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Abstract Extracting structure and ordering informa-
tion from the bulk of granular materials is a challeng-
ing task. Here we present Spin-Echo Small Angle Neu-
tron Scattering (SESANS) measurements in combina-
tion with computer simulations on a fine powder of sil-
ica, before and after uniaxial compression. The cohe-
sive powder packing is modeled by using molecular dy-
namics simulations and the structure, in terms of the
density-density correlation function, is calculated from
the simulation and compared with experiment. In the
dense case, both quantitative and qualitative agreement
between measurement and simulations is observed, thus
creating the desired link between experiment and com-
puter simulation. Further simulations with appropriate
attractive potentials and adequate preparation proce-
dures are needed in order to capture the very loose-
packed cohesive powders.

Keywords SESANS · Powder · Cohesion · Structure ·
Density correlation · Molecular Dynamics

R. Andersson, W.G. Bouwman, I.M. de Schepper
Radiation, Radionuclides & Reactors
Delft University of Technology
Mekelweg 15, 2629JB Delft, Netherlands
Tel.: +31152785630
E-mail: r.a.andersson@tnw.tudelft.nl

S. Luding
Nanostructured Materials, DCT
Delft University of Technology
Julianalaan 136, 2628 BL Delft
Netherlands

New address (S. Luding):
Multi Scale Mechanics, TS, CTW
Department of Mechanical Engineering
University of Twente
P.O. Box 217, 7500 AE Enschede, Netherlands
s.luding@tudelft.nl

1 Introduction

The macroscopic properties of a granular material are
given by the mutual arrangement of the grains and its
geometry, i.e., its structure. However, structure in gran-
ular materials is usually discussed in the framework of
random sphere-packings [1], the classification and under-
lying theory describing the packings of grains are yet to
be found, and more experiments are needed. The struc-
ture in granular materials is not only of fundamental
importance, but also of great practical relevance in in-
dustry related applications. Powders with cohesive prop-
erties are widely handled throughout industry, either as
a raw material, by-products, or as the desired end prod-
uct. Considering fine powders (micro meter sized), inter-
particle forces such as van der Waals, electrostatic and
capillary forces influences the structure of the packing
[2], leading to clustering [3], channelling and tunnelling
effects in fluidised beds, and oscillating mass flows in
general [4].

Various experimental methods to extract structural
information in granular materials do exist. Magnetic Res-
onance Imaging has been proven successful in determin-
ing the structure of non-cohesive granular packings [5],
and even dynamic measurements have been carried out
[6]. Confocal microscopy has been applied to construct
3D images of granular materials immersed in a refraction-
index matched liquid [7; 8]. X-ray computed microto-
mography followed by a tomographic reconstruction is
a powerful 3D method that maps out the density in dry
packings of, usually, model granular materials [9; 10; 11].

Cohesive powders are complex systems with a typi-
cal grain size not readily accessible with the techniques
mentioned above. The use of conventional wave diffrac-
tion techniques such as Small-Angle Neutron Scattering
(SANS) are commonly applied for the study of meso-
scopic bulk structures (colloids, polymers, macromolecules
etc.) [12]. The resolution of a conventional SANS instru-
ment does not allow for the study of powders at the grain
level, and one is usually limited to a few 100nm. At the
Delft University of Technology a novel SANS technique
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has been developed [13; 14]. Spin-Echo Small Angle Neu-
tron Scattering (SESANS) enables measurements over
three orders of magnitude, ranging from 30nm-20µm in
length [15], making this technique applicable for probing
the bulk-structure in fine powders [16; 17].

Here we report measurements on a fine cohesive pow-
der of silica before and after uniaxial compression. The
measurement shows how larger structures disappear upon
compression. In the loose-packed state we observe corre-
lations extending far beyond the average size of a sin-
gle grain. Molecular dynamics simulations were carried
out in order to model the measurement. We find, in the
dense case, good quantitative and qualitative agreement
with the measurement. A loose packed sample is only in
qualitative agreement, showing that more computational
work is needed in order to capture the structures formed
with low packing fractions.

