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Abstract. The alternative to a continuum model of granular media (see
other chapters in this book) is to view the material as a collection of discrete
particles. In order to simplify the description, we assume the particles to
be spheres in the following. For the characterization of a system with many
particles we specify only two-particle interactions, assuming many-body
interactions to result from the sum of the two-particle forces. The scope
of this chapter is to give a summary of frequently used approaches and to
compare them.

The applicability of any two-particle interaction model will depend on
the properties of the system that are to be described. In static, rather dense,
systems frictional interactions are most important, whereas in dynamic, di-
lute, systems collisional properties dominate. Furthermore, the existence of
only binary contacts vs. the possibility of multi-particle contacts influences
the response of the system and also the choice of the interaction model.

1. Collisions

First we assume only two particles collide and neglect other particles and
external forces like gravity as well.

One possibility for studying a collision is to examine the values of the
particles’ velocities just before and just after the collision. The collision itself
is not necessarily of interest and may be assumed to be instantaneous. These
assumptions require the specification of a collision matrix that connects the
velocities before with the velocities after the collision, and are used for the
event-driven (ED) simulation method [1-3].

Another possibility is to follow the trajectories of the particles also
during the collision by solving Newton’s equations of motion. Therefore, one



2 S. LUDING

has to specify the forces acting during the contact. As a consequence, the
contact takes a finite time, i.e. is not instantaneous. The numerical method
that uses this collision model will be referred to as molecular dynamics
(MD).

In the following, models for two particle interactions will be described.
As far as possible, analytical solutions for the movement of the colliding
particles will be given and problems connected to the models will be pointed
out.

2. The instantaneous collision model

Despite extensive studies of the interaction of two particles [4-11] there
exist no conclusive general results. For a detailed theoretical description
of two-particle collisions see [12-15] and for a simplified model see [1]. Re-
cent experiments could prove the validity of this simplified model in the
range of parameters experimentally accessible [11, 16] and it is used in ED
simulations of various systems [1, 3, 17-21].

Given the velocities of the particles just before the contact, three pa-
rameters are sufficient to fit the experimental data. These parameters are
the restitution coefficient e,, the coeflicient of friction y and the coefficient
of maximum tangential restitution ey.

2.1. THE RESTITUTION COEFFICIENT e,

In the normal direction i, i.e. parallel to the line connecting the centers

of two spherical particles at contact, e, describes the change in relative
momentum (or velocity) in the center of mass reference frame.

B o™ — o™ B ™ ) B v;(n) .

N )~ (L)

(n)

The particle 7 = 1,2 has the mass m; and the velocity v; "’ and v;(n) just
before and after the collision respectively. The superscript (n) denotes the
component of the velocity parallel to the line connecting the centers of the
two particles. The possible values of the restitution coefficient are 0 < e, <
1, where e, = 1 corresponds to an elastic, and e, = 0 to a completely
inelastic collision. The total momentum |mivy +movs| = |myv] +movh| =
0, is conserved while energy may be lost. As a consequence, Eq. (1) can
be verified by using v%") = —(mgo /ml)'uén). Instead of a collision of two
particles, the same definition is valid also for the collision of one particle
with a flat boundary and infinite mass.

As an example we discuss the case of a ball hitting the horizontal bottom
in a gravitational field g. From the initial height h; and the height of the
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Figure 1. Schematic picture of the height of a jumping particle as a function of time.
tp is the time when the particle has zero velocity.

next bounce hy, one can calculate the velocity before, v = /2gh;, and
after, v’ = —,/2gh¢, the contact. The center of mass is the bottom which
is assumed to be immobile. From Eq. (1) we have the restitution coefficient

en == =7 (2)

Note that the restitution coefficient, in general, depends not only on the
material but also on the velocity of impact [1,7,22-24].

A schematic picture of the particle that carries out several collisions
with the bottom is presented in Fig. 1. The velocity after the k-th collision
is v}, = —ep v, so that the velocity before the collision k + 1 is

Vpi1 = envy = ey, (3)

After 80 collisions, a particle with e, = 0.6 has a velocity of vgg = 1.8 x
10~8yy. The time between two successive collisions k and k + 1 is t,; =
2vk4+1/9, and the time t, until the particle looses all its velocity is the sum
over all times between collisions

2ype
tp = Ztk+1 = 97" (4)

With vy = 6.3m/s and e, = 0.9 one gets t; ~ 11.6s.

Up to now, each collision was assumed to happen instantaneously. How-
ever, an aluminum bead of diameter d = 1mm has a typical contact du-
ration of ¢, ~ lus [22]. Therefore, the above calculation makes no sense
if tgy1 < i, i.e. the particle is in steady contact with the bottom after
kmax = loglgt./(2v0)]/ log(ey) collisions.
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From this simple example, the limitations of the instantaneous collision
model become evident. It can not accurately describe steady, long lasting
contacts of particles.

