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ABSTRACT.One challenge of todays research is the realistic simutatbgranular materials,
like sand or powders, consisting of millions of particles. this article, the discrete element
method (DEM), as based on molecular dynamics methods yiglinted.

Contact models are at the physical basis of DEM. A set of th&t tmasic force models is pre-
sented involving either elasto-plasticity, adhesioncessty, static and dynamic friction as well
as rolling- and torsion-resistance.

The examples given concern clustering in granular gased,biraxial as well as cylindrical
shearing of dense packings in order to illustrate the migraero transition towards continuum
theory.

RESUME.Un des grand défis de la recherche d’aujourd’hui est de pausionuler de maniére
réaliste les matériaux granulaires comme le sable ou lesiEsuqui sont constituées de mil-
lions de particules. La méthode des éléments discrets (DERglais), basée sur le concept
de la méthode de dynamique moléculaire, est introduite.

Les modeles de contacts sont & la base de la méthode des &étisenets (DEM). Une série
de modéles de base est présenté avec des interactions ddagpe plastiques, adhésives, vis-
gueuses, des contacts a frottements statique et dynamigsieqae des contacts résistant en
roulement et torsion.

Des exemples de simulations des gaz granulaires “clugiegnglissements bi-axiaux et cylin-
driques dans des systemes denses sont étudiés afin dditllespassage du discret au continu.
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1. Introduction

The approach towards the microscopic understanding of asacpic particulate
material behavior (Herrmann, 1997; Kishino, 2001; Hinsehet al, 2004) is the
modeling of particles using so-called discrete elementous (DEM). Even though
millions of particles can be simulated, the possible lergfteuch a particle system
is in general too small in order to regard it as macroscopferé&fore, methods and
tools to perform a so-called micro-macro transition (Veemet al., 2001; Poschet
al., 2001; Kirkwoodet al., 1949) are discussed, starting from the DEM simulations.
These “microscopic” simulations of a small sample (repnéstgve volume element)
can be used to derive macroscopic constitutive relatioedee to describe the mate-
rial within the framework of a macroscopic continuum theory

For granular materials, as an example, the particle priggeand interaction laws
are inserted into DEM, which is also often referred to as b dynamics (MD),
and lead to the collective behavior of the dissipative mpasticle system. From a
particle simulation, one can extraetg, the pressure of the system as a function of
density. This equation of state allows a macroscopic detson of the material, which
can be viewed as a compressible, non-Newtonian complex(fluidinget al., 2001b),
including a fluid-solid phase transition.

In the following, two versions of the molecular dynamics siation method are
introduced. The first is the so-called soft sphere moleadyaamics (MD=DEM),
as described in Section 2. It is a straightforward impleragoi to solve the equa-
tions of motion for a system of many interacting particled€A et al., 1987; Rapa-
port, 1995). For DEM, both normal and tangential interatdidike friction, are dis-
cussed for spherical particles. The second method is tlwaléed event-driven (ED)
simulation, as discussed in Section 3, which is conceptuhfferent from DEM,
since collisions are dealt with using a collision matrixttatermines the momentum
change on physical grounds. For the sake of brevity, the Ehadds only discussed
for smooth spherical particles. A comparison and a way tateethe soft and hard
particle methods is provided in Section 4.

As one ingredient of a micro-macro transition, the streskefned for a dynamic
system of hard spheres, in Section 5, by means of kinetmryrerguments (Poschel
et al, 2001), and for a quasi-static system by means of volumeagesr(Latzekt
al., 2000). Examples are presented in the following Sectiomgl&rzawhere the above-
described methods are applied.

2. The soft particle Molecular Dynamics (M D) method

One possibility to obtain information about the behaviogeadnular media is to
perform experiments. An alternative are simulations wite imolecular dynamics
(MD) or discrete element model (DEM) (Cundatlal, 1979; Bashiet al,, 1991; van
Baars, 1996; Herrmaret al, 1998; Thornton, 2000; Thorntaet al., 2000; Thornton
et al, 2001; Vermeeet al, 2001; Latzelet al., 2003). Note that both methods are
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identical in spirit, however, different groups of reseanchuse these (and also other)
names.

Conceptually, the DEM method has to be separated from the dprere event-
driven (ED) molecular dynamics, see Section 3, and also freso-called Contact
Dynamics (CD). The former will be discussed below and in thiela by T. Pdschel
in this book, the latter (CD) will be introduced in the aréidly F. Radjai in this book.
Alternative stochastic methods like cell- or lattice gastinods are just named as key-
words, but not discussed here at all.

2.1. Discrete Element Model (DEM)

The elementary units of granular materials are mesoscapiogwhich deform
under stress. Since the realistic modeling of the defoomatof the particles is much
too complicated, we relate the interaction force to the layer of two particles, see
Figure 1. Note that the evaluation of the inter-particlecés based on the overlap
may not be sufficient to account for the inhomogeneous sttisisbution inside the
particles. Consequently, our results presented below fatteecsame quality as the
simple assumptions about the force-overlap relation, gpaé1.

2.2. Equations of motion

If all forces f, acting on the particlé, either from other particles, from bound-
aries or from external forces, are known, the problem iseeduo the integration of
Newton’s equations of motion for the translational andtioteal degrees of freedom:

2
mi@m = fi + m;g , and L%u& =1t [l]
with the massn; of particles, its positionr; the total forcef, = > _ f; acting on it
due to contacts with other particles or with the walls, theedgration due to volume
forces like gravityg, the spherical particles moment of inerfia its angular velocity
w; and the total torque; = > (I; x fi +¢5), wheregq are torques/couples at
contacts other than due to a tangential foecg, due to rolling and torsion.

The equations of motion are thus a systenDof D(D — 1)/2 coupled ordinary
differential equations to be solved1n = 2, 3 dimensions. With tools from numerical
integration, as nicely described in textbooks as (Ak¢mal, 1987; Rapaport, 1995),
this is straightforward. The typically short-ranged iatgtions in granular media, al-
low for a further optimization by using linked-cell or altextive methods (Alleret
al., 1987; Rapaport, 1995) in order to make the neighborhoagtisenore efficient.
In the case of long-range interactions,d.charged particles with Coulomb interac-
tion, or objects in space with self-gravity) this is not gbksanymore, so that more
advanced methods for optimization have to be applied — ferstke of brevity, we
restrict ourselves to short range interactions here.
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Figure 1. (Left) two particle contact with overlap. (Right) schematic graph of the
piecewise linear, hysteretic, adhesive force-displacemmmdel used below

2.3. Normal contact force laws

2.3.1. Linear normal contact model

Two spherical particles andj, with radii a; anda;, respectively, interact only if
they are in contact so that their overlap

§=(aita;)—(ri—r;) n (2]

is positive,d > 0, with the unit vectom = n;; = (r; — r;)/|r; — r;| pointing from
j toi. The force on particlg, from particlej, at contact, can be decomposed into a
normal and a tangential part #§ := f; = f"n + f't, wheref™ is discussed first.

The simplest normal contact force model, which takes intmant excluded vol-
ume and dissipation, involves a linear repulsive and a tidessipative force

J" = kb +youn (3]

with a spring stiffnes#, a viscous damping coefficieng, and the relative velocity in
normal directiorv,, = —v;; - n = —(v; —v;) -n =4.

This so-called linear spring dashpot model allows to viegvghrticle contact as a
damped harmonic oscillator, for which the half-period ofilaration around an equi-
librium position, see Figure 1, can be computed, and ondrabtatypical response
time on the contact level,

t, = T , with w=4/(k/mi2) —n3 [4]
w

with the eigenfrequency of the contagt the rescaled damping coefficien =
~0/(2m;;), and the reduced mass;; = m;m;/(m; + m;). From the solution of
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the equation of a half period of the oscillation, one alscaots the coefficient of
restitution

r ==, /vn = exp (=7 /w) = exp (—note) 5]

which quantifies the ratio of relative velocities after (peid) and before (unprimed)
the collision. For a more detailed discussion of this anatmore realistic, non-
linear contact models, seeg.(Luding, 1998), and the articles by Pdschel and Radjai
in this book.

The contact duration in Equation [4] is also of practicahtgical importance, since
the integration of the equations of motion is stable onlhhi integration time-step
Atpgwm IS much smaller tham.. Furthermore, it depends on the magnitude of dis-
sipation. In the extreme case of an overdamped sptingan become very large.
Therefore, the use of neither too weak nor too strong ditisipégs recommended.

2.3.2. Adhesive, elasto-plastic normal contact model

Here we apply a variant of the linear hysteretic spring m@dé&litonet al., 1986;
Luding, 1998; Tomas, 2000; Luding, 2008a), as an alteraabithe frequently applied
spring-dashpot models. This model is the simplest versisome more complicated
nonlinear-hysteretic force laws (Waltat al, 1986; Zhuet al, 1991; Sadcet al,
1993), which reflect the fact that at the contact point, padtformations may take
place. The repulsive (hysteretic) force can be written as

k16 for loading, if k3(6 —00) > k16
fivs =& k3(6 — 69) for un/reloading, —if k10 > ki (6 — 8o) > —ked
—k.o for unloading, if —k.0>k5(5—0o)

(6]

with k; < k3, see Figure 1, and Equation [7] below for the definition of(ireiable)
k3 as function of the constant model paraméter

During the initial loading the force increases linearly lwthe overlapd, until
the maximum overlap,,.. is reached (which has to be kept in memory as a history
parameter). The line with slope thus defines the maximum force possible for a
given§. During unloading the force drops from its valuedat., down to zero at
overlapdy = (1 — k1/k3)dmax, ON the line with slopé&;. Reloading at any instant
leads to an increase of the force along this line, until th&imam force is reached;
for still increasingy, the force follows again the line with sloge andd,,.x has to be
adjusted accordingly.

