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Abstract

The deformation characteristics of idealized granularemiat have been studied from
the micro-mechanical viewpoint, using Bagi’'s three-digienal micro-mechanical for-
mulation for the strain tensor [Bagi, K. (1996), MechanidsMaterials 22: 165-177].
This formulation is based on the Delaunay tessellation atepnto tetrahedra. The set
of edges of the tetrahedra can be divided into physical ctstand virtual contacts be-
tween particles. Bagi’s formulation expressestbatinuum, macro-scalgtrain as an av-
erage over all edges, of their relative displacements @atviwo successive states) and the
complementary-area vectors. This latter vector is a gewraetuantity determined from
the set of edges, i.e. from the structure of the particle ipack

Results from Discrete Element Method simulations of iguit@nd triaxial loading of
a three-dimensional polydisperse packing of spheres hese bised to investigate statistics
of the branch vectors and complementary-area vectors @&se@ybdivided into physical
and virtual contacts) and of the relative displacementsigés. The investigated statistics
are probability density functions and averages over grafigslges with the same orienta-
tion. It is shown that these averages can be representedcogdserder Fourier series in

edge orientation.
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Edge orientations are distributed isotropically, contrer contact orientations. The
average lengths of the branch vectors and the normal compofh¢he complementary-
area vectors are distributed isotropically (with respecthie edge orientation) and their
average values are related to each other and to the volumtefraf the assembly. The
other two components of the complementary-area vectoreatean average.

The total deformation of the assembly, as given by the aecrdghe relative dis-
placements of the edges of the Delaunay tessellation fsltbe uniform-strain prediction.
However, neither the deformation of the physical contativagk nor of the virtual con-
tact network has this property. The average relative digphent of physical edges in the
normal direction (determined by the branch vector) is sendtan that according to the
uniform-strain assumption, while that of virtual contaistdarger. This is caused by the
high interparticle stiffness that hinders compressiore fidverse observation holds for the
tangential component of the relative displacement vecitre contribution of the defor-
mation of the empty space between physical contacts todhnuum, macro-scalgrain
tensor is therefore very important for the understanding) the prediction of thenacro-

scaledeformation of granular materials.

1 Introduction

The complex mechanical behavior of granular materialsnduguasi-static deformation can
be better understood from the micro-mechanical approacihich relationships are studied
between thenacro-scalecontinuum level and thmicro-scale level of particles and interparticle
contacts

For quasi-static deformation of granular materials, rtigcro-scale, continuumuantities
of interest are stress and strain. The relevaitro-scaldevel is that ofparticles anghysical
contacts since granular materials can be idealized as assemblissnofrigid particles that
interact at contacts through point forces. The contacte®iare determined from the contact
constitutive relation that involves the relative displaeats of particles that are in contact.

For micro-mechanically-based constitutive relationsp-&alled “localisation assumption”
(see for example [Cambou et al., 1995, Liao et al., 1997, K&uRothenburg, 2002]it also

called “macro-micro assumption” or “homogenisation agstiom”) is required that links the



macro-scalstrain to thanicro-scaledeformation. The proper formulation of such assumptions
is an open and difficult issue. Usually, the uniform-strasswanption of affine deformation
is employed. Its validity is rather limited, however [Makseal., 1999, Kruyt & Rothenburg,
2004].

Since granular materials are generally packed randongykchanical response will also
show a significant random component (relative to the mead)fielcontact forces and defor-
mation. Statistical approaches are therefore considgnepriate.

Micro-mechanics of stress transmission in granular matehas been studied extensively,
see for example [Bathurst & Rothenburg, 1988, Bathurst &oburg, 1990, Coppersmith
et al., 1996, Radjai et al., 1996, Mueth et al., 1998, Loepkl., 1999, Kruyt & Rothenburg,
2001, Kruyt & Rothenburg, 2002, Kruyt, 2003a, Metzger, 20@h Eerd et al., 2007]. On the
other hand, deformation characteristics have not beenestud much detail. Most studies
are restricted to the two-dimensional case [Kruyt & Rothegh2003, Kruyt & Rothenburg,
2004, Kruyt & Antony, 2007, Tordesillas et al., 2010, Nguyml., 2009].

