
Stress and fabric for polydisperse, frictionless, dense 2D granular media

M. Madadi
�
, S. M. Peyghoon

Department of Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran

S. Luding
�

Particle Technology, DelftChemTech, TU Delft, Julianalaan 136, 2628 BL Delft, The Netherlands�
Part of the work was performed at: ICP, Pfaffenwaldring 27, 70569 Stuttgart, Germany

ABSTRACT For fabric and stress tensor, correlations of microscopic quantities are studied and the influence
of the particle size probability distribution function is isolated from that of other quantities. Based on the
observations that the covered surface area and the average force per contact are (almost) size-independent,
we show that fabric and stress can be factorized into products of some averaged quantities (like coordination
number, particle radius, or contact force), and dimensionless correction factors, which depend only on moments
of the particle size distribution function. Numerical simulations are in proper agreement with the theoretical
predictions for moderately wide size distributions.

1 INTRODUCTION
On the microscopic level, a granular assembly of fric-
tionless, spherical (disk) particles consists of a contact
network, with the so-called branch vectors connecting
the centers of two particles in contact, and the corre-
sponding forces acting parallel to the branch vector.
Theoretical predictions are possible for this (simple)
special case of the more realistic assembly of fric-
tional, non-spherical granular particles.

The fabric tensor of polydisperse granular 2D
spheres (disks) has been studied, see (Madadi et al.
2004) and references therein. The trace of the fab-
ric tensor factorizes into three contributions: (i) the
volume fraction, (ii) the mean coordination number,
and (iii) a dimensionless correction factor ��� , which
only depends on the particle size distribution function.
These results are based on the basic assumption that
for all particles, the fraction of surface shielded by
other particles is independent of their radius. As long
as the size distribution function is not too wide, the
theory is in very good agreement with simulations,
and the first three moments of the distribution func-
tion are sufficient to determine ��� .

The main goal of this study is to calculate, in the
same spirit, the analytical expression for the trace of
the stress, i.e. for the isotropic pressure, for polydis-
perse particle packings in two dimensions (2D). First,
it is assumed that the trace of the macroscopic stress
tensor is – in average – independent of the particle
size. This is consistent with the constant stress con-

dition (the divergence of the stress should vanish) for
static equilibrium. Second, the stress is factorized, in-
volving the assumption of a size independent, scaled
contact force. Both fabric and stress tensor are intro-
duced in section 2, the results are discussed in section
3, before conclusions are presented in section 4.

2 FABRIC AND STRESS TENSORS
Besides the structure of a static packing of powders
and grains, one of the most important quantities of
interest is the stress tensor. The fabric tensor describes
the direction dependent probability to find contacts,
while the stress tensor gives the same probability but
weighted by the particle size and the force acting at
such contacts.

2.1 Single particle definitions
The expressions for the components of the fabric ten-
sor are for a single particle ����
	�� ���� ��� ����  � � �� � � �	 , with� � �� , the components of the branch-vector from the cen-
ter of particle � to contact � , and � � , the particle radius.
The single-particle fabric is normalized such that its
trace is the coordination number, i.e., the number of
contacts, � � , of particle � .

The stress tensor for a single particle in a granular
assembly is ����
	��  � � � ����  � � �� �!� �	 , with �"� �	 , the com-
ponents of the force acting at contact � on particle � ,
with volume # � �%$'& � �� , and disk-height & . In 2D, the
pressure is the isotropic stress: � � � �(�*)�+ .



Using the average force �-,���. �0/213 �"� � ,4�5.768� ,
with the probability � � ,��9.:68� to find a force (for
particles of radius � ) in the range between � and�<;=68� , the trace of the stress reduces to � � �(�>�� � �?,@� � .A� � ) # � . Note that not only � � ,4�5. is a distri-
bution with exponential tail and peculiar system- and
configuration dependent properties for short range
forces (Radjai & Wolf 1998; Snoeijer et al. 2003), but
also the averaged particle stresses occur with rather
wide distribution. However, this point will not be dis-
cussed further in this paper.

