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Abstract Discrete element method (DEM) simulations will be presented with 
respect to modelling the standardised shear testers like Jenike shear cell or biaxial box. 
The main impact is made on modelling the flow behaviour of commercially widely used 
ultratine cohesive powders (TiOz, CaC03) and the influence of hysteretic contact models 
describing the microscopic particle-particle interaction behaviour with the load-dependent 
contact adhesion. The atomic force microscope (AFMFbased measurements of adhesion 
and friction forces between two particles are used to verify the contact behaviour on the 
micro-level. Therefore, the macroscopic dynamic behaviour of cohesive powder flow can 
be "microscopically" investigated and understood. Reference experiments with the Jenike 
shear cell coupled with volumetric strain measurements by triangulating laser 
displacement sensors will be shown and discussed as well. Comparison will be made 
between the simulations and experiments. 
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I. INTRODUCTION 
The well-known flow problems of cohesive particulate solids in storage and 

transportation containers, conveyors or process apparatuses include bridging, channelling, 
segregation, flooding, avalanching etc. In addition, the insufficient apparatus and system 
reliability of solid processing plants are also related to flow problems. Taking into account 
this list of selected technical problems and hazards, this motivates us to deal with the 
fundamentals of cohesive powder consolidation and flow behaviour, i.e. to develop a 
reasonable combination of particle and continuum mechanics. The goal of the present 
work is to build a numerical bridge between the microscopic particle properties based on 
the AFM measurements, theoretical models of elastic-plastic contact behaviour and the 
macroscopic powder flow behaviour of cohesive powders. 

Continuum mechanical models and appropriate measuring methods were 
successfully applied to describe the flow behaviour of cohesive powders, as well as for 
practical design of process apparatus, e.g. silos. However, the essential constitutive 
functions of the powder "continuum" can be better described and understood with the help 
of particle mechanics [3]. The Discrete Element Method (DEM) [I] is an alternative 
solution, which allows us to take into account the contact and, what is especially important 
in our case, adhesion forces and introduce them into the equations of motion of the 
particles. By this sophisticated method, the dynamics of cohesive powders can be studied 
and understood ,,microscopically". 

An interacting force between two macroscopic bodies can be measured by the 
spring balance method as a function of the elongation of the spring when they are 
separated. Reviews on AFM force measurements can be found at [20, 211. Using the 
micron-sized particles glued to the end of an AFM cantilever as the force sensor, one can 
measure the adhesion and friction forces between the particles. 



Combining the theoretical background and macroscopic shear tests of cohesive 
powders as well as the microscopic AFM measurements of the particle interaction forces, 
it becomes possible to develop an appropriate contact constitutive model to describe the 
deformation behaviour of ultrafine, cohesive frictional particles. In this context, to simulate 
efficiently the shear dynamics of cohesive powders the implementation of an irreversible 
inelastic contact flattening, which is an essential element and physical reason of the load- 
dependent increase of the adhesion force, is of vital importance. There exists a realistic 
and flexible microscopic model for contact laws with elastic, plastic, and adhesion forces, 
as based on macroscopic observations from bulk experiments [3, 41. The model in a 
simplified form is applied to the Jenike shear test as well as biaxial shear box, in order to 
find out the relationships between the mechanical parameters of a single particle on a 
microscopic level and flow parameters of the powder continuum on the macroscopic level. 

II. CONTACT FORCES BETWEEN SINGLE PARTICLES AND CONTACT 
CONSTITUTIVE MODELS 

In terms of particle technology, powder processing and handling, the consolidation 
and non-rapid flow of dry, ultrafine and cohesive powders (particle diameter d < 10 pm) 
can be explained by the load -history dependent adhesion forces at particle contacts. Here 
we intend to focus on a characteristic, so?? contact of two isotropic, stiff, linear elastic, 
smooth spherical particles. Thus, this soft or compliant contact displacement is assumed 
to be small hdd << I compared to the diameter of the stiff particle. The contact area 
consists of a representative number of molecules. Hence, continuum approaches are only 
used here to describe the force-displacement behaviour in terms of nanomechanics. The 
microscopic particle shape remains invariant during the dynamic stressing and contact 
deformation at this nanoscale. In powder processing, these particles are manufactured 
from uniform material in the bulk phase. These prerequisites are assumed to be suitable 
for the mechanics of dry particle contacts in many cases of industrial practice. 

