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Abstract. Fibrous porous materials are involved in a widegeaof applications including composite materifls|
cells, heat exchangers and (biological)filters.idFllow through these materials plays an importesie in many
engineering applications and processes, such &teseand paper manufacturing or transport of (wygleund water
and pollutants. While most porous materials havenplex geometry, some can be seen as two-dimensional
particulate/fiborous systems, in which we introdszveral microscopic quantities, based on Voronal Belaunay
tessellations, to characterize their microstructuineparticular, by analyzing the topological prdps of Voronoi
polygons, we observe a smooth transition from disoto order, for increasing packing fraction. sfolly resolved
finite element (FE) simulations of Newtonian, inqmessible fluid flow perpendicular to the fibreketmacroscopic
permeability is calculated in creeping flow regiméke effect of fibre arrangement and local crystalregions on the
macroscopic permeability is discussed and the nsaopic property is linked to the microscopic stawat quantities.
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INTRODUCTION permeability, as a unified relationship, is stificlear.
To fill this gap, this paper aims at (i) computatdly
Fluid flows through fibrous materials occur in a investigating transverse flow through random fibre
class of natural and engineering systems, including@rrays in a wide range of porosities, (ii) understag
filtration, biological interfaces, tissue enginegyifuel ~ and characterizing the microstructure, i.e. theered
cell, fiber reinforcement composite and textilerfab ~ and disordered states, using several order paresnete
There has been significant progress during the pas@nd (ii)) establishing a unified relationship beeme
decades in our conceptual understanding of theighys Macroscopic permeability ano! the microstructure of
of flow and heatmass transfer in naturally the fibrous, 2D granular material.
heterogeneous or random porous media [1-6].
However, the relation between such macroscopic MICROSTRUCTURAL ANALYSIS
properties and the microstructure of such esséntial
two-dimensional particle systems is an open issue. An important element in understanding of fibrous
The velocity, pressure, and the distribution ofdlu  materials is the description of the local fibre
flow in this kind of macro-porous medium are the arrangements and the possible correlations between
important keys. Because of the important role of their positions. The classical way for charactedzi
permeability, K in porous media, many studies have the structure, like disorder to order transitios, by
been devoted to predict its value for low to high inspection of its radial distribution functiong(r)
porosity by empirical, analytical or numerical mtede  which is defined as the probability of finding the
Well-known models in the granular porous media are centre of a fibre inside an annulus of internaiusg
(i) lubrication approximation valid for ordered and thickness rd[2]. As the crystallization begins to
structures at low porosities [7], (i) the empitica occur at moderate porosities, peaks appear foresalu
models of Ergun and/or Carman—Kozeny relation valid of r which correspond to the second (linear) neighbors
at moderate porosities [8] and (iii) unit cell apach in a hexagonal lattice in 2D or a FCC or HCP
valid only at high porosities [9]. These modelssdth  arrangements in 3D. The complete randomness of the
on the hydraulic radius model or capillary tubesdict fibre distribution on larger scale will assure that
the pressure drop through the porous media. Byg(r)=1. However, as pointed out by Rintoul and
combining with Darcy’'s law, one can estimate the Torquato [10], this method is unsatisfying for two
permeability from these models. reasons: on the one hand the absence of clear peaks
Despite all these models and attempts, the effect o does not necessarily mean the absence of
microstructure (or fibre arrangements) on macroscop



crystallization, and on the other hand it is difficto blockage. Assigned a virtual diametbrd(1+ Ay, ) to
determine exactly when the peak appears. each fiber, leads to the virtual porosity=1-(1-

As an alternative, the Voronoi tessellation can be &)(1+Amn)?. While ¢ represents the porosity available
used to study the local and/or global ordering of for the fluid,¢™ (i.e. porosity with artificially enlarged
packings of discs/spheres in 2D/3D. Motivation stem particles) is actually used for packing generation.
from their variety of applications in studying The distributions of the cell topologies, i.e. the
correlations in packings of spheres, analysis for probability distribution ofn-sided polygonsp(n) of
crystalline solids and super-cooled liquids, thewgh Voronoi tessellations, generated at various paessit
of cellular materials and the geometrical analysis are observed to follow a discretised and truncated
colloidal aggregation and plasma dust crystals.[11] Gaussian shape, for more details see [4]. The gtbrfe