2.2. THE COEFFICIENT OF FRICTION g

In the tangential direction the coefficient of friction y determines the active
tangential force which is proportional to the normal force but independent
of the contact surface. This model is based on experiments by Coulomb [25].
In Fig. 2 the force due to gravity fx, the friction force fr, and a pulling
force f acting on a block on a flat surface are schematically shown.
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Figure 2. Forces acting on a block on a flat surface.

In general one has to distinguish between static friction with fz < psfn,
dynamic friction with f;iz = pafn, and rolling friction with f5 < p,fy. In
all of these cases one usually assumes the friction force to be independent
of the surface of the contact. Usually one has us > uqg >> ur, so that
u = pg = pus and p, = 0 seem to be reasonable approximations. Note that
the Coulomb friction is just an approximation, however it is valid over a
large range of parameters, but it is not accurate under all circumstances.
As an overview on friction and the connected open problems, see ref. [26].

2.3. THE TANGENTIAL RESTITUTION e,

In analogy to the normal restitution, one can define the tangential restitu-
tion e; which is in general not a constant. The tangential velocity after the
collision is v; = —e;v;. Energy conservation requires —1 < e; < 1, with the
two elastic extremes e; = —1 and e; = 1. The former corresponds to no ve-
locity change in tangential direction, and the latter to a complete reversal.
Since the tangential forces during the contact are limited by the normal
force, the friction coefficient e; depends on the impact parameter, i.e. the
obliqueness of the impact.

3. Momentum conservation

In the following we will discuss the collision of two particles (i = 1,2)
with diameter d;, mass m; and velocities viL = V¢m + V5 in the laboratory
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Figure 8. Schematic picture of the velocities before (a) and after (b) the collision.

reference frame. The velocity of the center of mass of these particles is
_ L L
Vem = (mivy + mavy)/(m1 + me). (5)
The unit vector in normal direction [see Fig. 3] is

~ r—r3
n—

(6)

ry —rof’

with the position r; of the center of particle 7. The relative velocity of the
contact-point of the particles before the collision is

Ve=V] — Vo — <ﬂw1 + @c@) x fi, (7)
2 2
with the linear and angular velocities v; and w; respectively.

Note that the velocities vi; and vy are parallel in the center of mass ref-
erence frame, which can be proven by simply calculating the vector product
v1 X vo. Furthermore, the change of angular momentum has the same di-
rection for both particles.

(n)

v, has the normal component v¢ ’ = fi(v,-i) and the tangential compo-
nent vgt) =vV.— vgn). The vector vgt) defines thus the tangential unit-vector

t = vg)/ |v£t)|. [Note that this definition of t is somewhat different from
the usual definition, i.e. rotating i by 90 degrees in a given sense|]. The
collision angle « is defined as the angle between fi and v, and lies in the
range /2 <y < .

The conservation equations will be expressed in terms of the change of
momentum Ap of particle i = 1. With a given force f(¢) as a function of
the time ¢, the change of momentum Ap is [J° f(¢)dt. For vanishing contact



6 S. LUDING

duration, t. — 0, or for constant forces, f(t) = const, the nomenclature
using changes of momentum Ap is equivalent to that using forces f(t)dt.
Conservation of linear momentum requires

Ap = my(v] —vi) = —ma(vh — va), (8)

with the unknown velocity v/ after the collision. The normal component of
the change of momentum Ap'™ is decoupled from the motion in the tangen-
tial direction. However, the tangential component Ap® depends on Ap(™
and causes a change of angular velocity if the surfaces are not perfectly
smooth. Since Ap(®) is active at the point of contact, one can calculate the
change of angular momentum as the vector product between the distance
vector from the center, —(d;/2)i, and the change of momentum Ap:
~ 2I; !
“h % Ap = 2wl - w). 9)
di

In Eq. (9), I; = ¢im(d;/2)? is the moment of inertia of the particle, given a
rotation about its center of mass, and w} is the unknown angular velocity
after the collision. The prefactor in the moment of inertia is ¢; = 2/5 for
spheres and ¢; = 1/2 for disks.

Given Ap, Egs. (8) and (9) allow the calculation of all unknown veloc-
ities after the collision:

vl =vi+ Ap/my, (10)
dy
g — 2 ax A 1
o= w1 — s x Ap, (1)
vl = vo — Ap/mg, and (12)
do
H =wy — ——N X Ap. 1
Wy = Wy (212)n>< P (13)

The fact that the change of angular momentum is the same for both
particles results in a change of the collision angle from « to 7’. A measure
for the obliqueness of an impact is the impact parameter

Vi — V2

b = (1‘1 — 1‘2) (14)

X —.
[vi — Vo
In the simple case of identical particles, the point of contact is identical to
the center of mass, so that the total angular momentum Ly, is conserved
and has components due to the spin and to the obliqueness of the impact:

mqd?