Unloading belowd, leads to negative, attractive forces until the minimum éorc
—koOmin is reached at the overlap,i, = (k3 — k1)dmax/ (k5 + k.). This mini-
mum force,i.e. the maximum attractive force, is obtained as a function efrttodel
parameters;, ko, k., and the history parametéy,... Further unloading leads to
attractive forcesf™* = —k.6 on the adhesive branch with slopé:.. The high-
est possible attractive force, for givén and k., is reached fokk, — oo, so that



790 EJECE -12/2008. Discrete modelling of geomaterials

hys — (ko — k1)dmax. Since this would lead to a discontinuity &t= 0, it is

max

avoided by using finité:..

The lines with slopé:; and —k. define the range of possible force values and
departure from these lines takes place in the case of umigadid reloading, respec-
tively. Between these two extremes, unloading and rel@ptbiiow the same line
with slopek,. Possible equilibrium states are indicated as circlesgufe 1, where
the upper and lower circle correspond to a pre-stressedtegabdree state, respec-
tively. Small perturbations lead, in general, to small déens along the line with
slopek, as indicated by the arrows.

A non-linear un/reloading behavior would be more realjstiowever, due to a
lack of detailed experimental informations, we use the gietse linear model as a
compromise. One refinement isk& value dependent on the maximum overlap that
implies small and large plastic deformations for weak amdngt contact forces, re-
spectively. One model, as implemented recently (Lugingl., 2005; Luding, 2008a),
requires an additional model parametgy, ., so thatk; (dmax) is increasing fromnk;
to ko (linear interpolation is used below, however, this is apotthoice to be made
and will depend on the material under consideration) wighnttaximum overlap, until
5% .. isreachedt

max

* _ k2 lf 5max 2 5;1&)(
#5{0max) = { ke + (k2 = k1)0max/Oax if Omax < 0 )

While in the case of collisions of particles with large def@tions, dissipation
takes place due to the hysteretic nature of the force-lawanger dissipation of small
amplitude deformations is achieved by adding the viscoecity dependent dissi-
pative force from Equation [3] to the hysteretic force, stitht f* = ™ + vgv,,.
The hysteretic model contains the linear contact model esiglcasé:; = ko = k.

2.3.3. Long range normal forces

Medium range van der Waals forces can be taken into accowddition to the
hysteretic force such that* = f* + f¥dW with, for example, the attractive part of
a Lennard-Jones Potential

£V = —6(e /ro)[(ro/ri5)7 = (ro/re)7] for 7y <. (8]

The new parameters necessary for this force are an eneigyseaaypical length
scalery and a cut-off lengthr.. As long asr. is not much larger than the particle di-
ameter, the methods for short range interactions still @agdplied to such a medium
range interaction model — only the linked cells have to bgdathan twice the cut-off
radius, and no force is active for> r..

1. A limit to the slopek: is needed for practical reasons. Hf would not be limited, the
contact duration could become very small so that the tingewstaild have to be reduced below
reasonable values.
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2.4. Tangential forcesand torquesin general

For the tangential degrees of freedom, there are threedifféorce- and torque-
laws to be implemented: (i) friction, (ii) rolling resiste, and (iii) torsion resistance.

2.4.1. Sliding

For dynamic (sliding) and statifriction, the relative tangential velocity of the
contact points,

vy = v — n(n - vg;) [9]

is to be considered for the force and torque computationslsection 2.5, with the
total relative velocity of the particle surfaces at the emit

! !
Vij =V —Vj + @GN X w; +a;n X w; [10]

with the corrected radius relative to the contact paipt= a, — /2, for a = 1, j.
Tangential forces acting on the contacting particles arepded from the accumu-
lated sliding of the contact points along each other, asritestin detail in Section
2.5.1.

2.4.2. Objectivity

In general, two particles can rotate together, due to botitedion of the reference
frame or a non-central “collision”. The angular velocity = wj +w?, of the rotating
reference has the tangential-plane component

n x (v; —vj)

11
a;—i—a;- [11]

wh =
which is related to the relative velocity, while the normahwponentwy, is not.
Insertingw; = w; = wf, from Equation [11], into Equation [10] leads to zero sliglin
velocity, proving that the above relations are objectivengential forces and torques
due to sliding can become active only when the particles@teing with respect to
the common rotating reference frafne

Since action should be equal to reaction, the tangentiak®are equally strong,
but oppositei.e., f§ = — f%, while the corresponding torques are parallel but not nec-
essarily equal in magnitudgi‘* = —ain x f,, andgTcton = (a/;/af)girietion,

Note that tangential forces and torquegetherconserve the total angular momentum
about the pair center of mass

2t 2 t
Lij =L+ Lj + MyTiemWo + M5T5em@o [12]
2. For rolling and torsion, there is no similar relation beeémeotational and tangential degrees

of freedom: for any rotating reference frame, torques dusoliong and torsion can become
active only due to rotation relative to the common referéname, see below.
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with the rotational contributiong,, = I,w,, for a = i, j, and the distances,..,, =
|ra—7em| fromthe particle centers to the center of mags = (m;r;+m;r;)/(m;+
m;), see (Luding, 1998). The change of angular momentum censishe change
of particle spins (first term) and of the change of the angmamentum of the two
masses rotating about their common center of mass (secony te
.. o a’ t
ot qireton (14 53]+ (a4 ) S 23]

which both contribute, but exactly cancel each other, since

friction 1 ﬁ (] I 14
q; +a’ = —(a; +a;)nxf, [14]
7

dt

= - (mirgcm + mjrjzcm)

see (Luding, 2006) for more details.

2.4.3. Rolling

A rolling velocity v? = —a/n x w; + ajn x wj, defined in analogy to the sliding
velocity, is not objective in general (Els, 2006; Luding08) — only in the special
cases of (i) equal-sized patrticles or (ii) for a particlding on a fixed flat surface.

The rolling velocity should quantify the distance the twafaoes roll over each
other (without sliding). Therefore, it is equal for both fees by definition. An
objective rolling velocityis obtained by using the reduced radiu% = a} a (a} +
a}), so that

vy = —aj; (N X w; —n X wj) . [15]

This definition is objective since any common rotation ofttie particles vanishes
by construction. A more detailed discussion of this issueeigond the scope of this
paper, rather see (Els, 2006; Luding, 2006) and the refesstherein.

A rolling velocity will activate torques, acting againstetlmolling motion, e.g,
when two particles are rotating anti-parallel with spinghia tangential plane. These
torques are then equal in magnitude and opposite in directie., g:°"""

- ’O“mg = a;; m X f,, with the quasi-forcef,, computed in analogy to the fric-
tlon force, as function of the rolling velocity, in Section 2.5.2; the quasi-forces for
both particles are equal and do not act on the centers of nidssefore, the total
momenta (translational and angular) are conserved.

2.4.4. Torsion
Fortorsion resistancethe relative spin along the normal direction

Vo=ai; (N -w;, —n-wj)n [16]
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is to be considered, which activates torques when two pestiare rotating anti-
parallel with spins parallel to the normal direction. Torsis not activated by a com-
mon rotation of the particles around the normal directionw, = n - (w; + wj) /2,
which makes the torsion resistance objective.

The torsion torques are equal in magnitude and directedposite directiond,e.,
gtorsion = qtomon = a;j f,, with the quasi-forcef ,, computed from the torsion
velocity in Secuon 2.5.3, and also not changing the trdimsial momentum. Like for
rolling, the torsion torques conserve the total angular matom.

2.4.5. Summary

The implementation of the tangential force computationsffg f,, and f, as
based onv,, v,., andw,, respectively, is assumed to lkentical i.e., even the same
subroutine is used, but with different parameters as spddielow. The difference is
that friction leads to a force in the tangential plane (chiagdpoth translational and
angular momentum), while rolling- and torsion-resistalezal to quasi-forces in the
tangential plane and the normal direction, respectivélgnging the particles’ angular
momentum only. For more details on tangential contact ngdettion, rolling and
torsion, see (Bartelst al,, 2005; Dintwaet al, 2005; Luding, 2007; Luding, 2006;
Els, 2006).

2.5. Thetangential force- and torque-models

The tangential contact model presented now is a single droegsubroutine) that
can be used to compute either sliding, rolling, or torsicistance. The subroutine
needs a relative velocity as input and returns the resmeftnce or quasi-force as
function of the accumulated deformation. The slidingkstig friction model will be
introduced in detail, while rolling and torsion resistaiace discussed where different.

2.5.1. Sliding/sticking friction model

The tangential force is coupled to the normal force throughl@mb’s law, f* <
f& = p° f™, where for the sliding case one has dynamic friction with= f£ :=
pf™. The dynamic and the static friction coefficients followgeneral, the relation
p? < p®. The static situation requires an elastic spring in ordetltaw for a restoring
force,i.e., a non-zero remaining tangential force in static equilibridue to activated
Coulomb friction.