For equal discs, as considered here, given a set obrdered structure is manifested by hexagonal dedls,
two or more but a finite number of distinct points n=6 andp(n)=1, and disorder/randomness shows up as
(generators) in the Euclidean plane, we associlhite a the presence of cells with other than six sides
locations in that space with the closest membear{s) (topological defects). The increase of disordethie
the point set with respect to the Euclidean distanc disc assemblies at high porosities leads to areaser
The result is a tessellation, called Voronoi diagraf of the topological defect concentration, i.e. a
the plane into a set of regions associated with oeesn ~ broadening of p(n). In the literature, both the
of the point set, see red lines in Fig. 1. This topological defect concentration p{6), and the
construction is unique and fills the whole spacéhwi variance (2nd central moment) of the cell topolegie
convex polygons. In a hexagonally close packed are used as measures of the degree of disorder.
(densest) configuration, i.e. , the Voronoi tdssiein Lemaitre et al. [12] were, to our knowledge, thistfto
consists of regular hexagons. It allows us to d@efire suggest that the equation of statef(p(6)) could be
notion of “neighbor” without ambiguity for any universal in mosaics. In this sense, all infornatio
packing fraction: two spheres/discs are neighbor if about topological disorder in these systems is
their Voronoi polyhedra share one face/edge. contained irp(6). Astonishingly, Lemaitre’s law holds

The Delaunay triangulation (DT) is the dual graph very robustly for most of experimental, numericaid
of the Voronoi diagram. This graph has a node for analytical data [13].
every Voronoi cell and has an edge between twosiode

if the corresponding cells share an edge, seelivles .;VQ

in Fig. 1. DT cells are always triangles in 2D, ard 5:: SR \
thus typically smaller than Voronoi cells. The a E."fa :_.1:};:::»:4:,}
Delaunay tessellation embodies the same information Q#f;;g;;:;’::g:‘;gb‘:‘;
as the Voronoi tessellation. The properties ofléter =3'5‘51='>"44‘?’:5$'1""55=5
have been studied before [11], however, it appiets A ““;.;5::..‘;-,’.5,";:‘,’
the Voronoi tessellation does not provide informati ,‘A“'?»:"é“v‘;;‘::’:;s ;,iﬁ‘"ﬁ‘-'
that is directly relevant to the connectivity ofres, ;‘2;"“\5"3‘;:0‘:‘1‘.5'&;‘
which is found to be useful in analyzing the fldiiolw .g..‘;»{Q?*“:A‘V ‘§"1L‘s:i
in porous media. In the following, to gain further :;‘A:«‘:“e ﬁvil"‘v';:::“=”:,',
insight into the relative arrangement of the Vorono ’5"’:‘“"““.“‘2"2:6::‘:s
cells, their topological correlations have beenlyaeal %?vn";:t;,"::rggﬁ’i:,‘aa

at various porosities.

A Monte Carlo (MC) approach was used to
generate randomly distributed, non-overlapping
fibre/disc arrays, witiN=3000 particles, in a square
domain with length, L. Given an initial fibre
configuration on a triangular lattice, the MC prdaee
perturbs fibre centre locations in randomly chosen
directions and magnitudes. The perturbation was
rejected if it leads to overlap with a neighboritigk
(up to 1d perturbations were used in our simulations).
With this procedure, we were able to generate vario
packings at different porositiess1-Nzd?/(4L?) with d
the diameter of fibres, varying from dense/ordered
(e=0.3) to very dilute/disordereds50.95) regimes.
Similar to Yazdchi et al. [2], a minimal distance, FIGURE 1. lllustration of the Voronoi (red line) and
Amin=0min/d =0.05 is needed in 2D to avoid complete Delaunay (blue lines) tessellations for the cemiart of a




system of identical discs at (top) dense0.4 and (bottom) The analytical theories, represented by solid Jinase
dilute,e=0.8, regimes. calculated by the Maxent method [14, 4]; (b) Vaoiatof the
third moment ofn-sided polygon distributionsys plotted

Fig. 2(a) shows the correlation betweg(s) and againstpﬁG). The transition from order to disorder occurs a

the topological variancey, for different porosities. In £~0.45 ¢ ~0.39). The data are averaged over 10 realizations.

the ordered regime, i.@(6)>0.65 , mainly 5, 6 and 7 . . .