(w1 —|—QJ2) + m(1‘1 —I‘g) X (V1 —VQ).

m
Liot = I(w1 +U.)2)+ Eb|v1 —V2| = 2
(15)
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Since the particles were assumed to be identical, we used d = di = da,
m =my = mg and I = gm(d/2)?.

4. The change of momentum Ap

In order to calculate the velocities after a collision from Egs.(10-13), only
the change of momentum Ap has to be known. The normal component
is calculated using the definition of the restitution coefficient in Eq. (1).
Inserting Egs. (10) and (12) The normal component of the difference in
the change of velocities is Av(®) = viM vgn) = Ap™ /m1 + Ap™ /ma.
Inserting Eqgs. (10) and (12) into Av{™) gives the momentum change in the
normal direction

Ap(") = —mo(l + en)v("), (16)

C

with the reduced mass mis = mymy/(my + my).

4.1. COULOMB FRICTION AND TANGENTIAL ELASTICITY

Coulomb’s law connects the normal and the tangential force at a contact.
An alternative interpretation connects the components of the change of
momentum in the corresponding directions: |[Ap®| < u|Ap™|, with g > 0.
Since friction is active in the direction opposite to the relative velocity
vgt), the change of momentum Ap(*) is parallel to —t. Thus we have the
inequality

~

Ap® < umia(1 4 en)ve cos(y) T . (17)

Using o = |v£n)| =

—v, cos(7y) [since cos(y) < 0 for all possible v] and
t = v /(vesiny), we have the tangential component of the change of

momentum for a contact that follows Coulomb’s law:
AP® = myiopu(l + e,) cot(y) v. (18)

In the limit ¥ — « one has cot(y) — —oo, and v = 7 corresponds to a
central collision. In this case of extremely small tangential velocities, Ap®)
in Eq. (18) may get very large. A large change of momentum may result in a
gain of energy and thus has to be avoided. The validity of the above equation
is the range of sliding contacts. As soon as the tangential velocity gets
too small, other assumptions are needed in order to calculate the change
of momentum in the tangential direction. In order to avoid the gain of
energy, Walton and Braun proposed a cut-off, i.e. a coefficient of maximum
tangential restitution ey [1]. Limiting this coefficient to —1 < ey < 1 allows
the calculation of Ap for all possible values of y. The change of momentum
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Figure 4. (a) e; as a function of . (b) ¥y = vz(t)/vgn) as function of ¥y = vgt)/vgn).
of particle 1 = 1 is thus

Ap = —mio(1 + en)vgn) —myo (%ﬂ) (1+ et)vgt), (19)

with the normal and tangential restitution e, and e; appearing in a similar
form. The factor ¢/(1 + ¢) stems from the change of angular momentum.
The tangential restitution in Eq. (19) is e; = min[ey, e;1]. For small ~,
i.e. grazing collisions, one has e; = e;;, whereas for large <, i.e. central
collisions, one has e; = eyy. Note that inserting the tangential restitution

en = —1— pu(1 + ey) cot(y) (1 + 3) (20)

into Eq. (19), leads back to Eq. (18). In Fig. 4(a) the tangential restitution
e¢ is shown as a function of the angle of the collision 7.

4.2. MEASUREMENT AND CLASSIFICATION OF COLLISIONS

For a quantitative classification of collisions, different authors [3,11, 23]
used the ratio of tangential and normal velocity, introduced first by Mindlin
[12], Mindlin and Deresiewicz [13] and Maw, Barber, and Fawcett [14, 15].
Before the collision one has ¥y = 'ug) / vc") = — tan -y, and after the collision
one has ¥y = vV / o = en tany’. Here, ' is the angle between v., and .
From Eq. (19) one gets

Ty = 1—%(14—671);1 for v <o (21)
—en Uy for v > 7o.
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In Fig. 4(b) the behavior of ¥y as function of ¥y is plotted schematically.
The dotted line corresponds to perfectly smooth particles, i.e. u = 0, and
the solid line represents Eq. (21). Experiments [11, 16] show that, within
fluctuations, every collision can be fitted by Eq. (21) reasonably well. Note
that the measurements lead typically to positive values of ey, corresponding
to an inversion of the tangential velocity for central collisions. This inversion
is caused by the elasticity of the material which is important in the case of
sticking contacts rather than the case of sliding contacts [see the chapter
by S. Roux in this book].

5. The integration of a two-particle contact

Replacing Ap by f(¢)At, and assuming At = dt to be infinitesimally small,
one gets differential equations for the change of the velocities of the particles
dv = v —v and dw = W' — w. In the following, we solve the differential
equations for some simple cases. In contrast to the above discussion, the
particles are assumed to be deformable.

