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Abstract

The deformation characteristics of idealized granular materials have been studied from

the micro-mechanical viewpoint, using Bagi’s three-dimensional micro-mechanical for-

mulation for the strain tensor [Bagi, K. (1996), Mechanics of Materials 22: 165-177].

This formulation is based on the Delaunay tessellation of space into tetrahedra. The set

of edges of the tetrahedra can be divided into physical contacts and virtual contacts be-

tween particles. Bagi’s formulation expresses thecontinuum, macro-scalestrain as an av-

erage over all edges, of their relative displacements (between two successive states) and the

complementary-area vectors. This latter vector is a geometrical quantity determined from

the set of edges, i.e. from the structure of the particle packing.

Results from Discrete Element Method simulations of isotropic and triaxial loading of

a three-dimensional polydisperse packing of spheres have been used to investigate statistics

of the branch vectors and complementary-area vectors of edges (subdivided into physical

and virtual contacts) and of the relative displacements of edges. The investigated statistics

are probability density functions and averages over groupsof edges with the same orienta-

tion. It is shown that these averages can be represented by second-order Fourier series in

edge orientation.
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Edge orientations are distributed isotropically, contrary to contact orientations. The

average lengths of the branch vectors and the normal component of the complementary-

area vectors are distributed isotropically (with respect to the edge orientation) and their

average values are related to each other and to the volume fraction of the assembly. The

other two components of the complementary-area vector are zero on average.

The total deformation of the assembly, as given by the average of the relative dis-

placements of the edges of the Delaunay tessellation follows the uniform-strain prediction.

However, neither the deformation of the physical contact network nor of the virtual con-

tact network has this property. The average relative displacement of physical edges in the

normal direction (determined by the branch vector) is smaller than that according to the

uniform-strain assumption, while that of virtual contactsis larger. This is caused by the

high interparticle stiffness that hinders compression. The reverse observation holds for the

tangential component of the relative displacement vector.The contribution of the defor-

mation of the empty space between physical contacts to thecontinuum, macro-scalestrain

tensor is therefore very important for the understanding and the prediction of themacro-

scaledeformation of granular materials.

1 Introduction

The complex mechanical behavior of granular materials during quasi-static deformation can

be better understood from the micro-mechanical approach, in which relationships are studied

between themacro-scale, continuum level and themicro-scale level of particles and interparticle

contacts.

For quasi-static deformation of granular materials, themacro-scale, continuumquantities

of interest are stress and strain. The relevantmicro-scalelevel is that ofparticles andphysical

contacts, since granular materials can be idealized as assemblies ofsemi-rigid particles that

interact at contacts through point forces. The contact forces are determined from the contact

constitutive relation that involves the relative displacements of particles that are in contact.

For micro-mechanically-based constitutive relations, a so-called “localisation assumption”

(see for example [Cambou et al., 1995, Liao et al., 1997, Kruyt & Rothenburg, 2002]; it also

called “macro-micro assumption” or “homogenisation assumption”) is required that links the
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macro-scalestrain to themicro-scaledeformation. The proper formulation of such assumptions

is an open and difficult issue. Usually, the uniform-strain assumption of affine deformation

is employed. Its validity is rather limited, however [Makseet al., 1999, Kruyt & Rothenburg,

2004].

Since granular materials are generally packed randomly, the mechanical response will also

show a significant random component (relative to the mean field) in contact forces and defor-

mation. Statistical approaches are therefore considered appropriate.

Micro-mechanics of stress transmission in granular materials has been studied extensively,

see for example [Bathurst & Rothenburg, 1988, Bathurst & Rothenburg, 1990, Coppersmith

et al., 1996, Radjaı̈ et al., 1996, Mueth et al., 1998, Lovøllet al., 1999, Kruyt & Rothenburg,

2001, Kruyt & Rothenburg, 2002, Kruyt, 2003a, Metzger, 2004, van Eerd et al., 2007]. On the

other hand, deformation characteristics have not been studied in much detail. Most studies

are restricted to the two-dimensional case [Kruyt & Rothenburg, 2003, Kruyt & Rothenburg,

2004,Kruyt & Antony, 2007,Tordesillas et al., 2010,Nguyenet al., 2009].

The focus of this micro-mechanical study is therefore on deformation characteristics of

three-dimensional assemblies. A previous study [Durán etal., 2010] has shown that Bagi’s

micro-mechanical strain formulation [Bagi, 1996] is the most accurate three-dimensional micro-

mechanical strain formulation in reconstructing the strain imposed at the boundary. Hence this

formulation is employed here to study micro-mechanical characteristics of deformation.

Discrete Element Method (DEM for short) simulations [Cundall & Strack, 1979] of isotropic

and triaxial loading of an initially isotropic system of spheres are used to obtain the required

detailed information on particle positions and displacements, and hence on themicro-scalede-

formation characteristics. These two test cases are investigated, since they are frequently used

to characterize the material behavior.In these DEM simulations the formation of (global) shear

bands is suppressed (through the use of periodic boundary conditions) in order to obtain defor-

mations without large-scale spatial heterogeneity.

The outline of this study is as follows. Firstly, Bagi’s micro-mechanical strain formulation

is summarized. Then the DEM simulations are described of isotropic and triaxial loading.

The detailed results of these DEM simulations are subsequently used for the micro-mechanical

analysis of the deformation characteristics.
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2 Micro-mechanical strain

The strain tensorεij is defined as the symmetrical part of the continuum-mechanical displace-

ment gradient∂ui/∂xj , whereu(x) is the displacement field with respect to the selected refer-

ence configuration. However, for simplicity in terminology, we will refer to the displacement

gradient∂ui/∂xj simply as the strain tensor:

εij ≡
∂ui

∂xj

. (1)

The usual sign convention from continuum mechanics is employed, according to which com-

pression is considered as negative.

The volume averagēεij of the strain tensor over volumeV , enclosed by surfaceS, is given

by:

ε̄ij =
1

V

∫

V

εijdV =
1

V

∫

V

∂ui

∂xj

dV =
1

V

∫

S

uinjdS (2)

where Gauss’ divergence theorem has been used. For simplicity in notation, the overbar for the

average strain̄εij will be dropped in the following.

2.1 Bagi’s equivalent continuum strain formulation

In this section the micro-mechanical strain tensor formulation of Bagi [Bagi, 1996] is summa-

rized. Since this formulation is based on the Delaunay tessellation of space, this tessellation is

first introduced.