If a purely repulsive contact is established, > 0, and the tangential force is
active. For an adhesive contact, Coulombs law has to be raddifiso far thaff" is
replaced byf™ + k.d. In this model, the reference for a contact is no longer the ze
force level, but it is the adhesive, attractive force levehg —k..¢.
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If a contact is active, one has to project (or better rotdteXangential spring into the
actual tangential plane, since the frame of reference of¢éiméact may have rotated
since the last time-step. The tangential spring

§=¢ -n(n-¢) [17]
is used for the actual computation, whéfds the old spring from the last iteration,
with |¢| = |¢| enforced by appropriate scaling/rotation. If the springésv, the

tangential spring-length is zero, but its change is wellragfiafter the first, initiation

step. In order to compute the changes of the tangentialg@aitangential test-force is
first computed as the sum of the tangential spring force aadgential viscous force
(in analogy to the normal viscous force)

fé = —ki§ — vy [18]

with the tangential spring stiffneds, the tangential dissipation parameterandv,
from Equation [9]. As long af}| < f&, with f& = p°(f™ + k.6), one has static
friction and, on the other hand, f¢f3| > fé&, sliding friction becomes active. As
soon as f,| gets smaller thagig, static friction becomes active again.

In the static frictioncase, below the Coulomb limit, the tangential spring iséAcr
mented

¢ =&+ v, Atup [19]

to be used in the next iteration in Equation [17], and the ¢autigl forcef’ = fg from
Equation [18] is used. In thgliding friction case, the tangential spring is adjusted to
a length consistent with Coulombs condition, so that

¢ = —kit (F& &+ yevr) [20]

with the tangential unit vectott = f5/|fL|, defined by Equation [18], and thus
the magnitude of the Coulomb force is used. Inserghdrom Equation [20] into
Equation [18] during the next iteration will lead §§, ~ f¢t. Note thatf{, andv, are
not necessarily parallel in three dimensions. Howevernihpping in Equation [20]
works always, rotating the new spring such that the direaticthe frictional force is
unchanged and, at the same time, limiting the spring in keagtording to Coulombs
law. In short notation the tangential contact law reads

f'=f't=-+min (fo,|fol) t [21]

wheref¢ follows the static/dynamic selection rules described abdhe torque on a
particle due to frictional forces at this contactgi§i°t» = 1 x ¢, wherel is the
branch vector, connecting the center of the particle wighabntact point. Note that
the torque on the contact partner is generally different agnitude, sincé; can be
different, but points in the same direction; see Sectior2Xa@r details on this.



Introduction to discrete element methods 795

The four parameters for the friction law atg pis, pq = 11a/ 115, andy;, accounting
for tangential stiffness, the static friction coefficietite dynamic friction ratio, and
the tangential viscosity, respectively. Note that the &antigl force described above is
identical to the classical Cundall-Strack spring only ia timits . = p* = p4, i.e,,
¢q = 1, andv; = 0. The sequence of computations and the definitions and mggpin
into the tangential direction can be used in 3D as well as in 2D

2.5.2. Rolling resistance model

The three new parameters for rolling resistancetare.,., and~,., while ¢, = ¢4
is used from the friction law. The new parameters accountdting stiffness, a
static rolling “friction” coefficient, and rolling viscosi, respectively. In the subrou-
tine called, the rolling velocity.. is used instead af; and the computed quasi-force
f, is used to compute the torqueg?'i"s, on the particles.

2.5.3. Torsion resistance model

The three new parameters for rolling resistancetgre:,, and-,, while ¢, = ¢4
is used from the friction law. The new parameters accourtbision stiffness, a static
torsion “friction” coefficient, and torsion viscosity, m@actively. In the subroutine,
the torsion velocityw, is used instead o, and the projection is a projection along
the normal unit-vector, not into the tangential plane agHerother two models. The
computed quasi-forcg, is then used to compute the torqugsr*i°, on the particles.

2.6. Background friction

Note that the viscous dissipation takes place in a two-glartiontact. In the bulk
material, where many particles are in contact with eachrpthis dissipation mode
is very inefficient for long-wavelength cooperative modésmmtion (Ludinget al,,
1994b; Ludinget al,, 1994a). Therefore, an additional damping with the badkgdo
can be introduced, so that the total force on particte

fi=>_ (f'n+f't) —wo; [22]

J

and the total torque

q; = Z (qfriction + qrolling + qtorsion) _ ")/(,7-&?&)7; [23]
J

with the damping artificially enhanced in the spirit of a pelaxation and equili-
bration. The sum in Equations [22] and [23] takes into actaillrcontact partners

of particles, but the background dissipation can be attributed to theumetetween
the particles. Note that the effect §f and~;, should be checked for each set of
parameters: it should be small in order to exclude artifioier-damping. The set of
parameters is summarized in Table 1. Note that only a fewnpeters are specified
with dimensions, while the other paramters are expresseatias.
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Table 1. Summary of the microscopic contact model parameters. Tigeloranged
forces and their parameters, o, andr. are not included here

| Property | Symbol |
Time unit ty
Length unit Ty
Mass unit My,
Particle radius ag
Material density p
Elastic stiffness (variable) ks
Maximal elastic stiffness k= ko
Plastic stiffness k1/k
Adhesion “stiffness” ke/k
Friction stiffness ki/k
Rolling stiffness kr/k
Torsion stiffness ko/k
Plasticity depth oys

Coulomb friction coefficient W= [d = s
Dynamic to static Friction ratiq ¢q = pa/ s
Rolling “friction” coefficient Ly

Torsion “friction” coefficient Lo

Normal viscosity Y ="
Friction viscosity Ye /v
Rolling viscosity %/’Y
Torsion viscosity Yo /7Y
Background viscosity Yo/

Background viscous torque Vor /Y

2.7. Example: tension test simulation results

In order to illustrate the power of the contact model (espfcihe adhesive normal
model), in this Section, uni-axial tension and compres$isits are presented. Note
that the contact model parameters are chosen once and teezanrsimulate loose
particles, pressure-sintering, and agglomerates wittrsehef paramters. With slight
extensions, the same model was already applied to tempevsitiering (Ludinget
al., 2005) or self-healing (Ludingt al., 2007; Ludinget al., 2008).

The tests consists of three stages: (i) pressure sintdiipgtress-relaxation, and
(iii) the compression- or tension-test itself. The contpatameters, as introduced
in the previous Section, are summarized in Table 1 and typilaes are given in
Table 2. These parameters are used for particle-particieacts,the same for all
tests unless explicitly specified.
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First, forpressure sinteringa very loose assembly of particles is compressed with
isotropic stres®,2a/ks ~ 0.02 in a cuboidal volume so that the adhesive contact
forces are activated this way. The stress- and strain-gledrwall motion modes
aredescribed below in Section 6.2.2.

Two of the six walls are adhesive, with®! /ky = 20, so that the sample sticks to
them later, while all other walls are adhesionless, so tiet tan be easily removed
in the next step. Note that during compression and sintetimgwalls could all be
without adhesion, since the high pressure used keeps thalesémgether anyway —
only later for relaxation, adhesion must switched on. Ifthetsample does not remain
a solid, and it also could lose contact with the walls, whidghlater used to apply the
tensile strain.

All walls should be frictionless during sintering, whilegtparticles can be slightly
adhesive and frictional. If the walls would be frictiondigtpressure from a certain
wall would not be transferred completely to the respectippasite wall, since fric-
tional forces carry part of the load — an effect that is knowmte the early work of
Janssen (Janssen, 1895; Sperl, 2006; Teglad, 2007). Pressure-sintering is stopped
when the kinetic energy of the sample is many orders of madeismaller than the
potential energy — typically 10 orders of magnitude.

During stress-relaxatiorall wall stresses are slowly releasedptg’ps <« 1 and
the sample is relaxed again until the kinetic energy is mucaller than the potential
energy. After this, the sample is ready for ttemsion or compression testsThe
non-adhesive side walls still feel a very small externassrthat is not big enough to
affect the dynamics of the tension test, it is just converniekeep the walls close to
the sample. (This is a numerical and not a physical requingénseéce our code uses
linked-cells and those are connected to the system sizhe Mvalls would move too
far away, either the linked cells would grow, or their numb&uld increase. Both
cases are numerically inefficient.)

For thetension testvall friction is typically active, but some variation doestn
show a big effect. One of the sticky walls is slowly and smbothoved outwards
like described and applied in earlier studies (Ludetgal, 2001a; Luding, 2005a;
Luding, 2007; Ludinget al, 2007; Luding, 2008a; Ludingt al, 2008), following a
prescribed cosine-function with time.