2.2 Many particle definitions
In the many particle case, the trace of the averaged
fabric tensor is B4� �(�*C  �D � �(E  # � � � , and the trace
of the averaged stress tensor is

B�� �(�*C  � F# G�(E  
� �G���  � � �� � � �	H� F# G�(E  # � � � �(�-I (1)

see (Lätzel et al. 2000; Madadi et al. 2004) and refer-
ences therein.

Assume a polydisperse distribution of particle radii
with probability JK,���.L68� to find particles with ra-
dius between � and �M;N6O� , and with normalization
condition / 13 6O�PJK,@��. � F

, and the moments �8Q �/213 6O�R� Q JS,���. . Therefore, considering the continu-
ous limit of the fabric sum and the stress sum, Eq. (1),
for a large number T of particles within volume # ,
one has the integrals:

B4� �(�*C  � T # U 13 6O� $V& � � �W,@��.XJK,@�2. I (2)

and

B�� �(�*C  � T # U 13 6O� $V& � � � � �(� ,���.XJS,���. I (3)

with the average coordination number �?,���. , and the
stress � � �(� ,���. of particles with radius � . In Eq. (3),
a certain stress was assumed for particles of size � ,
however, particles with different sizes can have dif-
ferent stresses.

2.3 Fabric and polydispersity
When trying to simplify Eq. (2), one can distinguish
three different cases: (i) constant coordination num-
ber for all particles, (ii) the monodisperse case with
constant � , and (iii) the general situation of arbitrary
coordination number and polydisperse particles. In a
polydisperse assembly, in general, one can neither as-
sume (i) or (ii), such that Eq. (2) typically does not
just factorize to ,4T ) #-. $V& � � � . The problem is thus
to determine the integral in Eq. (2) as a function of
the size distribution function.

The trace of the fabric can be evaluated using an
approach similar to the one proposed by (Ouchiyama
& Tanaka 1981), and used by (Madadi et al. 2004):

Assume that a reference particle with radius � is sur-
rounded by identical particles of mean radius � . First,
we are interested in that part of the reference particle’s
surface that is covered or shielded by contact partners,
as sketched in Fig. 1.
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Figure 1. Schematic graph of a central particle with radius Y
(small solid circle), surrounded by identical particles with radius
equal to the mean radius Y (large solid circles). The 2D surface
area of the center particle, shielded by the lower sphere, is indi-
cated as an angle plotted with a thick solid lines.

The angle covered by a particle with radius � on a
particle of radius � isZ ,@��. �\[L]�^`_�acbWd ��e; �gf �\[L]h^
_haibjd Fk ; + f I (4)

where k � � ) �ml F
is a small quantity for nar-

row size distributions and thus quantifies the de-
viation from the monodisperse situation. Using the
shielded angle from Eq. (4), the linear compacity�`n � + Z ,���.A�?,���. )L+ $ , of the reference particle defines
the total fraction of its surface, which is shielded by
other particles. The basic assumption for the follow-
ing analysis is that �
n is independent of � . Thus, us-
ing �W,@��. �<$ �on ) Z ,���. , the expected mean coordina-
tion number becomes � �p/213 68���?,���.qJK,@��. �r$ �`n7s 3 ,
with s 3 �t/ 13 6O��JK,@�2. ) Z ,@��. , the zero-th moment of
the modified distribution function JS,���. ) Z ,���. .

The trace of the fabric tensor is thus B4� �(�8C  ��vu*�w� , with the volume fraction u � T $V& � � ) # , and�L� � B�� � C7x
) � � , with the (normalized) second mo-
ment of the modified size distribution JK,@�2. ) Z ,@��. , ab-
breviated as B�� � CAx � , F ) s 3 . / 13 6O�y� � JK,@�2. ) Z ,@��. ; see
(Madadi et al. 2004) for details.