The focus of this micro-mechanical study is therefore orodweétion characteristics of
three-dimensional assemblies. A previous study [Duraal.e2010] has shown that Bagi’s
micro-mechanical strain formulation [Bagi, 1996] is theshaccurate three-dimensional micro-
mechanical strain formulation in reconstructing the stimiposed at the boundary. Hence this
formulation is employed here to study micro-mechanicatatizristics of deformation.

Discrete Element Method (DEM for short) simulations [Culh&z5track, 1979] of isotropic
and triaxial loading of an initially isotropic system of ks are used to obtain the required
detailed information on patrticle positions and displacetseand hence on thmaicro-scalede-
formation characteristics. These two test cases are iged¢stl, since they are frequently used
to characterize the material behavilrthese DEM simulations the formation of (global) shear
bands is suppressed (through the use of periodic boundaditmms) in order to obtain defor-
mations without large-scale spatial heterogeneity.

The outline of this study is as follows. Firstly, Bagi’'s nbemechanical strain formulation
is summarized. Then the DEM simulations are described dfdp@ and triaxial loading.
The detailed results of these DEM simulations are subselyugsed for the micro-mechanical

analysis of the deformation characteristics.



2 Micro-mechanical strain

The strain tensot;; is defined as the symmetrical part of the continuum-mechadisplace-
ment gradiendu; /0x;, whereu(x) is the displacement field with respect to the selected refer-
ence configuration. However, for simplicity in terminologye will refer to the displacement

gradientdu, /0z; simply as the strain tensor:
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The usual sign convention from continuum mechanics is eygglpaccording to which com-
pression is considered as negative.

The volume averags,; of the strain tensor over volunié, enclosed by surfacg, is given

by:
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where Gauss’ divergence theorem has been used. For sitypliciotation, the overbar for the

average strain,; will be dropped in the following.

2.1 Bagi’'sequivalent continuum strain formulation

In this section the micro-mechanical strain tensor formaoiraof Bagi [Bagi, 1996] is summa-
rized. Since this formulation is based on the Delaunay bieses of space, this tessellation is

first introduced.

2.1.1 Delaunay tessellation

The Delaunay tessellation of three-dimensional spacasisrte its tessellation into tetrahedra.
Given a set of vertices, the tetrahedra defined by the Dejat@saellation connect the vertices
in such a way that the edges (connecting lines) of the tedralferm the shortest path between
the vertices. An equivalent definition is that any sphereribed around an arbitrary tetrahedron
contains no other vertex.

In a granular system the vertices of the tetrahedra are thterseof the particles and their

edges correspond to the shortest path between them (seB).FAyn edge between particles



andgq is geometrically characterized by the branch vettor= X? — X? (see Fig. 2; right),
whereX? is the position vector of the centre of mass of partjclelrhe subseC of all edges

E, resulting from the Delaunay tessellation, that represarghysical contacbetween the
particles will be simply calledontacts Spherical particles are in physical contact when the
distance between their centers is smaller than the sumiot#a#. In contrast, the othelt — C

edges will be calledirtual contactgFig. 1).

Figure 1: Delaunay tessellation of a three-dimensionalgjea system consisting of six spheres
of different sizes. Note that the tessellation containsdhetrahedrafa, b, ¢, f}, {b, ¢, d, f} and
{c,d, e, f}. Red edges anghysical contactswhile blue edges indicatértual contacts

2.1.2 Strain expression

The micro-mechanical expression for the average strasotasf a three-dimensional assembly
of convex particles in a representative volume&an be written as an average over all edges of
the Delaunay tessellation [Bagi, 1996]
1 ce FE
gij - V ;Auidj = V(Auidj)e s (3)
where brackets.). represent the average over Bledges. Analogously, averages over physical

contacts and virtual contacts are denoted.lyand(.),,, respectively. The relative displacement



Figure 2: (Left) The displayed tetrahedra are formed by H#régesp andq (green spheres) and
the particles that are in (physical or virtual) contact viatithp andg (spheres in dashed lines).
Note that in this example the edgé, ¢) has six neighbors and hence six tetrahedra surround
it, 7. = 6. (Right) Branch vectol’? connecting centers of particlesandq and area vectors?

andb? of the faces opposite to particteandq, respectively, for the tetrahedron determined by

the particlesp, ¢, p1, ¢1} (these faces are shown in red and blue, respectively).

vectorAu® at the edge(p, ¢), where index (q) represents the particle at thail’ (‘head’) of

the directed edge, respectively, is given by
Au® = Auv?? = U? — U7, (4)

whereU? is the displacement of the centre of mass of parficldote that the relative displace-
ment does not involve particle rotations.