2 Experiment, the sample and measured

quantities

2.1 SESANS: Measured quantities

Spin-Echo Small Angle Neutron Scattering, SESANS, is
based on the Larmor precession of neutrons in tilted
magnetic fields [18], [19]. In SESANS, the polarisation of
a neutron beam is measured, after transmission through
a sample, as a function of the so-called spin-echo length,
z (30nm<z<20µm). The spin-echo length is the length
at which density correlations are measured. The mea-
sured polarisation is directly related to the projection of
the sample density-density correlation function along the
neutron beam path. In particular, for a two-phase system
we have, for the transmission of polarisation, normalised
with experimental effects:

P (z) = etλ2φ(1−φ)∆ρ2

0
ξ(G(z)−1) (1)

where G(z) is the normalised SESANS correlation func-
tion, representing the projection of the density-density
correlation function of the sample (see Fig. 1). φ is the
volume-fraction, t the sample thickness, λ is the neutron
wavelength and finally we have ∆ρ0 being the neutron
scattering length density (SLD) [20] difference between
the two phases. We write the projection of the density
density correlation function, γ(r), as:

G(z) =
2

ξ

∫

∞

z

rγ(r)√
r2 − z2

dr (2)

and

γ(r) = 2

∫

∞

0

∆ρ(r′)∆ρ(r′ + r)dr′, (3)

being defined so that γ(0) = 1. G(z) is measured around
the mean-square fluctuations of the sample inhomogeneities.

r1

r2

Fig. 1 γ(r) is the autocorrelation function of the density
distribution. The correlation function γ(r) depends on the
shape/geometry and the structure of the sample. The func-
tion is a measure of the probability of being in the same
phase after shifting from a point r1 to a point r2 in the sam-
ple (r = |r1 − r2|). This is equivalent to calculate the mean
shared volume between an ”image” and its ghost after shift-
ing the ghost image some distance, r. For simple systems like
a sphere and others, the correlation function is known analyt-
ically, but normally this function is calculated by numerical
integration.

Above the characteristic size of the sample inhomogeneities
no more correlations are expected and therefore we have
that G(∞) = 0. The amplitude of the saturation level is

P (∞) = e−tλ2φ(1−φ)∆ρ2

0
ξ (4)

and depends on the correlation length ξ, the volume frac-
tion φ of the sample inhomogeneities, on the chemical
composition of the sample via ∆ρ0 and on the neutron
wavelength λ=2Å as well as on the sample thickness t.

The correlation length of the sample inhomogeneities
is:

ξ = 2

∫

∞

0

γ(r)dr (5)

For a dilute gas of hard spheres we calculate ξ = 3a/2,
with radius a. Note that the interaction between neu-
trons and the sample takes place on the SLD differ-
ences in the sample ∆ρ, being in this study between air
(treated as vacuum) and the silica spheres. Correlations
are measured around the excess SLD along the beam and
for systems with high packing fractions or ordered sys-
tem G(z) may even exhibit negative values due to the
excluded volume at the vicinity of particle surfaces.

2.2 Sample and experiment

In the experiment we used a fine spherical silica powder,
kindly provided by Kobo Products Inc. The manufac-
turer reported a wide lognormal size distribution with a
peak at 3-4µm spanning across a decade. The density of
the primary grain does not necessarily correspond to the
density of the material making up that grain. We per-
formed N2 porosimetry measurements that concluded a
primary grain density ρg ≃ 0.45g/cm3 to be compared
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to 2.2g/cm3 for the density of pure silica. This density
is in good agreement with the porosity stated by the
manufacturer (0.5g/cm3).

SESANS experiments were carried out on a hollow
cylindrical sample container filled with powder of known
mass. Two samples were prepared with the same thick-
ness (5mm) but holding different mass of material, thus
giving different volume fractions, φ ≃ 0.33 and φ ≃ 0.75
for the loose and the dense case respectively. The pack-
ing fractions are quoted in terms of their grain packing
fractions, being

φ =
ρs

ρg

, (6)

where ρs is the density of the sample (i.e., mass powder
per volume sample container).