2.4 Stress and polydispersity
For the stress tensor, we observe from simulations
with moderately wide size distributions, that the aver-
age particle stress is independent of the particle size,�z��(� � � � �(� ,@��. . Eq. (3) then simplifies toB�� �(�*C  � ,�T ) #-. $V& � � � � �(� � u � � �(�-{ (5)

Extracting (the constant) �`n from the stress integral
yields B�� �(�*C  � ,4T ) #9. �WB�� �?,���. CAx , with B�� �?,���. CAx �, F ) s 3 . /213 6O�|� �?,���.}JK,���. ) Z ,���. , the product of � and�W,@�2. averaged over the normalized, modified size
distribution JK,���. ) Z ,���. . This maybe not appropriate
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for a factorization in terms of all averaged micro-
quantities, but it allows to express the stress in the
same way as the fabric: B�� �(�8C  � �vu*� 4~ ) , $V& . �,4T ) #5. � � � � 4~ , with � 4~ � B�� �W,@�2. CAx
) � � . This is es-
pecially important in a situation, where the forces are
measured experimentally as a function of the particle
radii and can be used for this averaging.

2.5 Stress as function of the average normal force
From our simulations, see below, we observe that�-,���. ) �?,���.'� �?,���. Z ,���.V� � Z , ��. � � $ )w� , such thatB�� �(�*C  � u � � �y� � & � � � T # � � �y�  I (6)

with �  � $� s 3 � U 13 6O���vJK,���. ) Z � ,@�2. I (7)

the normalized first moment of the modified distribu-
tion JK,���. ) Z � ,���. , which cannot be related to the previ-
ous correction factors.

2.6 Narrow size distributions
In the limit of a narrow size distribution, by Taylor
expansion to first order in k (corresponding to a Taylor
expansion around � � � ), one obtains:FZ ,���. � �$\� F l�� �$ ;�� �$ ��g� I (8)

and FZ � ,@��. � d �$ f � � F l + � �$ ; + � �$ �� � { (9)

The inverse of Eq. (4) and its Taylor expansion in
Eq. (8) have less than one per-cent error in the rangel�� {��-� k � F {�� (or � {��-� � ) � � + {�� ) (Madadi et al.
2004), even though the agreement for Eq. (9) is not as
good. With s 3 � �}) $ , one obtains�w��� F ;�� �$ � �O�� � � l F � I (10)

see (Madadi et al. 2004), and�  � F ; + � �$ � � �� � l F � I (11)

where only the first two moments of the size dis-
tribution are involved. Note the coincidence, u max �$ ) , + � � . , the close-packing density for a regular tri-
angular lattice in 2D (Luding 2002).

3 RESULTS
In this section, we contrast our theory to numerical
data for a few special cases with rather small aver-
aging volumes with about 100-400 particles and two
size distributions, a narrow and a rather wide one.
In the following subsection, the size distribution and
its consequences for the correction factor �  are dis-
cussed, before the simulation results are presented in
the following.

3.1 Uniform polydisperse size distribution
In a uniform polydisperse system, a special case of
polydisperse systems, the radius of the particles is dis-
tributed uniformly between , F l�� 3 . � and , F ;�� 3 . � ,
where + � 3 � is the width of size-distribution functionJK,���. (Madadi et al. 2004). It is straightforward to
compute the contributions to the correction factor, like� � � � � , F ;�� �3 ) � . , and

�  � $ � / :�z�8�X�O�8� [w]�^
_haib � ��� :�z�O��� 6 �/ :�z� �X�O� � [w]�^
_haib �z � :�z�O� 6 � { (12)

The polydispersity correction, Eq. (12), for � 3 � F )�+ ,
leads to �  � F { F�F � , while from the approximation,
Eq. (11), one gets �  � F { �L� + , in good agreement. For
much wider size distributions, for example � 3 � � { � ,
one obtains �  � F { ��� , and from the approximation�  � F { � � , still less than ten per-cent deviation.