2.1.1 Delaunay tessellation

The Delaunay tessellation of three-dimensional space consists of its tessellation into tetrahedra.

Given a set of vertices, the tetrahedra defined by the Delaunay tessellation connect the vertices

in such a way that the edges (connecting lines) of the tetrahedra form the shortest path between

the vertices. An equivalent definition is that any sphere inscribed around an arbitrary tetrahedron

contains no other vertex.

In a granular system the vertices of the tetrahedra are the centers of the particles and their

edges correspond to the shortest path between them (see Fig.1). An edge between particlesp
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andq is geometrically characterized by the branch vectorl
pq ≡ X

q − X
p (see Fig. 2; right),

whereX
p is the position vector of the centre of mass of particlep. The subsetC of all edges

E, resulting from the Delaunay tessellation, that represents a physical contactbetween the

particles will be simply calledcontacts. Spherical particles are in physical contact when the

distance between their centers is smaller than the sum of their radii. In contrast, the otherE−C

edges will be calledvirtual contacts(Fig. 1).

Figure 1: Delaunay tessellation of a three-dimensional granular system consisting of six spheres

of different sizes. Note that the tessellation contains three tetrahedra:{a, b, c, f}, {b, c, d, f} and

{c, d, e, f}. Red edges arephysical contacts, while blue edges indicatevirtual contacts.

2.1.2 Strain expression

The micro-mechanical expression for the average strain tensor of a three-dimensional assembly

of convex particles in a representative volumeV can be written as an average over all edges of

the Delaunay tessellation [Bagi, 1996]

εij =
1

V

∑

e

∆ue
id

e
j =

E

V
〈∆uidj〉e , (3)

where brackets〈.〉e represent the average over allE edges. Analogously, averages over physical

contacts and virtual contacts are denoted by〈.〉c and〈.〉v, respectively. The relative displacement
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Figure 2: (Left) The displayed tetrahedra are formed by the particlesp andq (green spheres) and

the particles that are in (physical or virtual) contact withbothp andq (spheres in dashed lines).

Note that in this example the edgee(p, q) has six neighbors and hence six tetrahedra surround

it, Te = 6. (Right) Branch vectorlpq connecting centers of particlesp andq and area vectorsbp

andb
q of the faces opposite to particlep andq, respectively, for the tetrahedron determined by

the particles{p, q, p1, q1} (these faces are shown in red and blue, respectively).

vector∆u
e at the edgee(p, q), where indexp (q) represents the particle at the‘tail’ (‘head’) of

the directed edge, respectively, is given by

∆u
e = ∆u

pq ≡ U
p − U

q , (4)

whereUp is the displacement of the centre of mass of particlep. Note that the relative displace-

ment does not involve particle rotations.

The vectorde is the complementary-area vector of the edgee(p, q), defined as [Bagi, 1996]:

d
e ≡ 1

12

Te∑

t=1

(bqt − b
pt) , (5)

where the sum is over allTe tetrahedra that share the edgee(p, q) (see Fig. 2; left) and the vector

b
p represents the outward area-vector of thep face, defined as the faceoppositeto the vertexp

(see Fig. 2; right). As shown in [Durán et al., 2010],d
e reflects the distribution of voids around

a given edgee. In general, the complementary-area vectord
e is not parallel with the branch

vectorle.
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3 Orientational averaging

From continuum-mechanical considerations, it is expectedthat the relative displacement∆u of

points separated by a vectorl(Ω), where the solid angleΩ describes the orientation of the edges

between the points, is given by

∆u(Ω) = ε · l(Ω) . (6)

Hence, it is meaningful to consider the average of∆u
e over groups of edges with the same

orientationΩ [Rothenburg, 1980,Bathurst & Rothenburg, 1988]. Such an orientational average

of an arbitrary quantityαe associated with an edge is denoted byα̂(Ω).

The orientational distribution function [Horne, 1965] of edges over a solid angleΩ is de-

fined such thatρ(Ω)dΩ gives the fraction of edges with orientations betweenΩ andΩ + dΩ.

This distribution function satisfies the normalization condition
∫
Ω

ρ(Ω)dΩ = 1. Correspond-

ing orientational distribution functions for physical contacts and virtual contacts are denoted by

ρc(Ω) andρv(Ω), respectively.

The expression for the average strain tensor, Eq. (3), as a discrete sum over edges, can be

transformed into a continuous form involving the orientational distribution function and the

orientational average:

εij =
E

V

∫

Ω

ρ(Ω)∆̂uidj(Ω)dΩ , (7)

whereE is the number of edges in the volumeV .

The assumption that all edges individually follow the relationship∆u
e = ε · le is called the

uniform-strainor affinedeformation assumption and it is often employed in micro-mechanical

studies. Assuming that Eq. (6) holds is a weaker assumption of “orientational-averaged uniform

strain”. However, for convenience, we refer to Eq. (6) as the“uniform-strain assumption”.

Relative displacements (and branch vectors) from the DEM simulations will be compared, in

the following, with the prediction according to the uniform-strain assumption, Eq. (6). However,

first, a local, edge-based coordinate system is defined that is convenient for representing the

results in a more condensed way for the considered test cases, in particular for the triaxial

compression.
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3.1 Local edge-based coordinate system

In the following, triaxial and isotropic compression testsof an initially isotropic sample are

considered. In the triaxial test, the deformation is imposed along theX-direction and lateral

stresses are kept constant at the initial value.

The unit vectorne = l
e/||le|| is given by the local branch vector orientation. Using the

normal vectorne and one arbitrary direction unit vectore1, we define the unit vectorte in the

tangential direction and the unit vectors
e in the azimuthal direction. In the present study, the

unit vectore1 = ex along theX-direction is chosen. This is an arbitrary choice for isotropic

deformation, but it is appropriate for the case of triaxial deformation.

Let se be oriented perpendicularly to the plane that containsn
e ande1. Thuss

e = (e1 ×
n

e)/||e1 × n
e|| andt

e = s
e × n

e, as sketched in Fig. 3. Note that(ne, te, se) form a local

right-handed orthonormal coordinate system. Furthermore, from the definition ofse, when

both e1 andn
e are (almost) parallel, the ratio(e1 × n

e)/||e1 × n
e|| remains finite, although

||e1 × n
e|| → 0 (see below).