2.7.1. Model parameters for tension

The system presented here conta\is= 1728 particles with radiie; drawn from
a Gaussian distribution around= 0.005 mm (Davidet al., 2005; Davidet al,, 2007).
The contact model parameters are summarized in Tables 1.afde2volume frac-
tion,v = Y, V(a;)/V, with the particle volumé’ (a;) = (4/3)ma?, reached during
pressure sintering withap, /ks = 0.01 is v, = 0.6754. The coordination number is
C ~ 7.16 in this state. After stress-relaxation, these values hhgaged to’ ~ 0.629
andC =~ 6.19. A different preparation procedure (with adhesiofk: = 0 during
sintering) does not lead to a difference in density aftetesing.
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Table 2. Microscopic material parameters used (second column),off explicitly
specified. The third column contains these values in theggpiate units,i.e., when
the time-, length-, and mass-unit age, mm, and mg, respectively. Column four con-
tains the parameters in Sl-units. Energy, force, accelemtand stress have to be
scaled with factors of 1, #0107, and 10, respectively, for a transition from reduced
to Sl-units

| Symbol | Value | rescaled units| Sl-units |
tu 1 1us 10~6s
Tu 1 1mm 1073 m
My 1 1mg 10~%kg
ag 0.005 | 5um 5.107°m
p 2 2 mg/mm 2000 kg/m?
k:=ko 5 5 mg/us® 5.10° kg/s?
ey /K 0.5 - -
koK 0.5 - -
ke /K 0.2 - -
ke /k=ko/k || 0.1 - -
o7 005 |- -

P=fda = s || 1 - -
bqa = pa/ps || 1 - -

e = o 0.1 - -
Y ="n 5.107° | 5.10~°mg/us | 5.10' kg/s
Ve /Y 0.2 - -
/v =%/ | 005 |- -
Yo/ 4.0 - -
Yor /Y 1.0 - -

However, one observes~ 0.630 andC ~ 6.23 after relaxation. For both prepa-
ration procedures the tension test results are virtuantidal, so that only the first
procedure is used in the following.

The material parameters used for the particle contactsiaea ¢n Table 2. The
particle-wall contact parameters are the same, exceptdioesgion and friction, for
which k¥l /ky = 20 andp™®!' = 10 are used — the former during all stages, the latter
only during tensile testing.

The choice of numbers and units is such that the particlesespond spheres with
several microns in radius. The magnitude of stiffnesmnnot be compared directly
with the material bulk modulug’, since it is a contact property. However, there
are relations from micro-macro transition analysis, whatbw to relatek andC' ~
kCa?/V (Luding, 2005a; Luding, 2008a).
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Using the parametet = ko in Equation [4] leads to a typical contact duration
(half-period)t. ~ 6.510~* us, for a normal collision of a large and a small particle
with v = 0. Accordingly, an integration time-step 6fip = 5.107% us is used, in
order to allow for a “safe” integration of the equations oftion. Note that not only
the normal “eigenfrequency” but also the eigenfrequerinieangential and rotational
direction have to be considered as well as the viscous resptimest., ~ m/y.

All of the physical time-scales should be considerablydarhant\p, whereas the
viscous response times should be even larger, safhatt. > ¢tvp. A more detailed
discussion of all the effects due to the interplay betweemibdel parameters and the
related times is, however, far from the scope of this paper.

2.7.2. Tensile strength and contact adhesion

The tensile (compressive) test is performed uni-axially-glirection by increasing
(reducing) slowly and smoothly the distance between thestietty walls. (The same
initial sample, prepared with./ks = 1/2, is used for all tests reported here.) The
stress-strain curves for different cohesion are plottdeigure 2, for both tension and
compression. Note that the shape of the curves and the ayppaaterial behavior
(ductile, quasi-brittle, and brittle) depends not only e tontact parameters, but
also on the rate the deformation is performed (due to theouisdorces introduced
above). The present data are for moderate to slow deformafiaster deformation
leads to even smoother curves with larger apparent strentte considerably slower
deformation leads to more brittle behavior (with sharpepdrof stress) and somewhat
smaller strength.

The axial tensile stress initially increases linearly végtrain, practically indepen-
dent from the contact adhesion strength. With increasnagnsta considerable number
of contacts are opened due to tension — contacts open mahefeasmaller adhe-
sion (data not shown). This leads to a decrease of the sthess-slope, then the
stress reaches a maximum and, for larger strain, turns istiftaning failure mode.
As expected, the maximal stress is increasing with contdfetsionk,./ k.. The com-
pressive strength & — 7 times larger than the tensile strength, and a larger adhesio
force also allows for larger deformation before failure eldample with weakest ad-
hesionk./kes = 1/2, shows tensile and compressive failure at strajps~ —0.006
ande,, ~ 0.045, respectively.

Note that for tension, the post-peak behavior for the tes ii/k2 = 20 is dif-
ferent from the other two cases, due to the strong partiatéigbe contact adhesion.
In this case, the tensile fracture occurs at the wall (exfmapd few particles that re-
main in contact with the wall). This is in contrast to the atlbases with smaller
bulk-adhesion, where the fracture occurs in the bulk, sgerEi3.

3. Hard sphere molecular dynamics

In this Section, the hard sphere model is introduced togeitik the event-driven
algorithm. A generalized model takes into account the fiodetact duration of re-
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Figure 2. (Left) axial tensile stress plotted against tensile strf@insimulations with
weak, moderate and strong particle contact adhesion;khé- values are given in
the inset. The line gives a fit to the linear elastic regimeénwiit = 3.10'* N/n?
(Right) axial compressive stress plotted against. congivesstrain for two of the
parameter sets from the top panel. The initial slope is theesas in the top panel,
indicating that the linear elastic regime is identical femsion and compression

Figure 3. Snapshots from tensile tests witly k2 = 1/5, 1/2, 1, and20 at horizontal
strain ofe,, ~ —0.8 (top) and—0.7 (bottom). Color indicates distance from the
viewer: blue, green, and red are large, moderate, and shigtadces
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alistic particles and, besides providing a physcial patameaves computing time
because it avoids the “inelastic collapse”.

In the framework of the hard sphere model, particles arenasduo be perfectly
rigid and they follow an undisturbed motion until a collisioccurs as described be-
low. Due to the rigidity of the interaction, the collisionsaur instantaneously, so that
an event-driven simulation method (Lubachevsky, 1991;hgdt al., 1998b; Miller
et al, 2004b; Milleret al, 2004a; Miller, 2004) can be used. Note that the ED method
was only recently implemented in parallel (Lubachevsk@2;Miller et al., 2004b);
however, we avoid to discuss this issue in detail.

The instantaneous nature of hard sphere collisions iscgatifihowever, it is a
valid limit in many circumstances. Even though details &f tontact- or collision
behavior of two particles are ignored, the hard sphere misdelid when binary col-
lisions dominate and multi-particle contacts are rare (hget al, 2003). The lack
of physical information in the model allows a much simpleratiment of collisions
than described in Section 2 by just using a collision mateagddl on momentum con-
servation and energy loss rules. For the sake of simpligigyrestrict ourselves to
smooth hard spheres here. Collision rules for rough splaeessxtensively discussed
elsewhere, see.g.(Ludinget al,, 1998a; Herbstt al,, 2004), and references therein.

3.1. Smooth hard sphere collision model

Between collisions, hard spheres fly independently fronhesber. A change
in velocity — and thus a change in energy — can occur only aflsion. The stan-
dard interaction model for instantaneous collisions ohtiml particles with radius
a, and massn, is used in the following. The post-collisional velocities of two
collision partners in their center of mass reference franeegaven, in terms of the
pre-collisional velocities, by

vio=vi2F (1+7)v, /2 [24]

with v,, = [(v1 — v2) - n] n, the normal component of the relative velocity — vo,
parallel ton, the unit vector pointing along the line connecting the eenf the
colliding particles. If two particles collide, their velties are changed according
to Equation [24], with the change of the translational epeaga collisionAE =
—m12(1 — 7?)v2 /2, with dissipation for restitution coefficients< 1.

3.2. Event-Driven (ED) algorithm

Since we are interested in the behavior of granular pastiplessibly evolving over
several decades in time, we use an event-driven (ED) metlnichvdiscretizes the
sequence of events with a variable time step adapted to tidgon. This is different
from classical DEM simulations, where the time step is Ugdided.



802 EJECE -12/2008. Discrete modelling of geomaterials

In the ED simulations, the particles follow an undisturbeghslational motion
until an event occurs. An eventis either the collision of peoticles or the collision of
one patrticle with a boundary of a cell (in the linked-celustiure) (Allenet al., 1987).
The cells have no effect on the particle motion here; theyeveetely introduced to
accelerate the search for future collision partners in theraghm.

Simple ED algorithms update the whole system after eachtgw@method which is
straightforward, but inefficient for large numbers of pelgs. In (Lubachevsky, 1991)
an ED algorithm was introduced which updates only those tartigdes involved in
the last collision. Because this algorithm is “asynchraiom so far that an eveni.e.
the nextevent, can occur anywhere in the system, it is so complidat@érallelize
it (Miller et al, 2004b). For the serial algorithm, a double buffering daacsure is
implemented, which contains the ‘old’ status and the ‘newafiss, each consisting of:
time of event, positions, velocities, and event partnersiekiva collision occurs, the
‘old’ and ‘new’ status of the participating particles areckanged. Thus, the former
‘new’ status becomes the actual ‘old’ one, while the fornwdd” status becomes the
‘new’ one and is then free for the calculation and storageasfsible future events.
This seemingly complicated exchange of information isiedrout extremely simply
and fast by only exchanging the pointers to the ‘new’ and’‘stdtus respectively.
Note that the ‘old’ status of particlehas to be kept in memory, in order to update
the time of the next contact,;, of particle: with any other objecy if the latter,
independently, changed its status due to a collision witrapether particle. During
the simulation such updates may be neccessary several siontsat the predicted
‘new’ status has to be modified.

