulations). 
With this procedure, we were able to generate various 
packings at different porosities, ε=1-Nπd2/(4L2) with d 
the diameter of fibres, varying from dense/ordered 
(ε=0.3) to very dilute/disordered (ε=0.95) regimes. 
Similar to Yazdchi et al. [2], a minimal distance, 
∆min=dmin/d =0.05 is needed in 2D to avoid complete 

blockage. Assigned a virtual diameter d*=d(1+∆min ) to 
each fiber, leads to the virtual porosity ε*=1-(1-
ε)(1+∆min)

2. While ε represents the porosity available 
for the fluid, ε* (i.e. porosity with artificially enlarged 
particles) is actually used for packing generation. 

The distributions of the cell topologies, i.e. the 
probability distribution of n-sided polygons, p(n) of 
Voronoi tessellations, generated at various porosities 
are observed to follow a discretised and truncated 
Gaussian shape, for more details see [4]. The perfectly 
ordered structure is manifested by hexagonal cells, i.e. 
n=6 and p(n)=1, and disorder/randomness shows up as 
the presence of cells with other than six sides 
(topological defects). The increase of disorder in the 
disc assemblies at high porosities leads to an increase 
of the topological defect concentration, i.e. a 
broadening of p(n). In the literature, both the 
topological defect concentration 1-p(6), and the 
variance (2nd central moment) of the cell topologies, 
are used as measures of the degree of disorder. 
Lemaítre et al. [12] were, to our knowledge, the first to 
suggest that the equation of state µ2=f(p(6)) could be 
universal in mosaics. In this sense, all information 
about topological disorder in these systems is 
contained in p(6). Astonishingly, Lemaítre’s law holds 
very robustly for most of experimental, numerical, and 
analytical data [13]. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 1. Illustration of the Voronoi (red line) and 
Delaunay (blue lines) tessellations for the center part of a 



system of identical discs at (top) dense, ε=0.4 and (bottom) 
dilute, ε=0.8, regimes. 

 
Fig. 2(a) shows the correlation between p(6) and 

the topological variance, µ2 for different porosities. In 
the ordered regime, i.e. p(6)>0.65 , mainly 5, 6 and 7 
sided polygons with p(5)~p(7)~(1-p(6))/2 occur. By 
applying the maximum entropy principle [14], we 
obtain µ2=1-p(6), which has the trivial virial expansion 
that corresponds to an ideal gas. By increasing the 
porosity, i.e. ε>0.45 or ε*>0.39, one enters the 
disordered regime and µ2~1/(2πp2(6)). Finally, in the 
limit of vanishing density (ε=1), the discs are 
randomly distributed and one has p(6)~0.3 and 
µ2~1.78. This limit is obtained by analyzing the 
Voronoi polygons generated from 107 randomly 
distributed points [4]. The transition porosity ε*~0.39 
can be more clearly determined by plotting the third 
central moments of the n-sided polygon distributions, 
µ3=<(n-<n>)3>  against porosity, as shown in Fig. 
2(b). Note that this value is still far above the random 
close packing limit ~0.16, as compared also to the 
minimum hexagonal lattice porosity ~0.093, the 
freezing point ~0.309 or the melting point ~0.284 [15]. 
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FIGURE 2. (a) The correlation between p(6) and the 
topological variance µ2 for various structures and porosities. 

The analytical theories, represented by solid lines, are 
calculated by the Maxent method [14, 4]; (b) Variation of the 
third moment of n-sided polygon distributions, µ3 plotted 
against p(6). The transition from order to disorder occurs at 
ε~0.45 (ε*~0.39). The data are averaged over 10 realizations. 

 
To relate the micro- to macro- properties, in the 

next section, the macroscopic permeability of these 2D 
random structures is calculated numerically, using 
finite element method (FEM). 