Considering spherical coordinates(θ, φ) with symmetry axise1 = ex, the polar angleθ is

given byθ = arccos (ne · ex) ∈ [0, π] and the azimuthal angleφ ∈ [0, 2π]. The vectorsn, t and

s become:

n = cos θ ex + cos φ sin θ ey + sin φ sin θ ez (8a)

t = − sin θ ex + cos φ cos θ ey + sin φ cos θ ez (8b)

s = − sin φ ey + cos φ ez (8c)

where the superscripte, denoting a given edge, is dropped since, the angles(θ, φ) correspond

not to a single edge, but to a family of edges.

In this local coordinate system any vectorA associated with an edge (such as the relative

displacement vectors∆u
e, the branch vectorle and the complementary-area vectorsd

e) can be

decomposed as

A = Ann + Att + Ass . (9)

For the triaxial compression test the boundary conditions for the representative volumeV
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Figure 3: Sketch of the local, edge-based coordinate system(n, t, s) for an edge that is oriented

alongn. The Cartesian coordinate system(x, y, z), a sphere with unit radius and the azimuthal

and polar angles,θ andφ, respectively, are shown for reference. Note that by definition the

vectors(n, t) are coplanar withex, while s is in the planey − z (green region).

are symmetrical in theY, Z plane (the azimuthal plane). Given this polar (cylindrical) sym-

metry around theX-axis, it is expected that theorientational average(over edges with similar

orientations) of an edge quantityA (denoted byÂ(Ω), or in terms of angles(θ, φ) by Â(θ, φ)) is

independent ofφ. Then only theazimuthal average(or polar average), denoted byA(θ), is im-

portant. This reduction forms the main motivation for the introduction of the local, edge-based

coordinate system.

Notice that an edgepq is equivalent to the edgeqp. The orientation of edgepq is expressed

by the spherical coordinates(θ, φ). The orientation of edgeqp then is given by(π − θ, π − φ).

Therefore, the orientational average satisfiesÂ(π − θ, π − φ) = Â(θ, φ) and the azimuthal

average satisfiesA(π − θ) = A(θ).

The orientational distribution functionρ(θ, φ) will (also) only depend onθ for the consid-

ered test cases. The corresponding (polar) distribution isdenoted byρθ(θ). A similar meaning

is implied byρc
θ(θ) andρv

θ(θ).
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3.2 Uniform strain

Here the azimuthally-averaged relative displacement vector according to the uniform-strain as-

sumption Eq. (6) is given for a triaxial test. This relative displacement vector is expressed in the

components{∆̃un, ∆̃ut, ∆̃us} (compare Eq. (9)). Here, and in the following, the tilde indicates

quantities that are obtained from the uniform-strain assumption. As shown in the Appendix,

these components are given by

∆̃un(θ) = 〈l〉
[(

ε11 + ε22

2

)
+

(
ε11 − ε22

2

)
cos 2θ

]
(10a)

∆̃ut(θ) = −〈l〉
[(

ε11 − ε22

2

)
sin 2θ

]
(10b)

∆̃us(θ) = 0 (10c)

or, in terms of the Fourier componentsã0, ãn, ãt

∆̃un(θ) = 〈l〉 (ã0 + ãn cos 2θ) (11a)

∆̃ut(θ) = −〈l〉 ãt sin 2θ (11b)

where

ã0 =
ε11 + ε22

2
(12a)

ãn =
ε11 − ε22

2
(12b)

ãt = ãn (12c)

The results for the (azimuthally-averaged) components{∆un(θ), ∆ut(θ)} of the relative

displacements from the DEM simulations, described in the next section, conform to Eq. (11),

but the corresponding coefficientsa0, an andat differ from those given in Eq. (12). Therefore,

the deviations from the ideal case of uniform-strain (or affine) deformation can be characterized

by the ratio between the actual Fourier coefficients (a0,n,t) for the relative displacements of

edges, contacts or virtual contacts, and those predicted bythe uniform-strain assumption (ã0,n,t),

i.e. by the set of coefficientsγ0, γn andγt, defined by

γ0,n,t ≡
a0,n,t

ã0,n,t

, (13)

Results for these coefficients are presented in Section 5.3.
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4 Discrete Element Method simulations

Discrete Element Method (DEM) simulations, as proposed by [Cundall & Strack, 1979], have

been performed to obtain detailed information on particle displacements (and hence relative

displacements at the edges) under triaxial and isotropic compressive loading conditions.

The assembly consists of 250,000 polydisperse spherical particles, with radii from a log-

normal distribution. Its standard deviation is 0.25, relative to the mean particle radius〈r〉. The

initial, isotropic packing is prepared under isotropic stress conditions, with stressσ0 and with

particle friction switched off, i.e. the interparticle friction coefficientµ = 0. Its volume fraction

ν, i.e. the volume occupied by the particles divided by the total assembly volume (including

voids), is 0.65 and the (physical) coordination numberCc (the average number of physical

contacts per particle) isCc = 6.19. The length of the initial cubic assembly is about 60 times

the average particle diameter.

The contact constitutive relation of [Cundall & Strack, 1979] is used, in which the elastic

parts of the contact constitutive relations, for the normaland tangential contact forces, are linear.

The stiffness ratiokt/kn = 0.5, with kn andkt being the stiffnesses in normal and tangential

directions, respectively. The interparticle friction coefficient µ = 0.5. The contact deformations

(‘overlaps’) are small, since the non-dimensional stressσ0〈r〉/kn ≈ 10−3 is small.

For the triaxial loading the compressive displacement is imposed in theX-direction, while

the lateral deformation is such that the lateral stresses are kept constant at the initial stressσ0.

Periodic boundary conditions have been employed to avoid wall effects and to suppress the

formations of (global) shear bands so that large deformations without large-scale heterogeneity

can be studied. Note that small-scale heterogeneities willalways be present [Kuhn, 1999].

Themacro-scaledeformation of the periodic box is determined from the deformation of the

periodic box, with lengthsLi and initial lengthsL0

i

eij = ln
Li

L0
i

δij . (14)

In the triaxial test the principal-strain directions correspond to the Cartesian coordinate system

for the periodic box.Note that the tensore represents the cumulative deformation given by

e ≡
∫ L

L0 ε, whereε is the incremental strain tensor.