Here we will discuss in details the constitutive model of Luding used in the 
numerical simulations. We consider the contact of two isotropic and smooth spherical 
particles as the typical components of a particle packing under the static load FN. Realistic 
and rather complicated contact model presented by Tomas [3] is very machine time 
spending to be implemented in the simulation software at present. That is why for the 
simulations we use the simplified contact law developed by Luding [5] (Fig. 1). 
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Fig. 1: Linearized normal force - displacement law for the DEM simulations [5] 



At the point-contact moment, i.e. when the contact deformation or particle-particle 
overlap is equal to 0, interaction between the particles starts from a predefined adhesion 
level (-fo, here attractive forces negative). The normal force then goes along the linear 
plastic yield limit with stiffness k l ,  that takes care of a "perfect" plastic repulsion. Elastic 
deformation at the contact level is added by a linear spring, with a larger stiffness k2 for 
unloading and reloading, so that the stiffness increases. This plastic loading and elastic 
unloading take care of velocity independent energy dissipation during contact; a linear 
dashpot is also considered that accounts for velocity proportional dissipation. The variable 
adhesion force (or cohesion on a microlevel) between the particles comes into the model 
by a "cohesive stiffness" kc, which allows for changing the attractive forces up to a maximal 
attractive force fmin (per absolute value). One should notice also the force equilibrium state 
at a non-zero contact deformation of h i .  Cast into an equation, the normal force on 
particle is: 

k, h, - fo for loading 
kz GP - h i )  /Or un - l reloading 
- k,h, - fo for unloading 

The tangential force involves dissipation due to Coulomb friction, but also some 
tangential elasticity that allows for stick-slip behaviour on the contact level. 

Ill. DIRECT MEASUREMENT OF ADHESION FORCES BETWEEN THE PARTICLES 
Principle of direct force displacement measurement 

The basics of the colloidal probe technique, or, in other words, direct assessment to 
the particle-particle or particle-surface interaction forces is the atomic force microscope. 
Using a micron-sized particle glued to the end of an AFM cantilever as the force sensor, 
this technique is developed for the study of colloidal interactions 1121. When comparing 
measured force-distance profiles between an AFM tip and a surface to theoretical models 
one encounters the problem of the poorly defined geometry of the AFM tip. An approach to 
get a better defined geometry has been demonstrated by Huttl et al. [16]. They etched 
silicon AFM tips in an oven in the presence of oxygen and obtained tips with a spherical 
end of defined radius. A more universal solution is replacing the tip by a colloidal particle of 
well defined spherical shape, as shown in Fig. 2a. 

Fig. 2: a) Scanning electron micrograph of silanized silica microsphere glued to the end of 
a tipless atomic force microscope cantilever 1121 and b) principle of an AFM. The sample is 
mounted onto a piezoelectric scanner and can be raster -scanned while in contact with the 
sharp tip that sits at the end of a cantilever. The deflection of the cantilever is detected with 
an optical lever technique. Therefore, a laser beam is reflected from the backside of the 
cantilever onto a split photodiode, and the change in position of the laser spot is recorded. 



This so-called "colloidal probe technique" was first applied by Ducker et al. [ I  7, 181 and 
Butt [I 91 and since then it has become a well established and powerful tool for the study of 
surface forces. Its measuring principle predestines it for the investigation of particle 
interaction, making single particle experiments feasible. The accessible range of particle 
size is typically limited to a range between 1 pm and 50 pm. 

The measuring principle of the colloidal probe technique is identical to that of a 
standard AFM as outlined in Fig. 2b. In a force measurement the sample is moved up and 
down by applying a voltage to the piezoelectric translator, onto which the sample is 
mounted, while recording the cantilever deflection. The deflection of the cantilever is 
normally measured using the optical lever technique. Therefore a beam from a laser diode 
is focused onto the end of the cantilever and the position of the reflected beam is 
monitored by a position sensitive detector. The backside of the cantilever is usually 
covered with a thin gold layer to enhance its reflectivity. When a force is applied to the 
probe, the cantilever bends and the reflected light-beam moves on the detector. 