The vectord® is the complementary-area vector of the edge ¢), defined as [Bagi, 1996]:

1 &

d° = - tzl(b% —b”), (5)

where the sum is over dll, tetrahedra that share the edgg, ¢) (see Fig. 2; left) and the vector
b? represents the outward area-vector of gHface, defined as the facppositeto the vertexp

(see Fig. 2; right). As shown in [Duran et al., 20141],reflects the distribution of voids around
a given edges. In general, the complementary-area veeibris not parallel with the branch

vectorle.



3 Orientational averaging

From continuum-mechanical considerations, it is expetttatithe relative displacemeniu of
points separated by a vectdf), where the solid angl@ describes the orientation of the edges

between the points, is given by
Au(Q) =€-1(Q). (6)

Hence, it is meaningful to consider the averageMi® over groups of edges with the same
orientation(2 [Rothenburg, 1980, Bathurst & Rothenburg, 1988]. Such antational average
of an arbitrary quantity:® associated with an edge is denotedigy?).

The orientational distribution function [Horne, 1965] afges over a solid angle is de-
fined such thap(Q2)d(2 gives the fraction of edges with orientations betwé&eand() + df2.
This distribution function satisfies the normalization diion [, p(Q2)d2 = 1. Correspond-
ing orientational distribution functions for physical ¢aots and virtual contacts are denoted by
p°(2) andp’(Q2), respectively.

The expression for the average strain tensor, Eq. (3), ascaeti sum over edges, can be
transformed into a continuous form involving the orierdatl distribution function and the

orientational average:

E —

whereF is the number of edges in the volurire

The assumption that all edges individually follow the rielashipAu® = € - 1° is called the
uniform-strainor affinedeformation assumption and it is often employed in micraiamical
studies. Assuming that Eq. (6) holds is a weaker assumptitrientational-averaged uniform
strain”. However, for convenience, we refer to Eq. (6) as‘tmeform-strain assumption”.

Relative displacements (and branch vectors) from the DEMIitions will be compared, in
the following, with the prediction according to the unifostrain assumption, Eq. (6). However,
first, a local, edge-based coordinate system is defined shainvenient for representing the
results in a more condensed way for the considered test,casparticular for the triaxial

compression.



3.1 Local edge-based coordinate system

In the following, triaxial and isotropic compression tesfsan initially isotropic sample are
considered. In the triaxial test, the deformation is imgakng theX-direction and lateral
stresses are kept constant at the initial value.

The unit vectom® = 1¢/||I°|| is given by the local branch vector orientation. Using the
normal vectom® and one arbitrary direction unit vecter, we define the unit vectar in the
tangential direction and the unit vectgrin the azimuthal direction. In the present study, the
unit vectore; = e, along theX-direction is chosen. This is an arbitrary choice for ispico
deformation, but it is appropriate for the case of triaxiglatmation.

Let s® be oriented perpendicularly to the plane that contaihande;. Thuss® = (e; x
n°)/|le; x n°|| andt® = s° x n°, as sketched in Fig. 3. Note thai®, t°, s*) form a local
right-handed orthonormal coordinate system. Furthermiooen the definition ofs®, when
bothe; andn® are (almost) parallel, the rati@; x n°)/||e; x n°|| remains finite, although
lle1 x n¢|| — 0 (see below).

Considering spherical coordinatés ¢) with symmetry axie; = e,, the polar anglé is

given byf = arccos (n° - e;,) € [0, 7] and the azimuthal anglge € [0, 27]. The vectors, t and

s become:
n= cosfe, +cos¢sinfe, +singsinfe, (8a)
t = —sinfle, +cosgcoste, +singcosbe, (8b)
s = —singe, +cosge, (8c)

where the superscript denoting a given edge, is dropped since, the an@les) correspond
not to a single edge, but to a family of edges.