Themacro-scale, continuum response is characterized by the deviatoric stress ratioq/p with
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Figure 4: Evolution of the total volumetric straineV and the ratio of the deviatoric stress ra-

tio q/p (as defined in the main text) as a function of the total axial deformation−e11, where

compression is considered negative.

invariantq = (σ11 − σ22)/2 of the deviatoric stress and pressurep = trσ/3 and volumetric

strain eV (eV ≡ tre = ln V/V0, whereV is the volume of the current state andV0 is the

volume of the initial state). Figure 4 shows the evolution, as function of the total imposed

axial deformatione11, of the deviatoric stress ratio and volumetric strain, withthe characteristic

compression-dilation behavior for a dense initial packing. The yield stress is reached after

about 2% of axial deformation. Note that no (global) shear band was observed, due to the use

of periodic boundary conditions.

In a previous study [Durán et al., 2010] it has been shown that Bagi’s micro-mechanical

expression, Eq. (3), for the average strain tensor accurately represents themacro-scaledefor-

mation of the boundaries, i.e. the changing lengths of the periodic box.

The employed Delaunay tessellation procedure does not takeinto account the periodic

boundaries of the system. Hence only “internal” tetrahedraare employed. These internal tetra-

hedra are located more than 5% of the system size away from anyof the periodic boundaries.
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5 Results

In this section, we study the evolution of the deformation characteristics with imposed loading,

as well as the geometrical quantities involved in Bagi’s strain formulation. Hence, we will

consider the evolution of branch vectorsl
e and the complementary-area vectorsd

e, and their

orientational averages.

Furthermore, we will also study the probability distribution function (PDF) and the evolu-

tion of the polar distribution of the components{∆un(θ), ∆ut(θ), ∆us(θ)} of the azimuthally-

averaged relative displacements from the DEM simulations.Although the geometrical quan-

tities will be mainly studied for triaxial loading, we will also show some results for isotropic

loading, whenever they show interesting behavior.

5.1 Geometry

Due to their relevance for Bagi’s strain formulation, see Eq. (3), we will study in detail the

geometrical quantities:

• edge-based and contact-based coordination numbersCe andCc, respectively;

• the edge structure, i.e. the polar distribution of edgesρθ(θ), contactsρc
θ(θ) and virtual

contactsρv
θ(θ) (see Section 3.1);

• geometrical quantities like the azimuthally-averaged branch vectors of edgesl(θ), con-

tactslc(θ) and virtual contactslv(θ), as well as the components of the complementary-

area vectord(θ) for edges, contacts and virtual contacts.

5.1.1 Coordination numbers

The connectivity of the packing and the Delaunay tessellation is primarily described by the

contact-based and edge-based coordination numbersCc andCe, respectively, defined as

Cc = 2C/N (15)

Ce = 2E/N (16)
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whereC, E andN are the number of (physical) contacts, edges and particles,respectively.

These coordination numbersCc and Ce give the average number of contacts and edges per

particle, respectively.

The coordination number of the Delaunay tessellationCe remains roughly constant during

the tests (with a slight increase of about 2% for the triaxialtest and less than one percent de-

crease for isotropic compression):Ce ≈ 14.3 − 14.5, while Cc decreases (increases) by about

30% for triaxial (isotropic) compression, see Fig. 5 (left).
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Figure 5: (Left) Evolution of the coordination numbers of edgesCe and contactsCc during the

isotropic (iso) and triaxial (3a) compression test. The axial deformation is normalized by its

maximum valueemax
11

= −20% and−5% for the triaxial and isotropic compression, respec-

tively. (Right) Probability density function ofCe andCc in the initial isotropic state.

Figure 5 (right) shows the probability density function ofCe andCc in the initial isotropic

state, as also studied, e.g. by [Lochmann et al., 2006].

Rattlers (i.e. particles without physical contacts) are ignored in the analyses, so there are no

particles withC = 0, while there are few particles with less than three contacts. We furthermore

observe few particles with less than 8 edges, but most have many more edges with an average

of Ce ≈ 14.3.
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5.1.2 Distribution of edge and contact orientations

Figure 6 shows the distribution of the edge orientationsρ(Ω) and contact orientationsρc(Ω),

for the triaxial test. It is clear that they are independent of azimuthal angleφ, as expected in the

considered triaxial test with its transverse symmetry (seealso Section 3.1). Therefore, only the

distributionρθ(θ) contains relevant information.

 0.6  0.4  0.2  0  0.2  0.4  0.6

ρθ(θ)

 0.8 0.6 0.4 0.2  0  0.2 0.4 0.6 0.8

ρθ
c(θ)

 0.6  0.4  0.2  0  0.2  0.4  0.6

ρθ
v(θ)

Figure 6: (Top) Orientational distribution of edges (left)and contacts (right) at peak shear

strength ratio,e11 = −2% from the triaxial test. (Bottom) Plot of the polar distribution of edges

ρθ(θ) (top), contactsρc
θ(θ) and virtual contactsρv

θ(θ) (bottom left and right, respectively), at

e11 = −2% (solid symbols, in red), and for large deformations,e11 = −20% (open symbols, in

green), whereθ is the polar angle, withθ ∈ [0, π] by definition.

The distribution of the edge orientationρ(Ω) is isotropic during the whole deformation, as

was already observed in the two-dimensional case [Tordesillas et al., 2010]. In contrast, the

polar distribution of contactsρc
θ(θ) (see Fig. 6, bottom left) is highly anisotropic during the
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triaxial test. Along the compression axis (θ = 0) contacts are created (ρc
θ(θ) > 1/2), while in

the directions of minor principal stresses (θ = π/2) contacts are disrupted (ρc
θ(θ) < 1/2). Note

that the distribution of virtual contactsρv
θ(θ) (Fig. 6, bottom right) is not independent and can

be calculated from:

ρθ(θ) = nC ρc
θ(θ) + (1 − nC) ρv

θ(θ) , (17)

wherenC is the fraction of edges that are (physical) contacts. This fraction can be expressed in

terms of the coordination numbersCc andCe (defined in Eqs. (15) and (16)):

nC ≡ C

E
=

Cc

Ce

. (18)

In our simulations the value ofnC varies from∼ 0.3 − 0.5.

In order to study the evolution of the structure, i.e. the polar distribution of edges and

contactsρθ(θ) andρc
θ(θ), in compact terms, we decompose them in Fourier series inθ:

ρθ(θ) ≈ ρ0 + ρ2 cos 2θ + ρ4 cos 4θ + ... (19)

ρc
θ(θ) ≈ ρc

0
+ ρc

2
cos 2θ + ρc

4
cos 4θ + ... (20)

and study the evolution of the Fourier componentsρi andρc
i , for i = 0, 2, 4. The coefficientsρ2,4

andρc
2,4 reflect the anisotropy of the structure. Note that odd terms,like cos θ, are not present

due to symmetry reasons, i.e. the distributions are periodic in the intervalθ ∈ [0, π]. Higher

order terms were practically zero in the cases tested, so that we restrict ourselves toi = 0, 2,

and4. From the normalization condition for distribution functions,
∫
Ω

ρ(Ω)dΩ = 1, we then

find thatρ0 = 1/2 + ρ2/3 + ρ4/15.