The direct result of such a force measurement is the detector signal in volts, AV, 
versus the position of the piezo Az,, normal to the surface (Fig. 3a). To obtain a force- 
versus-distance curve, AV and Az, have to be converted into force and distance. To 
calculate the cantilever deflection from the detector signal, the corresponding conversion 
factor is needed which can be obtained from a linear fit of the "constant compliance" 
region. The tip-sample separation is then obtained by adding the cantilever deflection to 
the piezo position. The force, acting on the cantilever, F, is obtained by multiplying its 
deflection with its spring constant of the cantilever (Fig. 3b). 

Piezo Position [ nm ] Distance [ nm ] 
Fig. 3: a) Schematic of a deflection signal versus piezo position curve. When the colloidal 
probe is approaching but still far from the surface, no deflection will occur (I). When the 
probe gets close to the substrate, the (in this case attractive) surfaces forces will cause a 
bending of the cantilever towards the surface (2). As soon as the attractive force gradient 
becomes larger than the spring constant of the cantilever, the probe jumps in contact with 
the surface. From this moment, probe and surface will move in parallel (assuming no 
deformations of the surfaces occur). The resulting straight line corresponds to the so 
called "constant compliance" region (3). Upon retracting the sample, the probe will usually 
adhere to the surface, causing the cantilever to bend downwards (4). Eventually the 
bending force will become larger than the adhesion or pull-off force, and the cantilever will 
snap off the surface into its equilibrium position (5). b) Corresponding force versus 
distance curve after multiplying the deflection with the calibration coefficient obtained from 
a linear fit of the cantilever, and adding the cantilever deflection to the piezo position. FA 
denotes the adhesion force. 



Adhesion and friction force measurements 
The adhesion between surfaces is governed by the deformation of the two bodies in 

contact, and the surface forces acting between them. These two phenomena are 
inherently coupled as the deformation will depend on the acting forces and at the same 
time the surface forces will depend on the resulting geometry of the bodies. This 
interdependence makes the theory of adhesion a complex problem that is still under 
debate. 
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Fig. 4: Adhesion forces between two particles and a silicon wafer versus applied 

load. Plots A show the first cycle for each particle, where the load was increased stepwise 
to the maximum value and then decreased stepwise. An increase of the loading force from 
2.5 to 43 pN for the first particle (left, R = 3.0 pm) leads to an increase in adhesion of 
about 50%. For the second particle (right, R = 8.3 pm) adhesion increased by 160%, while 
the load was increased from 21 NN to 204 pN. In subsequent cycles B and C, the load had 
no significantlsystematic influence on the adhesion force, indicating plastic deformation of 
the particle. 

In Fig. 4 the relation between adhesion force and loading force is plotted for two 
different particles which were mounted on cantilevers with spring constants of 3.8 Nlm 
(left) and 18.6 Nlm (right), respectively. In each of the six plots a series of adhesion force 



measurements at the same spot on the silicon wafer are shown, where the load was first 
increased (full squares) and then decreased (open circles). Data in the plots denoted with 
A are from the first series of force curves with the corresponding particle, plots B and C are 
from consecutive series taken at other spots on the silicon wafer, but from the same spot 
on the particle. For the softer cantilever, an increase of about 50% in adhesion is observed 
(plot A, left) when the loading force is increased by a factor of 17, from 2.5 to 43 ,uN and 
this increased adhesion level remains even when the loading force is reduced again. In the 
subsequent series (plots B and C, left) the adhesion does not change any more. For the 
stiffer cantilever, that allowed higher loading forces, adhesion increased by about 160% 
during the first cycle when increasing the loading force by a factor of 10, from 21 to 204 ,uN 
(plot A, right). For the third series (plot C, right) no significant change in adhesion with load 
is observed and the value is about the same as the maximum reached during the first 
series. The second series (plot B, right) with this particle shows strong fluctuations, which 
may indicate a waver-surface irregularity at this spot. 

IV. SIMULATIONS 
One possibility to gain insight about the material behaviour of a granular packing is 

to perform elementary tests in the laboratory. Here, we chose as alternative the simulation 
with the discrete element model [6, 7, 8, 9, 101. 