In this local coordinate system any vectArassociated with an edge (such as the relative
displacement vector&Au®, the branch vectdr and the complementary-area vectdr$ can be

decomposed as
A=An+ At+ As. (9)
For the triaxial compression test the boundary conditiandte representative volunié
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Figure 3: Sketch of the local, edge-based coordinate sy@aietns) for an edge that is oriented
alongn. The Cartesian coordinate systémy, =), a sphere with unit radius and the azimuthal
and polar angles] and ¢, respectively, are shown for reference. Note that by dedmithe

vectors(n, t) are coplanar witle,, while s is in the plane) — z (green region).

are symmetrical in thé”, Z plane (the azimuthal plane). Given this polar (cylindfiicm-
metry around theX-axis, it is expected that therientational averagéover edges with similar
orientations) of an edge quantity(denoted bﬁ(Q), or in terms of angle®, ¢) by E(@, ¢))is
independent of. Then only theazimuthal averagéor polar average), denoted By(#), is im-
portant. This reduction forms the main motivation for theaduction of the local, edge-based
coordinate system.

Notice that an edggg is equivalent to the edgg. The orientation of edggy is expressed
by the spherical coordinatég, ¢). The orientation of edgep then is given by(m — 6, 7 — ¢).
Therefore, the orientational average satisf@gs — 0,7 — ¢) = A(0,¢) and the azimuthal
average satisfied(r — ) = A(6).

The orientational distribution functiop(6, ¢) will (also) only depend o for the consid-
ered test cases. The corresponding (polar) distributidem®ted by, (6). A similar meaning

is implied by p5(0) andpj ().



3.2 Uniform strain

Here the azimuthally-averaged relative displacemenovexicording to the uniform-strain as-
sumption Eq. (6) is given for a triaxial test. This relativeglacement vector is expressed in the
components{&n, &;t, &LS} (compare Eq. (9)). Here, and in the following, the tilde cates
guantities that are obtained from the uniform-strain aggion. As shown in the Appendix,

these components are given by

Auy(6) = () K@)+<¥) COSQ@] (10a)
Auy6) = —{0) K@) sin20} (10b)
Auy(0) = 0 (10c)

or, in terms of the Fourier componerts a,,, a;

Aun(8) = () (dg + Gn cos26) (11a)

Au(0) = —(1)a sin26 (11b)
where

iy = L;g” (12a)

a, = @ (12b)

The results for the (azimuthally-averaged) componénits,, (9), Au,(0)} of the relative
displacements from the DEM simulations, described in the section, conform to Eq. (11),
but the corresponding coefficients, a,, anda, differ from those given in Eq. (12). Therefore,
the deviations from the ideal case of uniform-strain (om&ffideformation can be characterized
by the ratio between the actual Fourier coefficients, () for the relative displacements of
edges, contacts or virtual contacts, and those predictétyniform-strain assumptiof;, .),

i.e. by the set of coefficientg), v,, and~,, defined by

aO,n,t (13)

Yon,t =z )
aO,n,t

Results for these coefficients are presented in Section 5.3.
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4 Discrete Element Method smulations

Discrete Element Method (DEM) simulations, as proposedduyndall & Strack, 1979], have
been performed to obtain detailed information on particgpldcements (and hence relative
displacements at the edges) under triaxial and isotropigcessive loading conditions.

The assembly consists of 250,000 polydisperse sphericatlpa, with radii from a log-
normal distribution. Its standard deviation is 0.25, rigkato the mean particle radiys). The
initial, isotropic packing is prepared under isotropiess conditions, with stress and with
particle friction switched off, i.e. the interparticledtion coefficientu = 0. Its volume fraction
v, i.e. the volume occupied by the particles divided by thaltassembly volume (including
voids), is 0.65 and the (physical) coordination humbgr(the average number of physical
contacts per particle) i§. = 6.19. The length of the initial cubic assembly is about 60 times
the average particle diameter.