The evolution during the triaxial test of these Fourier coefficients is shown in Fig. 7. As

is shown in Fig. 7 (left) for the edge distribution, the anisotropy coefficientsρ2 and ρ4 are

small compared to the isotropic oneρ0, which confirms the isotropic character of the Delaunay

edge network: an isotropic network would correspond toρ0 ≡ 1/2 andρ2 = ρ4 ≡ 0. On the

contrary, the contact network is highly anisotropic. As implied by Fig. 7 (right), both anisotropy

coefficients,ρc
2

andρc
4
, increase with the deformatione11. In particular, for large deformations

(|e11| > 10%), the higher order Fourier componentρc
4

becomes as relevant asρc
2
.
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Figure 7: (Left) Evolution of the second-order Fourier components, relative to the isotropic

value, of the polar distribution function of edgesρθ(θ) and contactsρc
θ(θ). (Right) Evolution

of the fourth-order Fourier components, relative to the isotropic value, of the polar distribution

functions of edges and contacts.

5.1.3 Characteristics of branch length and complementary-area vector

In this section the characteristics of the branch vector andthe complementary-area vector are

given. This involves the polar distribution, as well as the evolution in the triaxial test of the

Fourier components for the average values.

Branch length

After azimuthal averaging (see Section 3.1), the lengths ofedges and contacts,le(θ) andlc(θ),

respectively, are approximately isotropic during the whole triaxial test. This is a consequence of

the statistically uniform spatial distribution of particles, and thus edges, in the random packings.

Figure 8 shows the evolution of the average length of the branch vectors〈l〉e,c,v for edges,

contacts and virtual contacts. The evolution of the averageedge length closely resembles the

volumetric deformation of the assembly (see Fig. 4). Since the total volume of the particles is

conserved, the volume fraction should scale asν ∝ 〈r〉3/〈l〉3e, where〈r〉 is the mean particle

radius and〈l〉e represents an average distance between particles, based onthe definition of the

Delaunay tessellation. Therefore〈l〉e is proportional to〈r〉/ 3
√

ν (as shown by the solid line in
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Figure 8: Evolution of the dimensionless average branch vector length〈l〉/〈r〉, where〈r〉 is

the mean particle radius, for edges (e), contacts (c) and virtual contacts (v). The dimensionless

length1/ 3
√

ν (solid line), based on the volume fractionν, is also shown for comparison.

Fig. 8, with a single proportionality constant that is determined by matching the initial value at

e11).

As expected for a low confining pressure (relative to the particle stiffnesskn), themacro-

scaledeformation of the assembly does not significantly affect the average length of (physical)

contacts〈l〉c, which remains nearly constant during the whole test. In contrast, larger deforma-

tions occur in the empty space between the particles, encoded in 〈l〉v.

Finally, note that for contacts〈l〉c/〈r〉 > 2 (Fig. 8). This is a direct consequence of the

polydispersity of the assembly and has its origin in the correlation between the particle radius

and the number of contacts of a given particle: large particles with large surface area have more

contacts than small particles [Kruyt & Rothenburg, 2001,Madadi et al., 2004,Durán & Luding,

2010].

Complementary-area vector

For the complementary-area vectord
e, only the normal componentdn(θ) is different from zero

after azimuthal averaging, due to the statistical uniformity of the random packing. Thus, even

though the individual complementary-area vectorsd
e are not parallel to the branch vectorsl

e,

18



azimuthally-averagedthey are parallel.

The azimuthally-averaged normal component of the complementary-area vectordn(θ) can

(also) be expressed as a Fourier series in the polar angleθ: dn(θ) ≈ dn0 + dn2 cos 2θ. The

analysis of the anisotropy ratiodn2/dn0 (Fig. 9, left) shows that the normal complementary area

dn(θ) is nearly isotropic for edges and contacts (|dn2/dn0| < 2%), while for virtual contacts it

becomes slightly anisotropic for large deformations (dn2/dn0 ∼ −10%), where a negative value

means that the complementary-area vectors are somewhat smaller in the compression direction

than in the extension direction. The even smaller coefficient of the fourth-order harmonic is not

shown and discussed here.
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Figure 9: Normal componentdn of the complementary-area vector for edges (e), contacts (c)

and virtual contacts (v) in triaxial test. (Left) Evolutionof the anisotropy ratiodn2/dn0 (Right)

Evolution of the normalized average〈dn〉〈l〉/(3〈r〉3). As shown by the solid line in the right

panel,〈dn〉e〈l〉e/(3〈r〉3) is proportional to the inverse of the volume fraction1/ν.

The evolution of the normalized average〈dn〉e,c,v〈l〉e,c,v/(3〈r〉3) is shown in Fig. 9 (right)

for edges, contacts and virtual contacts. The scaling of〈dn〉e with 3〈r〉3/〈l〉e, where〈r〉 is the

mean particle radius, is suggested by the geometrical identity [Durán et al., 2010]

〈dnl〉e = 3V/E , (21)

which implies an additional relation with the volume fraction ν. Since the number of edges

remains almost constant during the test (see Fig. 5, left) and the actual volume of the packing
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is proportional to〈r〉3/ν, it follows that 〈dn〉e〈l〉e/(3〈r〉3) ∝ 1/ν, as shown by the solid line

in Fig. 9 (right). The single proportionality constant has been set to match the initial value at

e11 = 0.

5.2 Relative displacements

In this section we study the relative displacements of edges, (physical) contacts and virtual

contacts during triaxial and isotropic loading. In particular, we will focus on the orientational

averages and the probability distribution function (PDF) of the normal and tangential compo-

nents of the relative displacements for edges, contacts andvirtual contacts.

The orientationally-averaged components of the relative displacement vector,̂∆un(θ, φ),

∆̂ut(θ, φ) and ∆̂us(θ, φ), are shown in Fig. 10 for the triaxial test. As expected due tothe

polar symmetry (see also Section 3.1), these averages are independent ofφ and the out-of-plane

component vanishes,̂∆us(θ, φ) ≈ 0.