Therefore we define, as a measure for the deformation, the overlap

1 "
0= §(d1 + da) — (r1 — ro)i, (22)
and the relative tangential velocity of the particles’ surfaces
d A
%‘19 = Vct, (23)
with the tangential displacement 9. Note that %5 =4§=—v.his positive

before and negative after the collision, whereas 9= vt is always positive,
due to the definition of t.

Since § = %5 = —%vcﬁ one gets § = —fl(n)/ml + fz(n)/mg, where

fi(") = m;1;1 is the force acting in normal direction on particle ;. Newton’s

third law of motion leads to fz(n) = - fln), and thus the change of normal

velocity
.. 1
§ =—Svia=—— M 24
dt Vel M1y f 1 ( )

This differential equation in § can be solved for simple forces fl(n)(é,(i,t)
[22], and thus allows the analytical description of the particle trajectory in
the normal direction.

In the tangential direction one can calculate a similar differential equa-
tion from Egs. (10-13) and (23):

9 = ivcf = b (1 + l) fl(t)- (25)
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For spheres the moment of inertia is I; = ¢;m;(d;/2)? with ¢; = 2/5. The
double cross product [fi X fl(t)] x 1, that occurs during the calculation of
Eq. (25), can be reduced to fl(t). Also Eq. (25) can be solved for simple
forces fl(t) as we will show in the following.

The knowledge of the forces fl(n) and fl(t) is the condition for the solution
of the equations of motion. For the forces in the normal direction, older
experiments exist [7], but exact measurements of the force in tangential
direction are rare. Usually one measures just the velocities before and after
the collision and calculates the corresponding change in momentum to be
inserted in the Egs. (10-13). As we will recognize in the following, the
knowledge of Ap does not necessarily allow a unique choice of the force,
since different forces may lead to the same Ap. The following calculations
will clarify how far the choice of the force laws has an influence on the
contact duration and the restitution coefficients and thus on the dynamics
of the collision.

6. Models for the repulsive potential

In order to model ‘hard’ particles that interact on contact, a repulsive
potential is required. The repulsive force is of short range and depends e.g.
on the Young modulus and the Poisson ratio of the material, and on the
shape of the particle as well. These quantities determine also the duration
of a contact t.. The simplest linear approach consists of a spring with
stiffness k, a more advanced approach is connected to the Hertz theory of
elastic spheres [27] and involves a displacement dependent spring constant
k o< 0'/2, and thus a nonlinear force f(™ o §3/2.

6.1. THE LINEAR SPRING-DASHPOT MODEL (LSD)

In the simplest approximation, the force acting on particle 7 = 1 is a linear
spring with spring constant k, so that the repulsive normal force is

£ = ks, (26)

active only when the overlap is positive (6 > 0). In order to introduce
dissipation into the system, one assumes a viscous damping, i.e. velocity

dependent, directed opposite to v£"), so that

o= ,8. (27)

Inserting Eqgs. (26) and (27) into Eq. (24) one gets the well-known differ-
ential equation of the damped harmonic oscillator

6 + 206 + wid = 0. (28)
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In Eq. (28) we have defined the oscillation frequency of an elastic oscillator
wy = v/k/mi2, and the effective viscosity n = v,,/(2m12). The solution of
Eq. (28) is

0(t) = (vo/w) exp(—nt) sin(wt) (29)

with the velocity
5(t) = (vo/w) exp(—nt) [—n sin(wt) +w cos(wt) ]. (30)

In Egs. (29) and (30) we use the initial relative velocity vy = 6(0) and the

oscillation frequency of the damped oscillator w = /w3 — n2. As long as
1 < wp the duration of a contact is

te =7m/w, (31)

i.e. the half period of oscillation, since the contact is assumed to end as
soon as d gets negative §(t) < 0. From Eq. (1) we calculate the coefficient
of restitution

en = exp(—mn/w), (32)

and the maximum overlap dmax at time ¢y, from the condition B (tmax) = 0,
i.e. wimax = arctan(w/n) = arcsin(w/wyp). Thus we get

Omax = (vo/w)exp(—Ntmax) sin(wimax) (33)
— (wo/wo) exp [(~1/w) arcsin(w/wo)]. (34

As we will proceed to show, the rule é(¢.) = 0 is not appropriate to
decide when the contact of non-cohesive particles ends. Already for weak
dissipation, the force at time t. is attractive !

In Fig. 5(a) we present the normal component of the force acting on one
particle during a collision. We observe that the force has a finite value at
the beginning of the contact ¢ = 0 due to the viscous damping term. With
increasing viscosity the force becomes negative for times shorter than ..