The minimum of allt;; is stored in the ‘new’ status of particte together with
the corresponding partngr Depending on the implementation, positions and ve-
locities after the collision can also be calculated. Thisulddoe a waste of com-
puter time, since before the tinig, the predicted partnegsand;j might be involved
in several collisions with other particles, so that we applgelayed update scheme
(Lubachevsky, 1991). The minimum times of evem, the times, which indicate the
next event for a certain particle, are stored in an orderegh tree, such that the next
event is found at the top of the heap with a computationakreffbO(1); changing
the position of one particle in the tree from the top to a nesitim need)(log N)
operations. The search for possible collision partnercielarated by the use of
a standard linked-cell data structure and consu@@s of numerical resources per
particle. In total, this results in a numerical effort ©f N log V) for N particles.
For a detailed description of the algorithm see (LubachgvE®91). Using all these
algorithmic tricks, we are able to simulate abaQt particles within reasonable time
on a low-end PC (Ludingt al, 1999), where the particle number is more limited by
memory than by CPU power. Parallelization, however, is amada overcome the
limits of one processor (Milleet al., 2004b).

As a final remark concerning ED, one should note that the dé&atdges con-
ncected to the assumptions made that allow to use an eveahdiigorithm limit the
applicability of this method. Within their range of appliility, ED simulations are
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typically much faster than DEM simulations, since the formecounts for a collision

in one basic operation (collision matrix), whereas thetatquires about one hundred
basic steps (integration time steps). Note that this sitems also true in the dense
regime. In the dilute regime, both methods give equivalestilts, because collisions
are mostly binary (Ludingt al, 1994a). When the system becomes denser, multi-
particle collisions can occur and the rigidity assumptidthim the ED hard sphere
approach becomes invalid.

The most striking difference between hard and soft spherdéise fact that soft
particles dissipate less energy when they are in contalstmaéiny others of their kind.
In the following chapter, the so called TC model is discusse@ means to account
for the contact duratioty. in the hard sphere model.

4. Thelink between ED and DEM with the TC model

In the ED method the contact duration is implicitly zero, ohaihg well the
corresponding assumption of instantaneous contacts usethé kinetic theory
(Haff, 1983; Jenkin®t al, 1985). Due to this artificial simplification (which disre-
gards the fact that a real contact takes always finite timealgBrithms run into prob-
lems when the time between eventsgets too small: In dense systems with strong
dissipationt, may even tend towards zero. As a consequence the so-calleldst
tic collapse” can occur.e. the divergence of the number of events per unit time.
The problem of the inelastic collapse (McNamatal., 1994) can be avoided using
restitution coefficients dependent on the time elapsededine last event (Ludingt
al., 1998b; Ludinget al., 2003). For the contact that occurs at timebetween parti-
clesi andj, one uses = 1 if at least one of the partners involved had a collision with
another particle later thar; — ¢.. The timet. can be seen as a typical duration of a
contact, and allows for the definition of the dimensionledior

Te =te/tn - [25]

The effect oft. on the simulation results is negligible for largand small.; for
a more detailed discussion see (Ludetgal,, 1998b; Ludinget al., 1999; Ludinget
al., 2003).

In assemblies of soft particles, multi-particle contacespossible and the inelastic
collapse is avoided. The TC model can be seen as a meanswdatlmulti-particle
collisions in dense systems (Ludirgal, 1996; Luding, 1997; Ludingt al,, 1998b).
In the case of a homogeneous cooling system (HCS), one céicitixgompute the
corrected cooling rate (r.h.s.) in the energy balance éguat

d

—FE = —-2I(E,t. 26

e (B, te) [26]
with the dimensionless time = (2/3) At/tg(0) for 3D systems, scaled by = (1 —

r%)/4, and the collision rate,' = (12/a)vg(v)\/T/(mm), with T = 2K/(3N). In
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these units, the energy dissipation rate a function of the dimensionless energy=

K /K (0) with the kinetic energys, and the cut-off time.. In this representation, the
restitution coefficient is hidden in the rescaled timedin= A(r), so that inelastic
hard sphere simulations with differentscale on the same master-curve. When the
classical dissipation rat&3/2? (Haff, 1983) is extracted frond, so thatl(E,t.) =
J(E,t.)E%/?, one has the correction-functioh— 1 for t. — 0. The deviation from
the classical HCS is (Ludinet al., 2003):

J(E,t.) = exp (¥(z)) [27]

with the series expansiobi(z) = —1.268z + 0.01682z% — 0.0005783z% + O(x%)
in the collision integral, withe = /7t.t;' (0)VE = /77.(0)VE = /7. (Luding
et al, 2003). This is close to the result;y; = —2x/+/7, proposed by Luding and
McNamara, based on probabilistic mean-field argumentsitiget al., 1998b§.

Given the differential equation [26] and the correction tuenulti-particle con-
tacts from Equation [27], it is possible to obtain the s@nthumerically, and to com-
pare it to the classical, = (1 + 7)~2 solution. Simulation results are compared to
the theory in the left panel of Figure 4. The agreement betvegaulations and the-
ory is almost perfect in the examined ranget g¥alues, only when deviations from
homogeneity are evidenced one expects disagreement esimeglation and theory.
The fixed cut-off timet. has no effect when the time between collisions is very large
tg > t., but strongly reduces dissipation when the collisions oedgth high fre-
quencyt,g1 R t-1. Thus, in the homogeneous cooling state, there is a strdagtef
initially, and if ¢. is large, but the long time behavior tends towards the adakdecay
E—E, x72.

The final check if the ED results obtained using the TC modet@asonable is to
compare them to DEM simulations, see the right panel in [eigurOpen and solid
symbols correspond to soft and hard sphere simulationgcésgply. The qualitative
behavior (the deviation from the classical HCS solutioijéntical: The energy decay
is delayed due to multi-particle collisions, but later thessical solution is recovered.
A quantitative comparison shows that the deviatiofvdfom E'; is larger for ED than
for DEM, given that the samg. is used. This weaker dissipation can be understood
from the strict rule used for ED: Dissipation is inactive ifyaparticle had a contact
already. The disagreement between ED and DEM is systenmatistzould disappear
if an about 30 per-cent smallég value is used for ED. The disagreement is also
plausible, since the TC model disregards all dissipationmfalti-particle contacts,
while the soft particles still dissipate energy — even thoogich less — in the case of
multi-particle contacts.

The above simulations show that the TC model is in fact aKtrio make hard
particles soft and thus connecting between the two typesraflation models: soft
and hard. The only change made to traditional ED involveslaaed dissipation for
(rapid) multi-particle contacts.

3. Ui thus neglects non-linear terms and underestimates the pzet.
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Figure 4. (Left) deviation from the HCS, i.e. rescaled enefgyE,, whereFE; is the
classical solutionE, = (1 + 7)~2. The data are plotted againstfor simulations
with differentr.(0) = t./tg(0) as given in the inset, with = 0.99, and N = 8000.
Symbols are ED simulation results, the solid line resultsnfithe third order correc-
tion. (Right)E'/ E.. plotted against- for simulations with- = 0.99, and N = 2197.
Solid symbols are ED simulations, open symbols are DEM fsoficle simulations)
with three different, as given in the inset

5. Thesdtressin particle smulations

The stress tensor is a macroscopic quantity that can beneltély measurement
of forces per area, or by a so-called micro-macro homog#aizarocedure. Both
methods will be discussed below. During derivation, it &lsms out that stress has
two contributions, the first is the “static stress” due totigée contacts, gotential
energy densitythe second is the “dynamics stress” due to momentum flu jtikhe
ideal gas, &inetic energy densityFor the sake of simplicity, we restrict ourselves to
the case of smooth spheres here.

5.1. Dynamic stress

For dynamic systems, one has momentum transport in formxobfithe particles.
This simplest contribution to the stress tensor is the stahdtress in an ideal gas,
where the atoms (mass points) move with a certain fluctugstotity v,. The kinetic
energyE = > muv?/2 due to the fluctuation velocity; can be used to define the
temperature of the gasgT = 2E/(DN), with the dimensiorD and the particle
numberN. Given a number density = N/V, the stress in the ideal gas is then
isotropic and thus quantified by the presspre nkgT'; note that we will disregard
kp in the following. In the general case, the dynamic stressis (1/V) >, m; v; ®
v;, with the dyadic tensor product denoted l®y,'and the pressurg = tro /D = nT
is the kinetic energy density.
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The additional contribution to the stress is due to collisiand contacts and will
be derived from the principle of virtual displacement foftdateraction potentials
below, and then be modified for hard sphere systems.

5.2. Static stressfrom virtual displacements

From the centers of mags andr, of two particles, we define the so-called branch
vectorl = 7, — ro, with the reference distande= |l| = 2a at contact, and the
corresponding unit vectat = I/I. The deformation in the normal direction, relative
to the reference configuration, is defineddas= 2an — [. A virtual change of the
deformation is then

90=08 —d~dl=c-l [28]

where the prime denotes the deformation after the virtutsdldcement described by
the tensoke. The corresponding potential energy density due to theactsibf one
pair of particles isu = kd?/(2V), expanded to second order & leading to the
virtual change

k 1 9 k "
wherek is the spring stiffness (the prefactor of the quadratic terthe series expan-
sion of the interaction potential); is the averaging volume, add™ = n(n -¢-1) is
the normal component @fl. Note thatou depends only on the normal component of
06 due to the scalar product with which is parallel tan.