Figure 10: Orientational averageŝ∆un(θ, φ), ∆̂ut(θ, φ) and ∆̂us(θ, φ) for edges for triaxial

loading at deformatione11 = −2%. The magnitude of the average is given by the color code,

where red represents positive values and blue negative values. Note that̂∆us is negligible.

In the following, we will therefore study the azimuthally-averaged normal and tangential

component of the relative displacement of edges∆u
e

n,t(θ) by analyzing the behavior of the

contact∆u
c

n,t(θ) and virtual contact∆u
v

n,t(θ) contributions separately. These components are

not independent, as they are related by the normalization condition:

ρθ(θ)∆u
e

n,t(θ) = nCρc
θ(θ)∆u

c

n,t(θ) + (1 − nC)ρv
θ(θ)∆u

v

n,t(θ) , (22)

whereρθ(θ) andnC are defined in Eqs. (17) and (18), respectively.
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5.2.1 Normal component

Figure 11 shows the polar distribution of the normal components of the azimuthally-averaged

relative displacements∆u
e,c,v

n (θ)/(|ε11|〈l〉e,c,v) for edges, contacts and virtual contacts, at two

different axial deformationse11 during the triaxial test. The relative displacements of edges,

contacts, and virtual contacts are normalized by the respective average length of the branch

vectors and by the strain increment|ε11|.

 1  0.5  0  0.5  1

∆—un
e/(|ε11| 〈 l〉e)

--

+

 0.1  0.05  0  0.05  0.1

∆—un
c/(|ε11| 〈 l〉c)

--

+

 1.5  1  0.5  0  0.5  1  1.5

∆—un
v/(|ε11| 〈 l〉v)

--

+

Figure 11: Triaxial loading: polar distribution of the scaled normal components of the

azimuthally-averaged relative displacements∆un(θ)/(|ε11|〈l〉) for edges (top), contacts and

virtual contacts (bottom left and right, respectively) ate11 = −2% (full symbols in red) and

−20% (open symbols in green). Negative (−) and positive (+) labels indicate compression and

extension, respectively.

As expected for triaxial compression, edges are compressed(∆u
e

n < 0) in theX-axis (θ =

0), while they expand (∆u
e

n > 0) in the extension direction (θ = π/2), see Fig. 11. However,

this significantly changes when the deformation of contactsand virtual contacts is analyzed

separately. Although virtual contacts deform (in the normal direction) in a way similar to that

of edges, they are deformed more. On the other hand, contactsare only slightly compressed

due to the strong repulsive forces active. For large deformations (e11 ∼ −20%), they practically

do not deform at all in the contact direction, i.e.∆u
c

n ∼ 0 (Fig. 11, left). In this regime, the
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deformation in the normal direction occurs predominantly in the space between particles, i.e.

‘deformation of voids’ (characterized by the virtual contacts).

In general, the compressive (considered as negative) response in relative displacements is

stronger than the extension (considered as positive) one. This observation is true for the peak

stress (red) and – even stronger – for the large strain regime(green). The contacts have no

significant (average) relative displacement in the large strain regime in any direction.
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Figure 12: Isotropic loading: evolution of the normalized Fourier components,a0/|ε11| of the

scaled relative normal displacement∆un/〈l〉 for edges (red dots), contacts (green solid circles)

and virtual contacts (blue squares). The solid line represents the uniform-strain prediction.

Higher-order Fourier coefficientsae,c,v
n are small (data not shown).

The dimensionless normal component of the relative displacements for edges, contacts

and virtual contacts (∆ue,c,v
n (θ)/〈l〉e,c,v) can be decomposed into a Fourier series, similar to

Eq. (11a):

∆u
e,c,v

n (θ)

〈l〉e,c,v
= ae,c,v

0 + ae,c,v
n cos 2θ + ... (23)

Again, for symmetry reasons, there is no term involvingcos θ. Now, it is possible to study

the evolution of the Fourier components for the different loading conditions used: isotropic

(Fig. 12) and triaxial (Fig. 13) loading. In all cases, only the first two componentsa0 andan are

relevant and higher harmonics contributions can be neglected (data not shown).
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Figure 13: Triaxial loading: evolution of the normalized Fourier components of the scaled

relative normal displacement∆un/〈l〉 ) for edges (red circles), contacts (green dots) and vir-

tual contacts (blue squares): (left)a0/|ε11| and (right)an/|ε11|. The solid line represents the

uniform-strain prediction.

The first componentae,c,v
0 gives the isotropic contribution to the relative displacement, where

negative values mean that the edges/contacts/virtual contacts are compressed. The contacts are,

in all cases, compressed less than the edges, while the virtual contacts are compressed more

(since there is no repulsive force acting against compression for virtual contacts).

Theae,c,v
n quantify the anisotropic parts, see Eq. (23), where negative values mean that the

contacts are compressed in the compressiveX-direction, while they are stretched in the perpen-

dicular, azimuthal plane. In particular, for isotropic compression the anisotropic components

are all practically zero. For large strain in the triaxial test, the relative displacements of contacts

level out at a small, constant value.

While the relative displacements of the contacts saturate at large strains in the triaxial test,

the isotropic (anisotropic) Fourier components of edges and virtual contacts increase (decrease)

in magnitude.

Somewhat surprisingly, the Fourier components of the normal deformation of edges,ae
0,n,

nicely follow the uniform-strain predictions̃a0 = (ε11 + ε22)/2 and ãn = (ε11 − ε22)/2, see

Eqs. (12a) and (12b). As we will see in the next section, this also applies to the tangential

component of the relative displacements. This represents an important characteristic of the
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deformation of the Delaunay network.

On average, contacts do not deform according to the uniform-strain assumption, contrary to

the edges. This is even so for the simple case of isotropic compression (see Fig. 12). For the

more complex triaxial loading, contact deformation is onlya fraction of the edge deformation

(see Fig. 13). In triaxial loading, the Fourier components of the contact deformation become

very small at aboute11 ≈ −2% when the system reaches the yield point (see Fig. 4). Therefore,

during what we call the deviatoric regime (|e11| > 2%), the azimuthally-averaged length of

contacts does not change (i.e.∆u
c

n(θ) ≈ 0) and thus, using Eq. (22), the normal component

of the relative displacement of all edges (∆u
e

n(θ)) can be approximated in terms of the virtual

contact deformation∆u
v

n as

ρθ(θ)∆u
e

n(θ) ≈ (1 − nC)ρv
θ(θ)∆u

v

n(θ) , (24)

which represents an additional (approximate) normalization condition, valid only in the large

strain regime of the triaxial test.