The discrete (or distinct) element solution sc heme assumes each of its constituents 
as the separate entity. Mechanical behaviour of a system, containing of, in general, 
randomly shaped particles can be simulated by a generalized particle flow model. The 
particles in this type of model have a rather independent behaviour. They displace 
independently from each other and interact only at contacts or interfaces (walls) between 
each of them. If the particles are assumed to be rigid, and the behaviour of the contacts is 
characterized using a soft contact approach, then the mechanical behaviour of such a 
system is described in terms of the movement of each particle and the inter -particle forces 
acting at each contact point. Newton's laws of motion for the translational and rotational 
degrees of freedom give the fundamental relationship between particle motion and the 
forces that induce them: 

and 

with the gravitational acceleration 2, mass m, of the particle, its position e ,  the total force 

j ,  acting on it due to contacts with other particles or with the walls, its moment of inertia 

I , ,  its angular velocity G, , and the total torque ?, . 

Translational Shear Cell 
The classical translational shear cell, developed by Jenike ([2]), is modelled (Fig. 5). 

Considering a suitable CPU-time for a certain number of particles one should imagine that 
we simulate here only a small two-dimensional (2D) element from the real shear cell. Fig. 
5 shows the model for 2000 titanium dioxide particles with diameter of about (3k0.5) pm. 
The upper wall (shear lid) is stress controlled, i.e. when the reaction force FN changes 
because of the particle reorganization, the height of the shear lid is changed as well. The 
predefined normal stress B=FN/A (A is replaced by dz in the 2D case). The horizontal shear 
rate of the upper part of the cell is preset, i.e. the upper ring is strain driven. As the direct 
response, the corresponding values of the reaction force are obtained, which acts on the 
lateral walls. Furthermore, the corresponding shear stresses z=FgfA are calculated 
enabling in this way to find the flow parameters of the simulated model powder. The shear 



rate applied here is about 1-4 mmlmin (similar to the one used in the Jenike shear cell in 
laboratory tests). 

4 
Fig. 5: The shear cell model system for the simulations (lines in the particle system show 

the initial contact forces, with line thickness proportional to force) 

The first simulations are performed only with the linear adhesion contact law, which 
was implemented by the software (PFC2D, ltasca lnc.). For convenience, a constant 
adhesion force of 1-10 mN (0.1-1% of average contact forces of loading) was used to 
approximate the load-history dependent pull-off force [3]. Then a series of simulations is 
done applying the more general dissipative contact model for adhesive particles (Fig. I), 
and the comparison is made. 

Fig. 6 shows the force network during the shearing. The force lines run mostly from 
the upper left wall, where the shear force acts, to the lower right wall, where the 
corresponding resisting force acts. This correlates also sufficiently with the fact, that the 
orientation of the major principal stress of is just as tilted in the shear direction. 

I I 

Fig. 7: Left: 

Z 30- 
E .- 

,,,,,Caylidation d 
5 .- * 

0 ------ -- ----I---- ----- 

0 ' 0. 
0 10 20 30 0 10 20 30 

Shear displacements in pm Shear displacements in pm 

force-displacement diagram (steady-state flow) Right: volumetric 
three different initial porosity values 

strain for 

Fig. 7 shows the force-displacement diagram (left) and the volumetric strain (right) 
at the constant normal stress of o ~ = 3  kPa for three different values of porosity ~ = l - p d p ~  



(where pb is the bulk material density, and p, - the solid density), i.e. three so-called 
preshear tests. The upper curves in both graphs are obtained at a two-dimensional 
porosity of the particle system of &2~=0.16 (it corresponds appr. &3~=0.46 for three 
dimensions [ I  I]). The typical behaviour of the overconsolidated powder is observed in this 
case achieving the peak force value along with the first-stage compaction at the beginning 
and tending to the steady state flow later on. The middle curves at &2~=0.18 (E~D-0.50) 
show almost ideal steady-state flow with the remark that the volumetric strain is coming to 
relatively stable state only at the end of the shear process, which does not come into 
agreement with the theoretical expectations. However, new measurements of the vertical 
movement of the shear lid (volumetric strain) performed with the real Jenike shear cell 
show the same tendency. The fluctuations of the shear force can be explained by means 
of the temporary and local shear-thickening and shear-thinning processes. The lower 
curves correspond to &2D=0.20 (QD-0.54) and show the tendency of an underconsolidated 
powder. Taking into account the shear testing experiences, the good qualitative agreement 
is reached between the simulation results and the laboratory tests. 
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Fig. 8: Shear stress - normal stress diagram of yield locus 4 of model material 
(Ti02, p=3870 kglm3, v,=2 mmlmin) for experiment and different microscopic force- 

displacement laws (linear and "cohesive") 