A simple uniaxial compression was applied to prepare
the sample. The straining of the powder was done by
hand. The rate of straining was a few millimeters per
second.

To produce the loose sample, φ ≃ 0.33, we carefully
rained the powder into a cylindrical mould and sealed it
off with glass and aluminium windows (Aluminium and
quartz are transparent for neutrons).

The second measurement was conducted on a com-
pressed sample, where the container was filled with more
material, and the packing fraction was increased by com-
pressing the powder along the neutron beam direction,
φ ≃ 0.75. We note that such a high packing fraction is
possible due to the polydispersity in grain sizes. We also
recognise an uncertainty in the measured porosity and
in the determined volume-fractions, estimated to ±5%.

The experiments were conducted in ambient condi-
tions and the moist level in the powder was determined
to be 13% by weight (6% by volume), determined by
weighing before and after drying. A reasonable value,
given the amount of surface available for moist-adsorption.

The microstructure of the loose packed sample will
be mainly given by the attractive van der Waals and
capillary forces, rather than be driven by gravitational
body forces and hard core repulsion. We do not expect
the loose packed sample to settle or undergo compaction
during the measurement.

The samples were left for several hours in the neu-
tron beam in order to improve statistics in the recorded
spectra. Because of the long measurement time we moni-
tored the stability (cracking, settling, compaction etc) of
the powder packing by visual inspection throughout the
measurement. No compaction was observed on the loose
packed sample during the measurement and the dense
sample appeared homogeneous as far as one can see by
eye. The pressure applied on the dense sample was about
100kPa, determined by the constant weight acting on the
plunger used to compress the powder.

A few points on the stress strain relationship for the
powder was measured and is shown in Fig. 2. Plotting the
volumetric strain (∆V/V0, change in volume over initial
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Fig. 2 Stress-strain curve obtained from uniaxial compres-
sion experiments on the silica powder.

volume) as a function of the logarithm of the stress shows
a linear relationship. It is a soft powder, easily strained,
with an initially very low grain packing fraction.

3 Molecular Dynamics: Method and model

The interaction between grains in a granular material in-
volves deformations at the contact point and in certain
cases an attraction in the form of van der Waals attrac-
tion, capillary forces and electrostatic forces. Any com-
putational attempt that convincingly models all possible
interactions and deformations would be, to say the least,
time consuming. Therefore we relate the interaction force
to the overlap between particle pairs and particles inter-
act only at contact (i.e., short-range forces). We used
Molecular Dynamics simulations (MD) [21], [22], [23] to
model the experiment. From the MD generated particle
configuration we are able to calculate the corresponding
SESANS correlation function G(z) according to Eq. (2),
and finally the expected polarisation with Eq. (1).

The MD code uses a linear hysteretic contact law,
which allows for attractive/cohesive forces upon unload-
ing [22],[23], see Fig. 3. Three stiffness parameters gov-
ern the particle-particle contact model; k1, k2 and kc

for loading, unloading and cohesive stiffness respectively.
The initial loading path follows a linear increase k1δ un-
til a maximum overlap δmax is reached where δmax is a
history parameter to be updated for each load cycle. For
unloading, the force decreases along k2δ until δ0

δ0 = (1 − k1/k2)δmax. (7)

Attractive/adhesive forces are activated when unloading
below δ0. The force can be cast into one equation:
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Fig. 3 Linear hysteretic force model. The left illustrates that
at the contact point between two particles plastic deforma-
tions takes place in the form of permanent overlap. Unload-
ing below δ0 gives rise to attraction between contacting pairs.
The figure to the right shows two particles in contact produc-
ing an overlapping region.

fh = (8)






k1δ loading, if k2(δ − δ0) ≥ k1δ
k2(δ − δ0) un/reload, if k1δ > k2(δ − δ0) > kcδ
−kcδ unloading, if −kcδ ≥ k2(δ − δ0)

To allow for a stable integration of the equations of
motion the timestep was chosen so that it resolves about
70 times the typical contact duration time, tc, between
a typical particle pair.

tc =
π

ω
=

π
√

k2/m12 − η2
, (9)

where ω is the eigen-frequency of the contact, k2 the stiff-
ness, m12 = m1m2/(m1 + m2) the reduced mass of the
particle pair and η = γ/(2m12) a damping coefficient.
Energy is dissipated upon particle contacts and colli-
sions, and also through the viscous damping coefficient
γ, which (alone) leads to the coefficient of restitution, rc:

rc = v′/v = exp(−ηtc) (10)

where v and v′ denotes the particle velocity before and
after a collision respectively.