Probability density functions

Probability density functions of relative displacements at contacts have been studied in the

two-dimensional case in [Kruyt & Rothenburg, 2003]. Here the probability density functions

of edges, (physical) contacts and virtual contacts are given for the normal component of the

relative displacement. Figure 14 shows the probability density function of the dimensionless

normal deformation∆u
e,c,v

n /|ε11|〈l〉e,c,v of edges, contacts and virtual contacts for the triaxial

loading, along three characteristic directions:θ = 0o, 45o and90o.

The range of relative displacements at contacts is narrowlycentered at zero, while virtual

contacts deform over a much wider range. In both cases, the deformation involves positive and

negative contributions (i.e. both extension and compression, respectively). The edge average

of the relative normal displacement in the compression direction (θ = 00) is negative, in the

extension direction (θ = 900) it is positive, and in shear direction (θ = 450) it vanishes. All this

is consistent with the previous observations and with expectation, since positive and negative

correspond to compression and tension, respectively.

Although not shown, similar qualitative behavior is observed for the probability density
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Figure 14: Probability density function of∆u
e,c,v

n /(|ε11|〈l〉e,c,v) along three characteristic direc-

tions, for the triaxial loading ate11 = −2%.

function in isotropic loading. The two main differences arethat: (i) the contact normal dis-

placement is virtually truncated at zero, i.e. only very tiny compression at contacts can be

achieved, due to the strong repulsive contact forces and (ii) the probability density functions

for ∆uc,v
n are closer to Gaussian distributions (data not shown), while for triaxial loading the

probability density functions have near-exponential tails (see Fig. 14).

5.2.2 Tangential component

Fig. 15 shows the polar distribution of the normalized tangential components of the azimuthally-

averaged relative displacements∆u
e,c,v

t /(|ε11|〈l〉e,c,v) for edges, contacts and virtual contacts,

at different axial deformationse11 during triaxial loading.

These averages are well described by a truncated Fourier series, similar to Eq. (11b):

∆u
e,c,v

t (θ)

〈l〉e,c,v
≈ −ae,c,v

t sin 2θ . (25)

The evolution of the Fourier coefficientsae,c,v
t during the triaxial test is plotted in Fig. 16.

Similarly to the results for the normal component, the tangential component of the relative

displacement of edges closely follows the uniform-strain predictionãt = ãn = (ε11 − ε22)/2,

see Eq. (12c). Note that, contrary to the normal components,the tangential (physical) contact

displacements are largest, while the edge- and virtual contact displacements are smaller. The

edges have approximately the same magnitude of deformationin both normal and tangential
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direction, since they deform affine, on average (see also Eq.(12c)).
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Figure 15: Polar distributions of∆ut(θ)/(|ε11|〈l〉) at e11 = −2% (•) and−20% (◦) for triaxial

loading.

Probability density function

Figure 17 shows the probability density function of∆ut/(|ε11|l) for edges, contacts and virtual

contacts for the triaxial test, along three characteristicdirectionsθ = 0o, 45o and90o. The

probability density functions have near-exponential tails, unlike for isotropic loading, where

the distributions are closer to Gaussian (data not shown).

The probability density functions of the out-of-plane component,∆ue,c,v
s , for edges, contacts

and virtual contacts, are qualitatively similar to those ofthe tangential component∆ue,c,v
t .

5.3 Deviations from uniform deformation

For development of micro-mechanical constitutive relations, the uniform-strain assumption is

often used as the kinematic “localisation assumption” [Cambou et al., 1995]. Here the ap-

propriateness of this assumption is investigated by comparing the orientation-averaged relative

displacements with those according to the uniform-strain assumption, Eqs. (12a), (12b) and

(12c).
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Figure 16: Triaxial loading: evolution of the normalized Fourier components,at/|ε11|, of the

tangential relative displacements∆ut/〈l〉 for edges (e: red symbols), contacts (c: green sym-

bols) and virtual contacts (v: blue symbols). The solid linerepresents the uniform-strain pre-

diction.
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Figure 17: Probability density function of∆u
e,c,v

t /(|ε11|〈l〉e,c,v) for edges, contacts and virtual

contacts, along three characteristic directions, during triaxial loading ate11 = −2%.

The results of the DEM simulations show that the (azimuthally) averaged relative displace-

ments∆u
e,c,v

n,t (θ) can be expressed as a Fourier series with coefficientsae,c,v
0,n,t, see Eqs. (23) and

(25). Note that the edges’ coefficientsae
0,n,t conform to the uniform-strain assumption, while

the (physical) contacts and virtual contacts do not behave according to the uniform-strain pre-

diction.
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The deviations in deformation from the case of uniform-strain (or affine) deformation of

edges, contacts and virtual contacts can be characterized by the ratio between the actual Fourier

coefficients (ae,c,v
0,n,t) and those predicted by the uniform strain (ã0,n,t), i.e. by the set of coeffi-

cients:

γe,c,v
0,n,t ≡

ae,c,v
0,n,t

ã0,n,t

. (26)

Figure 18 shows the evolution of the set of coefficientsγe,c,v
0,n,t as function of the imposed

deformation, for isotropic and triaxial loading. As was already clear from the previous sections,

the deformation of edges follows quite closely the uniform-strain prediction (γ0,n,t ≈ 1), and

thus their deformation is on average affine.

In contrast, contact deformation strongly deviates from uniform-strain deformation. The

main reason is that the high interparticle stiffness limitsthe relative displacements of contacts in

the normal direction, compared to that of virtual contacts.Therefore, the normal component of

the relative displacement of contacts is much smaller than that of edges and of virtual contacts.

For the tangential component, the reverse observation holds to a lesser degree: the defor-

mation of physical contacts and virtual contacts are of the same order of magnitude, but that of

physical contacts is larger. Contrary to virtual contacts,the tangential stiffness limits the total

deformation of contacts at the contact point, which consists of translational as well as rotational

parts. This rotational part will counteract the translational part (‘rolling mode of deformation’),

i.e. have an opposite sign. This suggests that the tangential component of the relative displace-

ments of contacts is smaller than that according to the uniform-strain assumption.

Thus, the main contribution to the strain arises from the deformation of the voids and from

the tangential deformation of contacts.