3.2 Numerical Results
To test the theory from the previous section, all
necessary quantities are computed in average over
parts of the simulation volume. For the simulations,
a soft-sphere molecular dynamics with linear visco-
elastic normal contact forces (with stiffness �}� ) is
used (Lätzel et al. 2000; Madadi et al. 2004; Lud-
ing 2004). First, about 600 particles with radii drawn
from a uniform polydisperse distribution, are put in
a bi-axial box, which is compressed until a desired
volume fraction is reached. In the case of the narrow
( � 3 � � {�� ) and wide ( � 3 � � { � ) size distributions, the
target volume fractions are u � � { � � and u � � { � � ,respectively. The density for the narrow size distribu-
tion is rather large complementing our previous re-
sults (Madadi et al. 2004). After the system is relaxed
to a state where the kinetic energy is much smaller
than the potential energy, the averages are taken.

For averaging, the system is divided into subsys-
tems distant from the walls. More specific, we per-
form one average where only the center volume with
side-length 0.8 and thus area 0.64 of the total volume
is used for the average. In a second series of averages,
several (overlapping) averaging volumes with side-
length 0.4 and thus area 0.16 of the total are used.
These two situations will be referred to as large and
small averaging volume, respectively. In each subsys-
tem, we calculate the average of the averaged trace of
the fabric and stress tensors, the averaged force, � ,
the average of the contact number, � , the averages of
the moments, �8Q , as well as the density, T ) # , and the
volume fraction.

To check whether the combination �?,���. Z ,���. ,
which corresponds also to the averaged force per con-
tact, �W,@�2. ) �?,���. , is in fact constant as assumed, this
scaled force is plotted in Fig. 2, for size distribu-
tions with � 3 � � { � and � 3 � � { � (four different real-
izations each – obtained from different initial condi-
tions).
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Figure 2. Scaled force for different simulations with narrow
(open symbols) and wide (solid symbols) size distributions.

The term �?,���. Z ,���. is almost constant for the nar-
row size distribution; for the wider size distribution,
an overproportional large number of very small parti-
cles is obtained which behave as so-called “rattlers”,
sitting in pores between other particles and not con-
tributing with forces to the structure. Finally, a slow
decrease of �W,@�2. Z ,@�2. with the particle size is noted.

Fig. 3 shows the predicted, factorized stress from
Eq. (6) plotted against the trace of the stress tensor
from direct averaging. The data are close to the solid
(identity) line as expected from theory – for the nar-
row and also for the wide size distribution – with cor-
rection factors �  � F { ��� and �  � F { � � , respectively.
Note that we used the approximated correction fac-
tor �  from Eq. (11) here, since the exact expression
shows, interestingly, somewhat less good agreement.

4 CONCLUSION

In conclusion, the isotropic fabric factorizes into vol-
ume fraction coordination number and a correction
factor, while the isotropic stress factorizes into prod-
ucts of the density, particle size, coordination num-
ber, mean force and correction factor. The polydis-
persity of the size distribution is taken into account
via these (non-dimensional) correction factors, which
only depend on moments of the size distribution – in
first order approximation. For both fabric and strain
reasonable agreement between theory and numerical
simulations was observed.

Our correction factors rely on a series of assump-
tions and are therefore not perfect. For both stress and
fabric corrections in the range of 5-30 per-cent are
predicted and the agreement between theory and sim-
ulations is typically much better than 1-4 per-cent, re-
spectively. Thus, improving the quality of the assump-
tions made (the assumptions on constant covered area
fraction or force per contact of the center particle
surrounded only by representative mean-sized parti-
cles) is one goal for future research. However, also the
question about the usefulness of the present theory for
anisotropic and frictional systems is of interest. Sim-
ilar studies are in progress in three-dimensional sys-
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Figure 3. Predicted trace of stress, ®7¯�°²±�³c´"µo¶¸· ¹ º Y»Y½¼ , plot-
ted against the averaged trace of the stress tensor, ®A¯¾°¿±ÁÀÃÂ�Ä
ÄLÅ4Æ ,
both plotted in units of the contact spring-stiffness Ç»È . The solid
line gives the theoretical prediction while the dashed line indi-
cates a five per-cent error margin. Solid and open symbols cor-
respond to the large and small averaging volumes, respectively.

tems, however, an experimental check of our predic-
tions is still missing in 2D and 3D as well.
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