The particle size-distribution was chosen to be log-
normal distributed with a mean at 3µm in terms of a
sphere diameter (Rmax/Rmin=15), see Fig. 4. The par-
ticles was divided into five size-classes, indicated by the
horizontal lines in Fig. 4, each holding a range of sizes
of the lognormal distribution. The average coefficient of
restitution for each size-class was set around rc = 0.85
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Fig. 4 The lognormal size distribution used in the simula-
tion. The inset shows the cumulative probability distribution
of sizes

by giving the particles different stiffness depending on
their size.

Coulomb’s law gives the tangential forces acting be-
tween particles, so that in the static case the tangential
force is given by a static friction coefficient i.e., f t ≤
µsf

n and the sliding case is governed by a dynamic
counter part fd = µdf

n. In general the relationship is
µd ≤ µs and we use µd = µs = 0.4.

An artificial background viscosity to dissipate the
long-wavelength modes of motion is added; this damp-
ing can be attributed to a dispersion medium such as
air, thus giving it a physical meaning rather than just
enhancing the efficiency of the simulation [22].

The MD simulation carried out here contains two
steps. First the initial preparation where we go from a
packing fraction φ = 0.08 configuration to φ = 0.33 by
increasing the radius of the particles. For an assembly of
N spheres with radius a contained in volume V we have

φ = V −1
∑N

i 4/3πa3
i . This preparatory step is followed

by a uniaxial compression until we reach φ = 0.75. Ta-
ble 1 summarizes the material properties and simulation
characteristics at the start of wall movements. It is be-
yond the scope of this paper to discuss all parameters,
details about the parameters can be found in [23].

4 Results

4.1 Results: SESANS Experiment

We have used the SESANS setup at the Delft Univer-
sity of Technology to perform the SESANS experiments
shown here. Two experiments were carried out on a loosely
packed sample (φ = 0.33) and on a uniaxially compressed
powder (φ = 0.75) of porous spherical silica particles.

We note that the loose-packed sample shows (see the
bottom figure in Fig. 5) correlation extending beyond the
measured scale, indicating inhomogeneities above four
particle diameters, see Fig. 5. The experimental result
for the loose packed sample contain two seemingly linear
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Table 1 Material parameters and simulation parameters used in the MD simulation at the start of the wall movement. The
stiffness and viscosity parameters are averages. ‡This is the average distance that the particles have travelled from the start
of the simulation. † The timestep of the integration is chosen so that it can resolve the duration of a particle contact.

Parameter Meaning MD unit SI unit (prefixed)
t time unit 1 1µs
l length unit 1 1m
m mass unit 1 1kg
〈D〉 mean particle diameter 3×10−6 3µm
δ particle density 500 500kg/m2

V total volume 3×10−12 3×10−3mm3

〈tc/∆t〉† particle contact response time over MD timestep (average) 70 -
〈lend〉/〈D〉‡ particle dist. travelled 900 0.9mm
φ packing fraction 0.33 -
k2 elastic stiffness 2×10−7 2×105kg/s2

k1 plastic stiffness 0.2k2

kc cohesive stiffness 10k2

kt friction stiffness 0.2k2

kr rolling stiffness 0.2k2

ks spinning stiffness 0.2k2

µd = µs Coulumb friction coefficient 0.4
µr rolling friction µd

γn viscosity (normal) 1×10−12 1×10−6kg/s
γf viscosity (tangential) 0.25γn

γr viscosity (rolling) 0.25γn

γs viscosity (spinning) 0.25γn

γbgt visc. acting on translations (background) 0.1γn

γbgr visc. acting on rotations (background ) 0.05γn

branches (separated at z=2µm). This behaviour cannot
be explained by any simple scaling or power laws. We
attribute this to originate from different scales present
in the powder, being the size of grains ( 3µm) and the
size of clusters of grains (>12µm).