sided polygons withp(5)~p(7)~(1p(6))/2 occur. By To rel_ate the micro- to macro- properties, in the

applying the maximum entropy principle [14], we next section, the macroscopic permeablllty of th!ﬁe_

obtaing,=1-p(6), which has the trivial virial expansion r_ar_ldom structures is calculated numerically, using

that corresponds to an ideal gas. By increasing thefinite element method (FEM).

porosity, i.e. £>0.45 or ¢£>0.39, one enters the

disordered regime and,~1/(2wp?(6)). Finally, in the DARCY’S LAW AND PERMEABILITY

limit of vanishing density ¢£1), the discs are

randomly distributed and one hay¥6)~0.3 and Typically, the flow behavior in fibrous media is

u>~1.78. This limit is obtained by analyzing the modeled by Darcy’s law, which linearly relates the

Voronoi polygons generated from ‘10randomly average velocity in the medium with the pressure

distributed points [4]. The transition porosity-0.39 gradient, viz.

can be more clearly determined by plotting thecthir

central moments of the-sided polygon distributions, -~ —K0Op L

us=<(n-<n>)>> against porosity, as shown in Fig. U ‘T’

2(b). Note that this value is still far above tlamdom

close packing limit ~0.16, as compared also to the

minimum hexagonal lattice porosity ~0.093, the

freezing point ~0.309 or the melting point ~0.2&8][

where U is the superficial velocity,p is the
pressure and is the dynamic viscosity of the fluid. In
general,K is the second-order permeability tensor,
depending on its geometrical parameters including

‘ ‘ ‘ porosity and particles shape, arrangement and/or
Random points . orientation. For an isotropic porous medium, the
permeability becomes a scalar. Darcy’s law is vidid

L the creeping flow in which the Reynolds number is
L2 lower than one. In other words, the flow is only
w17 influenced by the geometry of pores so the viscous
) 0.8 force is important and the inertia force can prtavéee
06 / | negligible.
Hexagonal lattice By employing fully resolved FE simulations of

2
04 Hme () flows through static, regular and random arrays of

0'2’(a) cylinders, Yazdchi et al. [2] showed that the mean
0 ‘ ‘ ‘ ‘ ‘ . values of the 2nd nearest neighbor distances oédijb
02 03 04 05 06 07 08 09 1 v (or equivalently the shortest Delaunay triangofati

p(6) (DT) edges) are nicely correlated with normalized

08 ‘ ‘ . permeability as

th [

07 : K/d?=Cy**x(y).

o6 ! with x(y)=1-0.5* and C~0.2. @)

0.5} disordered : ordered

<L 04f nﬂ : Astonishingly, this microstructural model, that
1

resembles lubrication theory, is valid at high and
0.3 B, o4 | moderate porosities for both ordered and random
0.27 ! configurations.

01l ol : | Fig. 3 shows the Variation of normalized
| (b) * permeability as function of mean value of shorf@t
L Op n " >
Q203 04 05 06 07 08 09 1 edges,y. The structural transition from disorder to
o T p(é) T order, indicated by strong increase 4g, directly

affects the macroscopic permeability. In disordered

FIGURE 2. (a) The correlation betweep(6) and the regimes, the permeability data nicely collapse loa t

topological variance;, for various structures and porosities.



theoretical power law relation (i.¢%°). However, by When the microstructure is characterized by the
appearance the local crystalline regiong<di.45, the number of faces of Voronoi polygons and shortest
data start to deviate from the power law. In fda@ t Delaunay triangulation edges or gaps, the 3rd mdmen
lubrication theory is only valid for perfectly oncel of the probability distribution of six-sided Vorono
(hexagonal/square) or disordered (random) polygons shows an increase at the transition piyrosi

configurations with different pre-factag, in Eq. (2). of £~0.39. The numerical experiments suggest a
Systems that are partially ordered have lower unique, scaling power law relationship between the
permeability compared to the predicted valueyof, permeability obtained from fluid flow simulationsch

due to stagnancy of the fluid between fibre aggega the mean value of the shortest Delaunay triangudati
or within crystalline regions of close-by fibres.itt/ gaps. The extension of the present work to 3D
decreasing porosity the data deviate from the diviéed structures of (possibly) moving particles still @ns a
showing the appearance of ordering in the structure challenge for future study.

This deviation is represented by an exponentiah tier

Eqg. (2), see red line in Fig. 3. ACKNOWLEDGMENTS
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