The convenient rule to decide when the contact ends should thus be the
condition fl(n)(téc ) = 0, with the duration of the contact t/, defined through
that force rule. Inserting Eqs. (29) and (30) into this rule, we have

0= (%) exp(—t]) [(k — 2my9n?) sin(wtf) + 2mignw cos(wt!) ] ,

with the solution

1 2 1
tf = — (7r — arctan %) =— (7r — 2arctan ﬁ) . (36)
w w2 —n w w
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Figure 5. (a) Normal force in arbitrary units as a function of time (scaled by t.) for
different 5/w given as insert. (b) The ratio 74 = t{/t. and the restitution coefficients
e, and e}, as a functions of the strengh of inelasticity 7/w. The lines correspond to the
analytical expressions and the data points correspond to the numerical solution in (a).

The last transformation is an addition-theorem for (n/w)? < 1 and the
solution is thus valid in the interval —7/2 < wt/ < 37/2. Only in the
elastic limit, where n = 0 and w = wy, is the contact duration following
from both definitions equivalent. For w > 1 > 0 we have the ratio 77 = ¢/ /¢,
different from unity. Since ¢/ is always smaller than t. we have 7; < 1,
however, for weak to intermediate dissipation strength the value of 7; is
close to unity, i.e. the difference between the definitions is rather small.
For stronger dissipation, the second definition has to be chosen, since it
explicitly excludes attractive forces. In Fig. 5(b) we present the ratio 7f
and the restitution coefficients e, = exp(—nt.) and ef = exp(—ntf) as
functions of n/w.

6.2. A GENERAL, NONLINEAR SPRING-DASHPOT MODEL

Instead of a linear spring, see Eq. (26), we propose a more general nonlinear
force

1+a
o =ve (5) (37)

with the effective particle diameter d = (2d1d2)/(d1 + d2), the effective,

2

geometry dependent stiffness Y ! = % (1;7?% + 15272), and thus the spring
constant k(§) = Yd(é/d)*. Here o; is the Poisson ratio and Ej; is the Young
modulus of the material that particle 7 consists of. In the case o = 0 we
obtain Eq. (26) again, and in the case @ = 1/2 we have the Hertz contact
[22, 27, 28).
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Modelling dissipation for a more general repulsive force may require also
a more general dissipative force

¢o F\ St
m) (90 1)
feoco = 1do (3) (g) (38)

with an effective viscosity 7 and a typical velocity scale bo.

The exact calculation of the contact duration %, is possible in the limit
of vanishing dissipation only, i.e. » = 0. A more elaborate calculation is
performed in ref. [24]. The maximum overlap dmax is achieved with the
condition § = 0 from the energy conservation equation FEj(t) + E,(t) =
Ey(0), with the kinetic energy Ej and the potential energy due to the
repulsive interaction E,. The initial values are Ey = mi9v3/2 and E, =
0. The kinetic energy is completely transferred to potential energy E, =
Yd=262t2/(2 + a), so that

max
1/(2+a) 1/(2+4a)
= (145) (ya) W (39)

The separation of variables § and ¢ in the energy conservation equation
leads to the half contact duration t./2 as integral from ¢ = 0 to § = dmax,
so that

1/(2+a) 1/(2+a)
= J@™ g (1+5) T () w0 o)

The function .

VT (535)
(1+ ()
contains the Gamma function I'(z), so that J(0) = = and J(1/2) = 2.94

are the prefactors in Eq. (40). Note that the contact duration for o # 0
—a/(24a)
0

J(a) =

(41)

depends on the initial relative velocity, i.e. ¢, o v,

relative velocity the contact duration decreases.
An estimate for the restitution coefficient in the limit of weak dissi-

pation requires the simplifying assumption that the dissipated energy is

. With increasing

proportional to the dissipative force fC(on,)Q and proportional to the distance
dmax on which the force was active. The dissipated energy is thus

E (n) (o1t 4G 20+ a4
diss O fgo ¢, Omax = 1A Omax’ v > X Vg ,  (42)

max
what leads to the velocity dependence of the restitution coefficient

2(¢o+¢1)—a(1=¢1)
l1—e,xy, : (43)
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Figure 6. Schematic drawing of the hysteretic repulsive force law in Eq. (45). During
the first loading, fuys follows the path 0 — dmax, and during unloading it follows the
path dmax — do. A reloading before the overlap dropped to zero may take plase e.g. at
d', from where fuys follows the dashed line up the the path of initial loading.

For o = 1/2, (o = 1/2, and ¢; = 0 one gets 1 — e, o vy/° [22, 24,29, 30].
Inserting into Eq. (37) the identity d9 = vy, the nonlinear terms with the
exponent (; dissappear and one gets

) 2gQ+;a
—ep 0 vyt L (44)

In order to get a velocity independent restitution coefficient the condition
2(Co+¢1)+a(¢1—1) = 0 has to be fulfilled. For Hertz contacts with a = 1/2
this leads to the rule 4¢y + 5¢; = 1 [30].