The longer ranged correlations are credited to the
presence of clusters and voids with an average size above
four particle diameters. Upon compacting, one expects
the clusters to break up and voids will collapse. As can
be seen in the top figure in Fig. 5 we reach a satura-
tion in the correlations ≃3µm for the dense sample with
φ = 0.75, we attribute this size to the diameter of the
particles, reported to be centred at 3µm. The applied
stress does not only break clusters and collapse voids, but
it also give rise to excluded volume correlation among the
grains as seen in the small dip around 2-3µm.

The amplitude of the saturation is proportional to
the correlation length ξ and the packing fraction φ of
inhomogeneities in the sample according to Eq.(4) and
Eq.(5). Since the loose-packed sample never shows any
saturation on the measured scale, it is hard to draw any
quantitative conclusions; however, we note that the sat-
uration level is below that of the compact sample leading
to a higher correlation length, which is to be expected
for a sample with larger voids.

4.2 Results: Molecular Dynamics

We have used the MD method described in a previous
section to carry out a uniaxial compression test on a low-
volume fraction (33%) cohesive powder packing. Simu-
lations were carried out using a periodic cuboid under-
going a cosinusoidal (half period) compression along one
dimension in zero gravity. The initial state was a random
granular gas of low volume fraction (φ = 0.08); with a
gaussian velocity distribution and in total carrying 3000
particles. The initial state was allowed to grow (with-
out compromising the size distribution) until a specified
volume fraction was reached at φ = 0.33, and the final
radius was 1.5µm. On average the particle has travelled
900 average particle diameters at the end of the growth
process. At this stage the simulation should represent the
loose-packed sample in our experiment, holding a low
volume fraction in a more clustered or open structure.
We note that at the end of the simulation at φ = 0.33
the packing is not stable, but containing residual kinetic
energy.

The loose-packed sample was compressed along one
dimension to yield the final compressed state at φ = 0.75,
for an illustration of the packings, see Fig. 7. In general,
we conclude from Fig. 6 that the shapes of the curves are
rather well reproduced when comparing the simulation
with the experiments. The excluded volume feature seen
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Fig. 5 Measurements on fine powders of silica, polarisation,
P (z), as function of spin-echo length z. The topmost plot is
results obtained from the dense-packed sample and the lower
figure represents the loose-packed sample. If not shown, all
errors fall within markers.

in the experiment is also seen in the simulation in the
dense case.

For the compressed state we calculate the correlation
length to ξ=1µm, representing the typical size of inho-
mogeneities projected along the neutron beam, this is
in excellent agreement with our measurement when tak-
ing into account the measured volume fraction, known
SLD, the neutron wavelength and the sample thickness.
The correlation function saturates on the horizontal axis
around z=3µm and this size represents the typical di-
ameter of the spherical grains. All together, giving good
agreement in both shape and amplitude of the polarisa-
tion in the dense case.

When comparing the uncompressed and compressed
state in terms of G(z) we note that the dense packing
show a faster decay in the correlations thus, representing
a sample with shorter range in correlations, in essence a
more closed system with smaller inhomogeneities.

For the simulation representing a loose-packed struc-
ture the calculated polarisation does not reproduce our
experiment; however, we clearly see a correlation func-
tion with a good qualitative agreement in the overall
shape (see the lower-left figure in Fig. 6). Note also the
slope seen for higher z in the experiment and seen in
simulation on the loose-packed sample. The amplitude
of the polarisation is given by the total amount of scat-
tering according to Eq. (4) where mainly ξ contributes
to the amplitude (the other terms are constants, and
φ(1 − φ) in this case, gives only a minor contribution.
We extract from our simulation a correlation length, ξ,
of 2.5µm and 1µm for the loose and dense packing re-
spectively. For a hard sphere gas we have ξ=1.5 times
the sphere radius. We expect this correlation length to
drop with increasing packing fraction.