From the potential energy density, we obtain the stress &mmtual deformation
by differentiation with respect to the deformation tensemponents
ou k
deV

where f = ké is the force acting at the contact, and the dyadic producf two
vectors leads to a tensor of rank two.

g =

1
5®1=Vf®l [30]

5.3. Stressfor soft and hard spheres

Combining the dynamic and the static contributions to thessttensor (Ludingt
al., 2001c), one has for smooth, soft spheres:

O'Z% mei(@vi—ch@lc [31]

ceV
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where the right sum runs over all contacia the averaging volum¥&. Replacing the
force vector by momentum change per unit time, one obtainksdod spheres:

0':% mei®vi—%t22pj®lj [32]
i n 7

wherep; andl; are the momentum change and the center-contact vectortafipar
at collisionn, respectively. The sum in the left term runs over all pagt¢| the first
sum in the right term runs over all collisionsccurring in the averaging timé&¢, and
the second sum in the right term concerns the collision pastof collisionn (Luding
et al, 1998h).

Exemplary stress computations from DEM and ED simulatioespaesented in
the following Section.

6. Two-dimensional ssmulation results

Stress computations from two dimensional DEM and ED sinwiatare presented
in the following subsections. First, a global equation atetvalid for all densities, is
proposed based on ED simulations, and second, the stresss fem a slow, quasi-
static deformation is computed from DEM simulations witictional particles.

6.1. The equation of state from ED

The mean pressure in two dimensiong is (o1 + 02)/2, with the eigenvalues,;
andos of the stress tensor (Ludireg al., 2001b; Ludinget al., 2001c; Luding, 2002).
The 2D dimensionless, reduced pressBire p/(nT) — 1 = pV/E — 1 contains only
the collisional contribution. Simulations agree nicelyttwihe theoretical prediction
P, = 2vgy(v) for elastic systems, with the pair-correlation functigifr) = (1 —
7v/16)/(1 — v)?, and the volume fraction = N7a?/V, see Figure 5. A “better”
pair-correlation function

_1-Tv/16 v3/16
91) = A7 T3

(33]

defines the non-dimensional collisional strégs= 2vg,(v).

For a system with homogeneous temperature, as a remarkpliigon rate is
proportional to the dimensionless presstjé oc P.

When plottingP againstv with a logarithmic vertical axis, in Figure 5, the sim-
ulation results can almost not be distinguished frBsnfor v < 0.65, but P, leads
to better agreement up io = 0.67. Crystallization is evidenced at the point of the
liquid-solid transitionv. ~ 0.7, and the data clearly deviate from. The pressure



808 EJECE -12/2008. Discrete modelling of geomaterials

100 |

10 |

Figure 5. The dashed lines ar; and Pyense as functions of the volume fraction
and the symbols are simulation data, with standard dewvetias given by the error
bars in the inset. The thick solid line 3, the corrected global equation of state from
Equation [34], and the thin solid line i§, without empirical corrections

is strongly reduced due to the increase of free volume cabgeddering. Eventu-
ally, the data diverge at the maximum packing fractign, = 7/(2v/3) for a perfect
triangular array.

For high densities, one can compute from free-volume motiedsreduced pres-
sure P, = 2Umax/(Vmax — v). Slightly different functional forms do not lead to
much better agreement (Luding, 2002). Based on the nunheata, we propose the
corrected high density pressufBense = Prvh(Vmax — V) — 1, with the empirical fit
functionh(z) = 1+ c1z +c32, ande; = —0.04 andcs = 3.25, in perfect agreement
with the simulation results far > 0.73.

Since, to our knowledge, there is no conclusive theory ak#glto combine the
disordered and the ordered regime (Kawamura, 1979), weopeoa global equation
of state

Q = P4 + m(V)[Pdense - P4] [34]

with an empirical merging functiom(v) = [1 + exp (—(v — v)/mo)] ™!, which
selectsP, for v < v, and Pyense for v > v, with the transition density. and the
width of the transitionng. In Figure 5, the fit parametets = 0.702 andmy ~
0.0062 lead to qualitative and quantitative agreement betwgdthick line) and the
simulation results (symbols). However, a simpler versipn= P, + m(v)[ P, — Ps),
(thin line) without empirical corrections leads alreadyéasonable agreement when
v. = 0.698 andmy = 0.0125 are used. In the transition region, this functiQg
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has no negative slope but is continuous and differentisulethat it allows for an
easy and compact numerical integration/tf We selected the parameters g as
a compromise between the quality of the fit on the one hand lagitnplicity and
treatability of the function on the other hand.

As an application of the global equation of state, the dgnmibfile of a dense
granular gas in the gravitational field has been computenhforodisperse (Ludinet
al., 2001c) and bidisperse situations (Ludatgl., 2001b; Luding, 2002). In the latter
case, however, segregation was observed and the mixtung/tb@uld not be applied.
The equation of state and also other transport propertesxensively discussed in
(Alam et al,, 2002b; Alamet al,, 2002a; Alamet al., 2003b; Alamet al,, 2003a) for
2D, bi-disperse systems.

6.2. Quasi-static DEM simulations

In contrast to the dynamic, collisional situation discuksethe previous Section,
a quasi-static situation, with all particles almost at rastt of the time, is discussed
in the following.

6.2.1. Model parameters

The systems examined in the following conté&in= 1950 particles with radiia;
randomly drawn from a homogeneous distribution with minimu,,;, = 0.510~3m
and maximumu,.x = 1.5107*m. The massesy; = (4/3)pma3, with the density
p = 2.010%kgm~3, are computed as if the particles were spheres. This is Hisiaft
choice and introduces some dispersity in mass in additichealispersity in size.
Since we are mainly concerned about slow deformation andiledum situations,
the choice for the calculation of mass should not matter.tdta¢ mass of the particles
in the system is thus/ ~ 0.02 kg with the typical reduced mass of a pair of particles
with mean radiusm, ~ 0.42107°kg. If not explicity mentioned, the material
parameters arg, = 10°Nm~! and~, = 0.1kgs™!. The other spring-constarnts
and k. will be defined in units of,. In order to switch on adhesiok; < k2 and
k. > 0is used; if not mentioned explicitlys; = k2/2 is used, and:, is constant,
independent of the maximum overlap previously achieved.

Using the parameters;, = k; andk. = 0 in Equation [4] leads to a typical
contact duration (half-period),. ~ 2.03107°s forvy = 0, t. ~ 2.04107°s for
7 = 0.1kgs™!, andt. =~ 2.21107°s fory, = 0.5kgs™! for a collision. Accord-
ingly, an integration time-step dbry = 51077 s is used, in order to allow for a
‘safe’ integration of contacts involving smaller partigleLarge values of. lead to
strong adhesive forces, so that also more energy can bgatisdiin one collision.
The typical response time of the particle pairs, howevenasaffected so that the
numerical integration works well from a stability and acey point of view.
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6.2.2. Boundary conditions

The experiment chosen is the bi-axial box set-up, see Fi§useghere the left
and bottom walls are fixed, and stress- or strain-contraliefirmation is applied.
In the first case a wall is subject to a predefined pressurd)arsécond case, the
wall is subject to a pre-defined strain. In a typical ‘expet), the top wall is strain
controlled and slowly shifted downwards while the right \abves stress controlled,
dependent on the forces exerted on it by the material in tike Thee strain-controlled
position of the top wall as function of timeis here

20 — 2f (1 +coswt), with €, =1-— Z [35]

2 20

2(t) = 2z +

where the initial and the final positiong andz¢ can be specified together with the
rate of deformatiow = 27 f so that after a half-perio@/2 = 1/(2f) the extremal
deformation is reached. With other words, the cosine ivadtr0 < wt < 7. For
larger times, the top-wall is fixed and the system can reldefinitely. The cosine
function is chosen in order to allow for a smooth start-up &nigh of the motion
so that shocks and inertia effects are reduced, howeveshtyge of the function is
arbitrary as long as it is smooth.

z(t)

0 T2

Figure 6. (Left) schematic drawing of the model system. (Right) jposif the top-
wall as function of time for the strain-controlled situatio

The stress-controlled motion of the side-wall is describgd
My (t) = Fi(t) — pxz(t) — ywi(t) [36]

wherem,, is the mass of the right side wall. Large valuesqf lead to slow adaption,

small values allow for a rapid adaption to the actual sitratiThree forces are active:
(i) the forceFi(t) due to the bulk material, (ii) the forcep,z(¢) due to the external

pressure, and (iii) a strong frictional force which dampesitinotion of the wall so that

oscillations are reduced.
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6.2.3. Initial configuration and compression

Initially, the particles are randomly distributed in a hiogex, with rather low over-
all density. Then the box is compressed, either by movinguéks to their desired
position, or by defining an external pressgwre= p, = p,, in order to achieve an
isotropic initial condition. Starting from a relaxed, isgpic initial configuration, the
strain is applied to the top wall and the system responseamared. In Figure 7,
snapshots from a typical simulation are shown during cosgioa.