6.3. A HYSTERETIC SPRING MODEL

Instead of viscous dissipation, one observes also permanent, plastic de-
formation during a typical collision. Therefore, an alternative to the simple
linear model in subsection 6.1, and to the more complicated nonlinear model
in subsection 6.2, is a hysteretic force-overlap relation accounting for per-
manent deformations. Instead of more realistic, but much more complicated
nonlinear-hysteretic force laws [1,31, 32], we present here only the linear-
hysteretic model [1]. For loading a weaker spring is used as for unloading,
so that the repulsive force can be written as

(n) _ { k16 for loading, and (45)

Thys = ka(6 — ) for unloading,

with k1 < ko. This repulsive force is shown in Fig. 6.

During the initial loading the force increases linearly with the overlap
0 and the spring constant k; until the maximum overlap dmax is reached.
During unloading the force drops to zero at overlap Jp that can be calcu-
lated from the continuity of the force k10max = k2(dmax — 00). The contact
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™ s ™ [TM19 /m12
= — _ = — JE— = 4
tc 2(4)1 + 2(4)2 2 ( kl + kQ ) ( 6)

follows from Eq. (31) as sum of the half contact duration of particles with
either stiffness k1 and k9. The dissipated energy may be identified as the
surface within the path 0 — dpax — g — 0, and leads to the restitution
coefficient

duration

en =4/ —- (47)

The contact ends as soon as the force vanishes at overlap dy, however, the
overlap vanishes later at time ¢.+ dg/v(t.), since the particles separate with
velocity v(t.) = epvg. After a complete separation, the plastic deformation
is neglected, one assumes that the particle does not collide again at exactly
the same point and thus the new contact point should be not yet deformed.
If a new contact happens before the particles could separate, the loading
follows the steep path ko(d — ¢') until the path of initial loading is reached.
Given e, and t. the two spring constants can be calculated easily, i.e. k1 =
m127r2(1 + 6721)/(4%) and kg = kl/en.

The advantage of this model is that no arbitrary viscosity has to be
included and that the parameters e, and t. can be predicted analytically.
However, neither this model nor one of the models above represent the full
experimental reality.

7. Modeling tangential forces

In the following we will use the linear spring-dashpot model in normal
direction, i.e. @ = (o = (1 = 0, and try three simple tangential force laws.
We will apply the laws one by one, however, a combination is possible.

7.1. VISCOUS TANGENTIAL FORCE

The by far simplest tangential force is a viscous friction
f;gt) = _Vtﬁa (48)

with a tangential viscosity v4. The tangential component of the relative
velocity is 1. Inserting Eq. (48) into Eq. (25) and integrating from ¢ = 0 to
t = t. leads to the tangential velocity at the end of the contact

v = vl exp(—2mit,), (49)
with 7, = (1 + %) v4/(2m12) in analogy to the viscosity 7. Inserting o
into the definition of ¥y leads to

Uy = Uy exp(—2mt.). (50)
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Thus the viscous tangential force leads to a reduction of the relative tan-
gential velocity of the points of contact. This corresponds to the range of
tangential restitution —1 < e; < 0. The application of a viscous tangential
force makes sense only for collision angles v > -y [see Eq. (21)], but cannot
lead to a positive e;.

7.2. COULOMB FRICTION FORCE

During the contact, the tangential force is coupled to the normal force via

O = —pfm, (51)

and it is directed opposite to the tangential velocity. The calculation of
the tangential velocity during the contact thus requires the knowledge of
the normal force at each time during the contact. The integration of the
changes in velocity lead to

v = v 4 py (1 * 1) (1+ en)v(. (52)
q

After division of vi” by o we obtain Us(y < ) as in Eq. (21). Note that

during the integration of the force law in Eq. (51) the velocity may drop to
zero. In that case the direction t is ill-defined and the velocity stays zero.
The discrete numerical integration instead may lead to spurious oscillations

(t)

around v¢’ = 0.

7.3. ELASTIC TANGENTIAL SPRING

For negative e;y the combination of the above presented force laws allows
a reasonable modeling of the contact in the tangential direction. However,
since most materials have a positive ey [11], one has to come up with
a tangential force that allows the inversion of the tangential velocity. A
possible inversion is connected to the elasticity of the material, i.e. parts of
the contact area store elastic energy and release it before the contact ends.
In order to account for material elasticity a tangential spring was proposed
[1,14,15] similar to the spring in normal direction.
In analogy to the linear spring in normal direction we define

O = —ky, (53)

insert it into Eq. (25) and get for an infinitesimal change of velocity

= — (1 + 3) ke (8) . (54)

mi2 q
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Figure 7. Schematic picture of the velocity ratio ¥y versus ¥; for the different force
laws in Eq. (48) (dashed line), Eq. (51) (thick grey line), and Eq. (53) (thin solid line).
The dotted lines denote the limits p = 0 (top, slope 1) and p = 00, ez0 = 1 (bottom,
with slope -1).