We explain the discrepancy between measured and
simulated polarisation on the loose packing by arguing
that: in the experiment, we have a two-phase system of
low/empty and -high density phases of particles so that
the high-dense regions will contribute to a low-scattering
amplitude via low ξ and the low packing fraction is given
by the large voids. At low length scales, 0.1µm ≤ z ≤
3µm, when comparing the experiment with our simula-
tion result, we see in Fig. 6 a steeper slope in the corre-
lation function (i.e., a more close-packed structure) and
the argument here is that dense regions are giving this
behaviour. When we further compress the system we ex-
pect, at some stage, all clusters to break and larger voids
to collapse, all together giving a final random dense-
packing of polydisperse spheres.

5 Conclusions

The use of spin-echo small angle neutron scattering for
the study of structure in fine powders captures the struc-
tural differences in terms of the correlation function be-
tween loose and dense packings. The SESANS correla-
tion function can be calculated from molecular dynam-
ics simulations and compared with experiments. For the
dense packing, we obtain a good quantitative agreement
between measurements and simulations, whereas a quali-
tative agreement is obtained for the loose-packed system.
In the loose packing we see no saturation of the corre-
lations at larger length scales both in simulation and in
experiment.

The SESANS correlation function is directly related
to the density-density distribution function of the sam-
ple, through the projection along the neutron beam path.
SESANS captures the transition between a loosely packed
powder and a dense packing via a hard-core repulsion
(excluded volume) feature in the correlation as well as in
the correlation length and the overall curve-shape. The
average size of the inhomogeneities can be extracted from
the correlation function in the form of correlation length,
ξ. The experiments show that the dense packing carries
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Fig. 6 Experimental and MD-simulation results. The top fig-
ure represents all measured and simulated results. Note that
in the clustered case (diamonds) the simulation result (dashed
line) is re-scaled to collapse on the measured points. We sep-
arate the two cases at the bottom and note only a qualitative
agreement, on the shape, between the simulation and exper-
iment for the loose-packed sample (rightmost figure). On the
dense-packing we see a good quantitative agreement between
measurement and simulations (leftmost figure). If not shown,
all errors fall within the markers.

lower correlation length when compared to the loosely
packed sample. This is expected, since the loose packed
sample would mean a higher degree of clustering, giving
rise to inhomogeneities and voids at larger length scale
(this can also be concluded by visual inspection and by
the fact that no saturation is observed). Interestingly, the
correlations do not extend beyond the size of a grain in
the dense packing. One expects the dense case to carry so
called force networks, these networks (if they are present
in the packing) do not create correlations in the density
distribution.

The lognormal size distribution, used in the simu-
lation, leads to the loss of excluded volume effects and
nearest-neighbour peaks in the correlation function, thus
contributing to the agreement between measurement and
the simulation.

We acknowledge that the structure of the loose packed
sample was not reproduced in our simulation. A stronger
clustering mechanism than used in the simulation is needed,
possibly by introducing an attractive potential. The sim-
ulation predicts a higher correlation length for the un-
compressed state, which is expected for a more open and

Fig. 7 Visualisation of: Top, the final compressed packing
(φ = 0.75)and bottom, the initial loosely packed state (φ =
0.33).

porous system. The total amount of neutron scattering
and the correlation length is over-estimated when com-
pared to our experiment. We argue that in the loose
packed experiment we have a two-phase system with
large voids and large dense-clusters of particles (sub-
millimeter sized). The dense clusters of particles would,
in this case, contribute to a low correlation length and
the voids give rise to the low packing fraction seen in the
experiment.

We believe to have made a valuable connection be-
tween simulations and experiments, showing that in dense
sphere packings with wide size distributions, the pro-
posed MD model is in excellent agreement with the ex-
periment. For loose cohesive powders, we need new mod-
els and larger simulations if we want capture the struc-
ture seen in real experiments.
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