Figure 7. Snapshots of the simulation at different for constant side pressune
The color code corresponds to the potential energy of eactighg decaying from
red over green to blue and black. The latter black particlesso-called rattlers that
do not contribute to the static contact network

In the following, simulations are presented with differsitte pressureg = 20,
40, 100, 200, 400, and500. The behavior of the averaged scalar and tensor variables
during the simulations is examined in more detail for sitwa with small and large
confining pressure. The averages are performed such thattieanty per-cent of the
total volume are disregarded in the vicinity of each wall mder to avoid boundary
effects. A particle contact is taken into account for therage if the contact point lies
within the averaging volumg'.

6.2.4. Compression and dilation

The first quantity of interest is the density (volume fran)io and, related to it, the
volumetric strairey, = AV/V. From the averaged data, we evidence compression for
small deformation and large side pressure. This initialmegollows strong dilation,
for all pressures, until a quasi-steady-state is reachéeérevthe density is almost
constant besides a weak tendency towards further dilation.
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Figure 8. (Left) volume fractionv = 3", wa?/V for different confining pressure.
(Right) volumetric strain — negative values mean compoessihereas positive values
correspond to dilation

An initially dilute granular medium (weak confining pressjthus shows dilation
from the beginning, whereas a denser granular materian@gtconfining pressure)
can be compressed even further by the relatively strongreadtéorces until dilation
starts. The range of density changes is about 0.02 in voluaetidn and spans up to
3 % changes in volumetric strain.

From the initial slope, one can obtain the Poisson ratio eftthlk material, and
from the slope in the dilatant regime, one obtains the skedalilatancy angle, a
measure of the magnitude of dilatancy required before sisgaossible (Ludinget
al., 2001a; Luding, 2004a).

6.2.5. Fabric tensor

The fabric tensor is computed according to (Luding, 2005ihg, 2005a), and
its isotropic and deviatoric contributions are displayedrigure 9. The isotropic
contribution (the contact number density) is scaled by ttegligtion from (Madadi
et al,, 2004), and the deviation from the prediction is betweentorree percent,
where the larger side pressure data are in better agreesmeali€r deviation). Note
that the correction due to the factgr corresponds to about nine per-cent, and that the
data are taken in the presence of friction, in contrast tsiimellations by (Madadét
al., 2004), a source of discrepancy, which accounts in our opifor the remaining
deviation.

The anisotropy of the granular packing is quantified by theaderic fabric, as
displayed in its scaled form in Figure 9. The anisotropy itidty of the order of a
few percent at most — thus the initial configurations are motqetly isotropic. With
increasing deviatoric deformation, the anisotropy graeaches a maximum and then
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Figure9. (Left) quality factor for the trace of the fabric tensor sedlby the analytical
predictiong,C from (Madadiet al, 2004), for different pressurgs as function of
the vertical deformation. (Right) deviatoric fraction a&tfabric tensor from the same
simulations plotted against the deviatoric strain

saturates on a lower level in the critical state flow regimée Bcaled fabric grows
faster for smaller side pressure and is also relativelyelafgr smallerp. The non-
scaled fabric deviator, astonishingly, grows to valuesiady' ;**tr F ~ 0.56 & 0.03,
independently of the side pressures used here (data nonsisew (Luding, 20044a;
Luding, 2004b) for details). Using the definitigh := devF'/trF, the functional
behavior,

0
Lo by (5~ i) [37)

was evidenced from simulations in (Luding, 2004a), wifi?*tr F' ~ const., and the
deviatoric rate of approagfy = 3¢(p), decreasing with increasing side pressure. The
differential equation is solved by an exponential functioat describes the approach
of the anisotropyfp to its maximal valuel — (fp/f5**) = exp (—fBrep), but not

beyond.

6.2.6. Stress tensor

The sums of the normal and the tangential stress-contibsitare displayed in
Figure 10 for two side-pressurgs= 20 andp = 200. The lines show the stress
measured on the walls, and the symbols correspond to thes streasured with the
micro-macro average in Equation [31], proving the reastmgbality of the micro-
macro transition as compared to the wall stress “measurémen

There is also other macroscopic information hidden in thesststrain curves in
Figure 10. From the initial, rapid increase in stress, omedistermine moduli of the
bulk-material,i.e, the stiffness under confinement Later, the stress reaches a peak
at approximately2.6p and then saturates at ab@ut From both peak- and saturation
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stress, one obtains the yield stresses at peak and in cetaa flow, respectively
(Schwedes, 2003).

80 r P, 7 800 r P, g
Py —— Py ——
a . o .
60 |- o)fxz . 600 t GXZXZ .
S 40t <F 400t
o b
20 200
p=20 p=200
0 1 1 1 0 1 1 1
0 005 01 015 0.2 0 005 01 015 0.2
EZZ EZZ

Figure 10. Total stress tensarr = o™ + o for small (left) and high (right) pressure
—the agreement between the wall pressure and the averagsd & almost perfect

Note that for the parameters used here, both the dynamgssired the tangential
contributions to the stress tensor are more than one ordeaghitude smaller than
the normal contributions. As a cautionary note, we remas@ Hiat the artificial stress
induced by the background viscous force is negligible haipe(t two per-cent), when
v = 1073kg s~! and a compression frequengy= 0.1s~! are used. For faster
compression withf = 0.5s!, one obtains about ten per-cent contribution to stress
from the artificial background force.

The behavior of the stress is displayed in Figure 11, wheseigbtropic stress
%tra is plotted in units ofp, and the deviatoric fraction is plotted in units of the
isotropic stress. Note that the tangential forces do notritirte to the isotropic stress
here since the corresponding entries in the averaging guveecompensate. From
Figure 11, we evidence that both normal contributions, tbe-dimensional trace
and the non-dimensional deviator behave similarly, indeleat of the side pressure:
Starting from an initial value, a maximum is approached, ngtibe maximum is only
weakly dependent on

The increase of stress is faster for lower After the maximum is reached,
the stresses decay and approach a smaller value in theakstete flow regime.
Using the definitionssy := tro/(2p) — 1 and sp := deveo/tro, the maxi-
mal (non-dimensional) isotropic and deviatoric stresgessg@®* ~ 0.8 = 0.1 and
sH** =~ 0.4 & 0.02, respectively, with a rather large error margin. The cqroesling
values at critical state flow arg§, ~ 0.4 = 0.1 ands}, ~ 0.29 & 0.04.
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Figure 11. Non-dimensional stress tensor contributions for diffégenThe isotropic
(left) and the deviatoric fractions (right) are displayes fanctions of the vertical and
deviatoric strain, respectively

The evolution of thaleviatoric stresdraction,sp, as function ok p, is displayed
in Figure 11. Like the fabric, also the deviatoric stressaggntially approaches its
maximum. This is described by the differential equation

9sp
85D

= fs (sp™ = sp)

(38]
whereg, = f3,(p) is decaying with increasing (roughly asg, ~ p—'/2). For more
details on the deviatoric stress and also on the tangewtigtibution to the stress, see
(Luding, 20044a; Luding, 2004b; Luding, 2005b; Luding, 28D5

7. Larger computational examples

In this Section, several examples of rather large partialalmers simulated with
DEM and ED are presented. The ED algorithm is first used tolsiraa freely cooling
dissipative gas in two and three dimensions (Ludihgl.,, 1999; Milleret al., 2004a).
Then, a peculiar three dimensional ring-shear experinsamoideled with soft sphere

DEM.

7.1. Freecooling and cluster growth (ED)

In the following, a two-dimensional system of length= [/d = 560 with N =
99856 dissipative particles of diameter = 2a is examined (Ludinget al, 1998b;
Luding et al,, 1999), with volume fractiomw = 0.25 and restitution coefficient =
0.9. This 2D system is compared to a three-dimensional systdengthL = [/d =
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129 with N = 512000 dissipative spheres of diametéand volume fractiow = 0.25
with » = 0.3 (Miller et al, 2004a).

7.1.1. Initial configuration

Initially the particles are arranged on a square latticl wahdom velocities drawn
from an interval with constant probability for each coomtimn The mean total veloc-
ity, i.e.the random momentum due to the fluctuations, is eliminatedder to have a
system with its center of mass at rest. The system is allowesidlve for some time,
until the arbitrary initial condition is forgotten.e. the density is homogeneous, and
the velocity distribution is a Gaussian in each coordinatesn dissipation is switched
on and the evolution of the system is reported for the sedectén order to avoid the
inelastic collapse, the TC model is used, which reducegpditien if the time between
collisions drops below a value 6f = 10~ °s.

Figure 12. (Left) collision frequency of individual particles from @&Zimulation,
after about 5200 collisions per particle. (Right) clustésualization from a 3D sim-
ulation. The colors in both panels indicate large (red), mued (green), and small
(blue) collision rates

7.1.2. System evolution

For the values of used here, the system becomes inhomogeneous quite rapidly
(Ludinget al, 1999; Milleret al,, 2004a). Clusters, and thus also dilute regions, build
up and have the tendency to grow. Since the system is findi,agktension will reach
system size at a finite time. Thus we distinguish betweerethegimes of system
evolution: (i) the initially (almost) homogeneous staig,the cluster growth regime,
and (iii) the system size dependent final stage where théectusave reached system
size. We note that a cluster does not behave like a solid thodyras internal motion
and can eventually break into pieces after some time. Thieseg(small clusters)
collide and can merge to larger ones.
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In Figure 12, snapshots are presented and the collisioriga@or-coded. The
collision rate and the pressure are higher inside the clitan at their surface. Note
that most of the computational effort is spent in predictiogisions and to compute
the velocities after the collisions. Therefore, the regiaith the largest collision fre-
guencies require the major part of the computational ressuDue to the TC model,
this effort stays limited and the simulations can easilyticwe for many thousand
collisions per particle.