Using the Ansatz 9(t) = (Ugt)/wt) sin(wyt), substituting w? = (k;/m12)(1 +
1/q), and integrating over the contact duration we arrive at

0!® = v cos(wyt). (55)
Dividing o) by o™ we get again Us(y > ) from Eq. (21). Now, a positive
tangential restitution with eyy = — cos(mwy/w) is possible. Given a certain

value of ey [typically ey = 0.5 is found from experiments [11]], we have a
rule for the choice of the tangential spring:

ke /14 q) 1
wy ” ( . . arccos(—ey) (56)

and thus the ratio of tangential and normal spring-stiffness
ki q (arccos(—eto) > 2

™

E 1+gq

(57)

7.4. A CLASSIFICATION OF THE TANGENTIAL FORCE LAWS

In Fig. 7 we plot schematically the results obtained with the different force
laws. Note that the negative slope of Ws, i.e. the physical behavior, can be
found only for the tangential spring force law in Eq. (53).

The combination of the tangential spring (for v < 79) and the Coulomb
friction (for v > 7g) leads now to the desired ¥s as also found in experi-
ments. In order to learn how this combination is practically carried out in
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numerical simulations see ref. [23] or the contribution by L. Brendel to this
book.

8. Summary and Conclusion

In this chapter we discussed two-particle contacts and introduced the three
parameters: restitution coefficient, friction coefficient, and maximum tan-
gential restitution. The first accounts for the normal direction, whereas the
latter two account for the tangential direction. These three parameters suf-
fice to classify those collisions which have been measured experimentally.
Despite the fact that this three-parameter model includes simplifications,
such as the exclusive occurence of either sliding or sticking contacts, it is a
reasonable and simple model.

In the normal direction we performed the more elaborate integration
of the equations of motion, using linear, non-linear, and hysteretic interac-
tions. Dissipative effects like viscosity or plastic deformations are described
by the coefficient of restitution e, that e.g. depends on the velocity of im-
pact [22-24]. Since this dependence is usually very weak, a constant e, is
often a good approximation.

In the tangential direction one has to distinguish between sliding and
sticking contacts, the first type follows Coulomb’s friction law with the
coefficient of friction y, whereas the latter can be modeled by a tangential
spring and may lead to a positive e;. In the three parameter model, a
contact is either sliding or sticking, even when a real contact is much more
complicated [see the chapter by S. Roux in this book].

Two possibilities to model a collision of two particles were described.
In the “hard” particle model only the three parameters are used and the
contact is assumed to happen instantaneously. In the “soft” particle model
the equations of motion are solved for the two particles, however, the choice
of normal and tangential forces is required. Note that different forces may
lead to the same result, i.e. the same three parameters. In the case of two-
particle contacts the choice of the force law and even the choice of the
collision model is not important. Thus one has almost free choice for dilute
systems where almost all collisions are binary [33]. In the case of a denser
system, where contacts may be permanent and one particle has often more
than one contact partner, the choice of the interaction model influences the
behavior of the system [22, 34, 35].

As a rule, one should compare the interaction model used with exper-
imental data, and one should try to get as close as possible to the ex-
perimental results. However, measurements exist only for a small range in
parameter space, and — to my knowledge — no systematic experiments exist
for multi-particle contacts (pool billard is an adequate laboratory for this
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purpose). Thus we propose to choose the simplest model, which still fits
the existing experimental data reasonably well.

Acknowledgements. Thanks to S. Weinketz and B. Wachmann for
proofreading, and S. McNamara and T. Shinbrot for helpful comments.
The DFG, SFB 382 is acknowledged for financial support.

References

1. O. R. Walton and R.L. Braun. Viscosity, granular-temperature, and stress calcu-
lations for shearing assemblies of inelastic, frictional disks. Journal of Rheology,
30(5):949-980, 1986.

2. M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University
Press, Oxford, 1987.

3. S. Luding. Granular materials under vibration: Simulations of rotating spheres.
Phys. Rev. E, 52(4):4442, 1995.

4. O. M. Rayleigh. On the production of vibrations by forces of relatively long duration,
with application to the theory of collisions. Phil. Mag. Series 6, 11:283-291, 1906.

5. C. V. Raman. The photographic study of impact at minimal velocities. Phys. Rev.,
12:442-447, 1918.

6. L. J. Briggs. Methods for measuring the coefficient of restitution and the spin of a
ball. J. of Research of the National Bureau of Standards, 34:1-23, 1945.

7. W. Goldsmith. IMPACT, The theory and physical behavior of colliding solids. Ed-
ward Arnold, London, 1964.

8. J. Reed. Energy losses due to elastic wave propagation during an elastic impact. J.
Phys. D, 18:2329, 1985.

9. R. Sondergaard, K. Chaney, and C.E. Brennen. Measurements of solid spheres
bouncing off flat plates. Journal of Applied Mechanics, 57:694-699, 1990.