6 Discussion

Bagi’s micro-mechanical formulation [Bagi, 1996] for the strain tensor involves an average

over edges of the Delaunay tessellation of relative displacement vectors between particles and

the complementary-area vectors. The set of edges can be subdivided into physical contacts and

virtual contacts.
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Figure 18: Deviations from the uniform-strain prediction,given by the set of coefficientsγe,c,v
0,n,t

for edges(e), contacts(c) and virtual contacts(v), as function of the axial deformation, for

isotropic (left) and triaxial (right) loading. In the former case only the isotropicγ0 are shown,

whereas in the latter case the coefficients for edges (open symbols) and contacts (solid symbols)

are shown. Note that symbols likee(n), for instance, have to be interpreted asγe
n.

The statistics of: (1) coordination numbers, (2) the edge orientations, (3) the branch vectors,

(4) the complementary-area vectors and (5) the relative displacement vectors have been studied

here, using results from DEM simulations of isotropic and triaxial compression tests. It is found

that:

1. The coordination number for edges is almost constant for the compression and triaxial

tests, while the coordination number for contacts shows strong changes.

2. The orientational distribution function of edges is close to isotropic during all tests. The

distribution of physical contacts and virtual contacts becomes anisotropic in the triaxial

test. All these distribution functions are reasonably wellapproximated by second-order

Fourier series.

3. The average length of the branch vectors of edges and virtual contacts is varying, whereas

that of physical contacts is practically constant.

4. The complementary-area vector, on average, only has a non-zero normal component.

This average normal component is isotropic for edges and contacts, while that for virtual
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contacts shows a mild anisotropy. The average values of the length of the branch vector

and the normal component of the complementary-area vector are related to each other and

to the volume fraction of the assembly.

5. The orientational averages of the relative displacements for the edges, contacts and vir-

tual contacts are well approximated by second-order Fourier series. The evolution of

these Fourier coefficients with imposed strain has been studied and compared to those

according to the (averaged) uniform-strain assumption to assess its accuracy.

The total deformation of the assembly, as given by the orientational averages of the rel-

ative displacements of the edges of the Delaunay tessellation follows the uniform-strain

prediction. However, neither the deformation of the contact network nor of the virtual

contact network has this property. The normal component of the relative displacement of

physical contacts is smaller than that according to the uniform-strain assumption, while

that of the virtual contacts is larger. The reverse observation holds for the tangential com-

ponent of the relative displacement vector.

In isotropic compression the probability density functions for the relative displacements

of edges, contacts and virtual contacts are close to Gaussian, while in the triaxial test they

exhibit near-exponential tails.

This difference in behavior of the networks of physical and virtual contacts poses a chal-

lenge for micro-mechanical modeling. The deformation of the physical contact network, which

represents themicro-scalestructure of those edges that contribute to the stiffness and thus to the

continuum, macro-scalestress, can not easily be predicted. For a micro-mechanical“localisa-

tion assumption”, an additional relationship between the average deformation of virtual contacts

and physical contacts needs to be established, like Eq. (22). The left-hand side of this equation

follows from the uniform-strain assumption, so that knowing either∆u
c

n,t(θ) or ∆u
v

n,t(θ) would

allow one to close the problem by obtaining a “localisation assumption”.A possible approach

is to investigate, from the DEM results, the interconnection between local contact geometry and

local deformation of small clusters of particles.However, this is a topic for future research.

In addition, it is recommended to also consider other loading cases, for example a case

where the direction of (initial) anisotropy does not coincide with the direction of loading, as well
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as other initial conditions, such as a loose initial packing. The Bagi micro-mechanical strain

expression, Eq. (3), involves only relative displacementsof particle centers, and hence excludes

particle rotations.Since this expression is actually for the displacement-gradient tensor, it does

describe the continuum-mechanical rotation, i.e. the asymmetrical part of the displacement

gradient.The investigation of the role of particle rotations on deformation measures is also a

topic for further study.
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7 Appendix: uniform strain

Here the relative displacement vector according to uniform-strain assumption is expressed in

the local, edge-based coordinate system(n, t, s) (see Section 3.1) for triaxial loading.

According to the uniform-strain assumption (see Eq. (6)), the relative displacement∆ui of

an edge characterized by the branch vectorli ≡ lni is given by :

∆ui = εijlj (27)

with normal and tangential components,

∆un = niεijlj (28a)

∆ut = tiεijlj (28b)

∆us = siεijlj (28c)

wheret ands are the tangential edge vectors, defined in Eq. (8).
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In the triaxial compression testε33 = ε22, and hence the strain tensor is given by

ε =




ε11 0 0

0 ε22 0

0 0 ε22


 (29)

Using Eq. (8), it follows that the orientational-averaged relative displacements (see Section

3) according to uniform strain are given by:

∆̃un(θ, φ) = 〈l〉
[(

ε11 + ε22

2

)
+

(
ε11 − ε22

2

)
cos 2θ

]
(30a)

∆̃ut(θ, φ) = −〈l〉
[(

ε11 − ε22

2

)
sin 2θ

]
(30b)

∆̃us(θ, φ) = 0 (30c)

where the isotropy of the branch vector||l(θ, φ)|| ≈ 〈l〉 has been used (see Section 5.1.3).

References

[Bagi, 1996] Bagi, K. (1996). Stress and strain in granular assemblies.Mechanics of Materials

22:165–177.

[Bathurst & Rothenburg, 1988] Bathurst, R.J. & Rothenburg,L. (1988). Micro-mechanical

aspects of isotropic granular assemblies with linear contact interactions.Journal of Applied

Mechanics55: 17-23.

[Bathurst & Rothenburg, 1990] Bathurst, R.J. & Rothenburg,L. (1990). Observations on

stress-force-fabric relationships.Mechanics of Materials9: 65-80.

[Cambou et al., 1995] Cambou, B. & Dubujet, P. & Emeriault, F.& Sidoroff, F. (1995). Ho-

mogenization for granular materials.European Journal of Mechanics A/Solids14: 225-276.

[Coppersmith et al., 1996] Coppersmith, S.N. & Liu, C.H. & Majumdar, S. & Narayan, O. &

Witten, T.A. (1996). Model for force fluctuations in bead packs. Physical Review E53:

4673–4685.

[Cundall & Strack, 1979] Cundall, P.A. & Strack, O.D.L. (1979). A discrete numerical model

for granular assemblies.Géotechnique29: 47–65.
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