7.1.3. Discussion

Note that an event driven simulation can be 10-100 timesgifélsan a soft-particle
DEM code applied to model the same particle number. How&Iiis rather limited
to special, simple interactions between the particlestheuexamples of event-driven
simulations will be presented in the paper by T. Péscheligibok.

7.2. Ring shear cell smulation in 3D

The simulation in this Section models a ring-shear cell expent, as recently
proposed (Fenisteiat al,, 2003; Fenisteiret al., 2004). The interesting observation
in the experiment is a universal shear zone, initiated atbtittom of the cell and
becoming wider and moving inwards while propagating upwamdhe system.

In the following, the shear-band will be examined, and thermyimacro transition
from will be performed, leading to a yield stress (or flow ftian) based on a single
simulation. This is in contrast to the two-dimensional epéarfrom the previous
chapter, where the yield stress had to be determined fraierelift simulations with
different side stresg. In the ring shear cell, space- and time-averaging is plessb
that - at different radial and vertical positions, one otgailata for different density,
stress, velocity gradient, etc.

7.2.1. Model system

The numerical model chosen here is DEM with smooth particlékree dimen-
sions. In order to save computing time, only a quarter of thg-shaped geometry is
simulated. The walls are cylindrical, and are rough on thtigla scale due to some
attached particles. The outer cylinder wall with radids, and part of the bottom
r > Ry are rotating around the symmetry axis, while the inner wétthwadiusR;,
and the attached bottom-disk< R, remain at rest. In order to resemble the exper-
iment, the geometry data are, = 0.0147m, R; = 0.085m, andR, = 0.110m.
Note that the smalR; value is artificial, but it does not affect the results for #rand
intermediate filling heights.

The slitin the bottom wall at = R, triggers a shear band. In order to examine the
behavior of the shear band as function of the filling heighthis system is filled with
6000 to 64000 spherical particles with mean radilsnm and radii rang®.5 mm
< a < 1.5mm, which interact here with repulsive and dissipative ésronly. The
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particles are forced towards the bottom by the gravity fgtge- mg here and are kept
inside the system by the cylindrical walls. In order to pd®/some wall roughness, a
fraction of the particles (about 3 per-cent) that are oadiynin contact with the walls
are glued to the walls and move with them.

7.2.2. Material and system parameters

The material parameters for the particle-particle and I-imdéractions areé: =
102 N/m andy, = 2.10~3kg/s. Assuming a collision of the largest and the smallest
particle used, the reduced mass, = 2.94 10~%kg, leads to a typical contact dura-
tiont. = 5.4 10~* s and a restitution coefficient of= 0.83. The integration time step
istpem = 5.107%s,i.e.two orders of magnitude smaller than the contact duration.

Figure 13. Snapshots from the quarter-cylinder geometry. Visibletene only those
particles glued to the wall; the cylinder and slit positioa® indicated by the lines,
top-view (left) and front-view (right). The colors blue aed correspond to static and
moving wall particles

The simulations run for 25 s with a rotation ragtg= 0.01s~! of the outer cylin-
der, with angular velocity), = 2« f,. For the average of the displacement, only times
t > 10s are taken into account. Within the averaging accuracysyhem seemingly
has reached a quasi-steady state after about 8 s. The erlijgysb@wn in Figure 13,
while three realizations with different filling height arésplayed in Figure 14, both
as top- and front-view.

7.2.3. Shear deformation results

From the top-view, it is evident that the shear band movesids/with increasing
filling height, and it also becomes wider. From the frontwithe same information
can be evidenced and, in addition, the shape of the sheairsdd the bulk is visible:
The inwards displacement happens deep in the bulk and thtépasf the shear band
is not changing a lot closer to the surface.
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Figure 14. Snapshots from simulations with different filling heigtgers from the top
and from the front, and the particle numbatis given in the inset. The colors blue,
green, orange and red denote particles wiilyy < 0.5mm,rd¢ < 2mm,rd¢ <
4mm, andrd¢ > 4mm,i.e. the displacement in tangential direction per second,
respectively. The filling heights in these simulations Hre= 0.018 m, 0.037m, and
0.061 m (from left to right)

In order to allow for a more quantitative analysis of the stx@end, both on the top
and as function of depth, we perform fits with the universalpEhfunction proposed
in (Fenisteiret al, 2003):

”fé:) —A (1 +erf (r ;VRC» [39]

where A is a dimensionless amplitudé = 0.50 + 0.02, R, is the center of the
shearband, and’ its width.

The fits to the simulations confirm qualitatively the expegirtal findings in so far
that the center of the shear band, as observed on top of trexiadasee Figure 15,
moves inwards with &, o« H°/2 behavior, and that the width of the shear band in-
creases almost linearly witH. For filling heights larger thai/ =~ 0.05 m, deviations
from this behavior are observed, because the inner cylisdeached and thus sensed
by the shearband. Slower shearing does not affect the centereduces slightly the
width - as checked by one simulation.

Like in the experiments, the behavior of the shearband witiné bulk, see Figure
16, deviates qualitatively from the behavior seen from the tinstead of a slow
motion of the shear band center inwards, the shear bandlyapalves inwards at
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of the shearband, both plotted against the heighThe open symbols are simulation
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H = 0.037m, 0.049m, and0.061 m, respectively. The curves are identical to those
plotted in Figure 15
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From the velocity field in the bulk it is straightforward toropute the velocity
gradient tensor and, from this extracting the (symmetti)is rate:

2
— B+ &= \/3% % +(ﬂ> [40]
0z

i.e., the shear intensity in the shear plane (Luding, 2008b). eNbat the solid-
body rotation termv,/r comes from the cylindrical coordinate system used. The
shear planes are in fact described by a normal unit vécter (cos 6, 0, sin 9), with

0 = 0(r,z) = arccos(d1 /%), as predicted (Depkeet al, 2006). The center of the
shear band indicates the direction of the unit-veétdn the system with friction, we
observe that the average particles spin is also normal tettbar-plane,e., parallel

to 4, within the rather strong fluctuations (data not shown).

From the stress, as computed according to Equation [31]shkar stress is ex-
tracted (in analogy to the strain rate) as proposed in (Depkal.,, 2006):

|T|=1/0'3¢—‘r0'§¢. [41]

Remarkably, the shear stress intensgity’p ~ p is almost constant for practically
all averaging volumina with strain rates larger than somedtold valuei.e., 4 > 7.,
with 4, =~ 0.02s~!. Whether the threshold has a physical meaning or is only an
artefact due to the statistical fluctuations in the average kias to be examined further
by much longer runs with better statistics.

From the constant shear stress intensity in the shear zape;am determine the
Mohr-Coulomb-type friction angle of the equivalent ma@mgic constitutive law, see
Figure 17, as) ~ arcsin u. Interestingly, without friction) is rather largei.e., much
larger than expected from a frictionless material, wheitdagistonishingly small with
friction (data not shown),e., smaller than the microscopic contact friction= 0.4
used, see (Luding, 2008b).

7.2.4. Discussion

In summary, the example of a ring shear cell simulation in 28 khown, that
even without the more complicated details of fancy intéoadiaws, experiments can
be reproduced at least qualitatively. A more detailed stfdyuantitative agreement
has been performed in 2D (Latzsial,, 2003), and is in progress for the 3D case.

A challenge for the future remains the micro-macro traasitifor which a first
result has been showne. the yield stress can be extracted from a single 3D DEM
simulation for various pressures and shear rates. Openne@i@objective continuum
theory formulation of the shear band problem.
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Figurel17. Shear stres&r| (left) and shear stress intensity /p (right) plotted against
pressure. The size of the points is proportional to the shate, and the dashed
line (right panel) separates the data from simulations with(bottom) and with (top)
friction, see (Luding, 2008b)

8. Conclusion

The present study is a summary of the most important detadsitasoft particle
molecular dynamics (MD), widely referred to as discreteradat methods (DEM) in
engineering, and hard particle event driven (ED) simutetjdogether with an attempt
to link the two approaches in the dense limit where multitiplr contacts become
important.

As an example for a micro-macro transition, the stress tewss defined and
computed for dynamic and quasi-static systems. This ledexXample, to a global
equation of state, valid for all attainable densities, asd to the partial stresses due
to normal and tangential (frictional) contacts. For th&gasituation, the micro-macro
average is compared to the macroscopic stress (=forcgfaessurement (with rea-
sonable agreement) and, at least in 3D, a yield stress &mcéin be extracted from a
single ring shear cell simulation.

In conclusion, discrete element methods have proven adidtafl for the under-
standing of many granular systems. The qualitative approéthe early years has
now developed into the attempt of a quantitative prediatialeling of the diverse
modes of complex behavior in granular media. To achieveyibid will be a research
challenge for the next decades, involving enhanced kirtb&ories for dense colli-
sional flows and elaborate constitutive models for quagiestdense systems with
shear band localisation.
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