10. R. N. Dave, J. Yu, and A. D. Rosato. Measurement of collisional properties of
spheres using high-speed video analysis. preprint, 1994.

11. S. F. Foerster, M. Y. Louge, H. Chang, and K. Allia. Measurements of the collision
properties of small spheres. Phys. Fluids, 6(3):1108-1115, 1994.

12. R. D. Mindlin. Compliance of elastic bodies in contact. J. of Appl. Mech., 16:259,
1949.

13. R. D. Mindlin and H. Deresiewicz. Elastic spheres in contact under varying oblique
forces. J. of Appl. Mech., 20:327, 1953.

14. N. Maw, J. R. Barber, and J. N. Fawcett. The oblique impact of elastic spheres.
Wear, 38:101, 1976.

15. N. Maw, J. R. Barber, and J. N. Fawcett. The role of elastic tangential compliance
in oblique impact. J. Lubrication Tech., 103:74, 1981.

16. L. Labous, A. D. Rosato, and R. Dave. Measurements of collision properties of
spheres using high-speed video analysis. , 1997.

17. J. Duran, T. Mazozi, S. Luding, E. Clément, and J. Rajchenbach. Discontinuous
decompaction of a falling sandpile. Phys. Rev. E, 53(2):1923, 1996.

18. S. Luding, J. Duran, T. Mazozi, E. Clément, and J. Rajchenbach. Simulations of
granular flow: Cracks in a falling sandpile. In D. E. Wolf, M. Schreckenberg, and
A. Bachem, editors, Traffic and Granular Flow, Singapore, 1996. World Scientific.

19. S. Luding, J. Duran, E. Clément, and J. Rajchenbach. Simulations of dense granular
flow: Dynamic arches and spin organization. J. Phys. I France, 6:823-836, 1996.

20. S. Luding, J. Duran, E. Clément, and J. Rajchenbach. Computer simulations and
experiments of dry granular media: Polydisperse disks in a vertical pipe. In Proc.
of the 5th Chemical Engineering World Congress, San Diego, 1996. AIChE.

21. S. Luding, E. Clément, J. Rajchenbach, and J. Duran. Simulations of pattern
formation in vibrated granular media. Europhys. Lett., 36(4):247-252, 1996.



20

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

S. LUDING

S. Luding, E. Clément, A. Blumen, J. Rajchenbach, and J. Duran. Anomalous
energy dissipation in molecular dynamics simulations of grains: The “detachment
effect”. Phys. Rev. E, 50:4113, 1994.

J. Schifer, S. Dippel, and D. E. Wolf. Force schemes in simulations of granular
materials. J.Phys. I France, 6:5-20, 1996.

N. V. Brilliantov, F. Spahn, J. M. Hertzsch, and T. Poschel. Model for collisions in
granular gases. Phys. Rev. E, 53(5):5382, 1996.

M. Coulomb. Theorie des Machines Simples. Academie des Sciences, 10:166, 1781.
D. E. Wolf and P. Grassberger, editors. Friction, Arching and Contact Dynamics.
World Scientific, Singapore, 1997.

H. Hertz. Uber die Beriithrung fester elastischer Korper. J. fir die reine u. angew.
Math., 92:136, 1882.

L. D. Landau and E. M. Lifschitz. Elastizit”atstheorie. Akademie Verlag Dresden,
Berlin, 1989.

G. Kuwabara and K. Kono. Restitution coefficient in a collision between two spheres.
Japanese Journal of Applied Physics, 26(8):1230-1233, 1987.

Y .-h. Taguchi. Numerical modelling of convective motion in granular materials.
In S. Kai, editor, Pattern Formation in Complex Dissipative Systems, page 341,
Singapore, 1991. World Scientific.

C. Y. Zhu, A. Shukla, and M. H. Sadd. Prediction of dynamic contact loads in
granular assemblies. J. of Applied Mechanics, 58:341, 1991.

M. H. Sadd, Q. M. Tai, and A. Shukla. Contact law effects on wave propagation in
particulate materials using distinct element modeling. Int. J. Non-Linear Mechan-
ics, 28(2):251, 1993.

S. Luding, H. J. Herrmann, and A. Blumen. Scaling behavior of 2-dimensional
arrays of beads under external vibrations. Phys. Rev. E, 50:3100, 1994.

S. Luding, E. Clément, A. Blumen, J. Rajchenbach, and J. Duran. The onset of
convection in molecular dynamics simulations of grains. Phys. Rev. E, 50:R1762,
1994.

S. Luding, E. Clément, A. Blumen, J. Rajchenbach, and J. Duran. Interaction
laws and the detachment effect in granular media. In Fractal Aspects of Materials,
volume 367, page 495, Pittsburgh, Pennsylvania, 1995. Materials Research Society,
Symposium Proceedings.