Using the steady-state shear stresses for different applied normal stresses, as 
obtained from the Jenike cell experiments and simulations, the yield locus is defined. The 
slope of the yield locus gives the angle of internal friction of the material and the 
intersection with the vertical axis the macroscopic cohesion in stress units. Fig. 8 shows 
the comparison of the yield locus calculated from the Jenike shear cell experiments with 
the simulated yield loci obtained applying different contact laws with somewhat different 
parameters. The experimental line (the upper line) shows the internal friction angle of the 
powder "continuum" to be equal to pi= 26", and the cohesion rc =3.09 kPa. The 
lowermost line is the result of the simulated shear test, where the simplest microscopic 
interaction between the particles was used, the linear-spring-dashpot contact model in 
normal direction, extended only by the constant adhesion force between the particles in 
contact fo = 10 mN, see Fig. 1. The preshear normal stress was ts,=20 kPa and, for the 
shear process, the adhesion force values fo were taken proportional to the reduced 



macroscopic normal stresses. The average contact forces during preshear were in the 
range of 200-500 mN. The centre two lines are obtained using the elastieplastic contact 
model with variable adhesion, Fig. 1, with kr = 10' Nlm, k2 = 2k1, and the "microscopic 
adhesion stiffness" kc = k2 (lower curve) kc = 4k2 (higher curve), see Eq. 1, the latter 
leading to the macroscopic result for the internal friction angle cpi = 2O0, and the cohesion 
z, = 1.13 kPa. Thus, comparison of the simulated data with experiments does not yet yield 
satisfactory quantitative agreement. However, the implemented "adhesion" contact model 
shows a "positive" influence on the macroscopic flow behaviour of a consolidated powder 
bed, when compared to the oversimplified linear contact model with load independent 
adhesion. 

Together with another result ([5], [9], [lo]), the fact that the macroscopic cohesion z, 
can be related to the maximal microscopic attractive force fmin, one can at least predict that 
the simulations should use about three times larger typical adhesion forces. Note that (due 
to the contact model) this has to be achieved by using smaller ratios k1lk2 - increasing kc 
further does not lead to stronger adhesion. More systematic studies in this direction are in 
progress. 

V. SUMMARY AND CONCLUSIONS 
In summary, a set of DEM simulations based on different contact constitutive 

models was presented, and several macroscopic material parameters like, e.g., the friction 
angle, were extracted from the simulation data with cohesion (no friction) and with friction 
(no cohesion). Experimental set-up concerning the microscopic measurements of particle 
interactions based on AFM is presented as well as the one in part of macroscopic shear 
tests of bulk materials. Altogether this is a first step of a micro-modelling approach for 
cohesive frictional powders by means of going the whole long way from a measurement of 
ultra-fine single particles and implementing the complex microscopic contact constitutive 
laws for the contacts between the particles up to the shear dynamics of big particle 
systems finding out in this way the macroscopic flow parameters of bulk materials. 

So far, good qualitative agreement of the simulations with experiments is reached. 
The implemented "cohesive" contact model shows a "positive" influence on the 
macroscopic flow behaviour of a consolidated powder bed. The model shows to be 
capable of simulating the cohesive properties of a material with variable adhesion (pull-off) 
force depending among others on the preconsolidation history of every inelastic particle 
contact deformation. An important result is the fact that the macroscopic cohesion can be 
related to the maximal microscopic attractive force. 

Further material parameters have to be identified, and also the role of particle 
rotations is an open issue, as related to micmpolar constitutive models. In both 
simulations and experiments, rotations are active in the shear band where the rotational 
degree of freedom is activated. The corresponding parameter identification and the micro - 
macro-transition for anisotropic micro-polar continuum models is challenge for the future, 
like the implementation and simulation of experimentally determined force-laws [I51 in 
three-dimensional systems. 
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