 
DARCY’S LAW AND PERMEABILITY 

Typically, the flow behavior in fibrous media is 
modeled by Darcy’s law, which linearly relates the 
average velocity in the medium with the pressure 
gradient, viz. 

 

    
�

U = −K∇p

µ
,                                             (1) 

 
where U

�

 is the superficial velocity, p is the 
pressure and µ is the dynamic viscosity of the fluid. In 
general, K is the second-order permeability tensor, 
depending on its geometrical parameters including 
porosity and particles shape, arrangement and/or 
orientation. For an isotropic porous medium, the 
permeability becomes a scalar. Darcy’s law is valid for 
the creeping flow in which the Reynolds number is 
lower than one. In other words, the flow is only 
influenced by the geometry of pores so the viscous 
force is important and the inertia force can prove to be 
negligible. 

By employing fully resolved FE simulations of 
flows through static, regular and random arrays of 
cylinders, Yazdchi et al. [2] showed that the mean 
values of the 2nd nearest neighbor distances of fibres, 
g (or equivalently the shortest Delaunay triangulation 
(DT) edges) are nicely correlated with normalized 
permeability as  

 
              ( )2 2.5/K d Cγ χ γ= ,    

 with ( ) 31 0.5e γχ γ −= −  and  C~0.2.                  (2) 

 
Astonishingly, this microstructural model, that 

resembles lubrication theory, is valid at high and 
moderate porosities for both ordered and random 
configurations.  

Fig. 3 shows the Variation of normalized 
permeability as function of mean value of shortest DT 
edges, g. The structural transition from disorder to 
order, indicated by strong increase in µ3, directly 
affects the macroscopic permeability. In disordered 
regimes, the permeability data nicely collapse on the 



theoretical power law relation (i.e. g2.5). However, by 
appearance the local crystalline regions at ε<0.45, the 
data start to deviate from the power law. In fact the 
lubrication theory is only valid for perfectly ordered 
(hexagonal/square) or disordered (random) 
configurations with different pre-factor, C, in Eq. (2).  

Systems that are partially ordered have lower 
permeability compared to the predicted value of g2.5, 
due to stagnancy of the fluid between fibre aggregates 
or within crystalline regions of close-by fibres. With 
decreasing porosity the data deviate from the solid line 
showing the appearance of ordering in the structure.  
This deviation is represented by an exponential term in 
Eq. (2), see red line in Fig. 3. 
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FIGURE 3. Variation of normalized permeability as 
function of mean value of shortest DT edges, g. The black 
circles show the FE results, averaged over 10 realizations. 
The results are compared with the square and hexagonal 
lattice configurations.  

 

SUMMARY AND CONCLUSIONS 

The transverse permeability for creeping flow 
through unidirectional (dis)ordered arrays of (2D 
granular) fibers/cylinders has been studied using the 
finite element method (FEM). Several structural 
quantities were studied with the goal to characterize 
the transition, controlled by the effective packing 
fraction, from disorder to partial order. In this context, 
the Voronoi and Delaunay diagrams are of interest as 
they provide information about nearest neighbors, gap 
distances and other structural properties of fibrous 2D 
materials. In an ongoing, more general research, 
Delaunay triangulation has been also used as a contact 
detection tool and a FE mesh generator in a dense 
particulate flow model [16, 17], at slow, viscous flows. 
Recently, we observed that the structural transition 
affects the flow behavior at also inertial (moderate 
Reynolds numbers) regimes [18].  

When the microstructure is characterized by the 
number of faces of Voronoi polygons and shortest 
Delaunay triangulation edges or gaps, the 3rd moment 
of the probability distribution of six-sided Voronoi 
polygons shows an increase at the transition porosity 
of ε*~0.39. The numerical experiments suggest a 
unique, scaling power law relationship between the 
permeability obtained from fluid flow simulations and 
the mean value of the shortest Delaunay triangulation 
gaps. The extension of the present work to 3D 
structures of (possibly) moving particles still remains a 
challenge for future study. 
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