The contact constitutive relation of [Cundall & Strack, 89% used, in which the elastic
parts of the contact constitutive relations, for the noramal tangential contact forces, are linear.
The stiffness ratid; /k, = 0.5, with k,, andk, being the stiffnesses in normal and tangential
directions, respectively. The interparticle friction dfagent . = 0.5. The contact deformations
(‘overlaps’) are small, since the non-dimensional strggs) /&, ~ 1073 is small.

For the triaxial loading the compressive displacement pased in theX -direction, while
the lateral deformation is such that the lateral stresse&egt constant at the initial stresg.
Periodic boundary conditions have been employed to avoid effects and to suppress the
formations of (global) shear bands so that large deformatathout large-scale heterogeneity
can be studied. Note that small-scale heterogeneitiesimiflys be present [Kuhn, 1999].

Themacro-scaleeformation of the periodic box is determined from the defation of the

periodic box, with length4,; and initial lengths?

L;

eij = lnﬁ 5ij . (14)

In the triaxial test the principal-strain directions capend to the Cartesian coordinate system
for the periodic box.Note that the tensoe represents the cumulative deformation given by
e= fLLO e, whereg is the incremental strain tensor.

Themacro-scalgcontinuum response is characterized by the deviatogsstatiay/p with
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Figure 4: Evolution of the total volumetric straip and the ratio of the deviatoric stress ra-
tio ¢/p (as defined in the main text) as a function of the total axi&biwheation —e;;, where

compression is considered negative.

invariantg = (011 — 092)/2 of the deviatoric stress and presspre- tro /3 and volumetric
strainey (ey = tre = InV/V;, whereV is the volume of the current state ahg is the
volume of the initial state). Figure 4 shows the evolutios,fanction of the total imposed
axial deformatiore;, of the deviatoric stress ratio and volumetric strain, i characteristic
compression-dilation behavior for a dense initial packinihe yield stress is reached after
about 2% of axial deformation. Note that no (global) sheardbaas observed, due to the use
of periodic boundary conditions.

In a previous study [Duran et al., 2010] it has been showh Bagi’s micro-mechanical
expression, Eq. (3), for the average strain tensor acdunagpresents thenacro-scalalefor-
mation of the boundaries, i.e. the changing lengths of thiegie box.

The employed Delaunay tessellation procedure does notitéeaccount the periodic
boundaries of the system. Hence only “internal” tetrah@desemployed. These internal tetra-

hedra are located more than 5% of the system size away frorafahg periodic boundaries.
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5 Results

In this section, we study the evolution of the deformatioarelsteristics with imposed loading,
as well as the geometrical quantities involved in Bagi'sistformulation. Hence, we will
consider the evolution of branch vectdfsand the complementary-area vectdfs and their
orientational averages.

Furthermore, we will also study the probability distrilmrtifunction (PDF) and the evolu-
tion of the polar distribution of the componertaw,, (0), Au,(0), Au,(6)} of the azimuthally-
averaged relative displacements from the DEM simulatigkithough the geometrical quan-
tities will be mainly studied for triaxial loading, we willso show some results for isotropic

loading, whenever they show interesting behavior.

5.1 Geometry

Due to their relevance for Bagi’s strain formulation, see &), we will study in detail the

geometrical quantities:
e edge-based and contact-based coordination nundheardC.., respectively;

e the edge structure, i.e. the polar distribution of edgg$), contactspj(¢) and virtual

contactsy (#) (see Section 3.1);

e geometrical quantities like the azimuthally-averagedbhavectors of edgek?), con-
tacts/¢(¢) and virtual contact$' (), as well as the components of the complementary-

area vectorl(#) for edges, contacts and virtual contacts.

5.1.1 Coordination numbers

The connectivity of the packing and the Delaunay tesseHais primarily described by the

contact-based and edge-based coordination nunibeasdC',, respectively, defined as

C. = 2C/N (15)
C. = 2E/N (16)

13



whereC, E and N are the number of (physical) contacts, edges and particdgpectively.
These coordination numbe¢s. and C, give the average number of contacts and edges per
particle, respectively.

The coordination number of the Delaunay tessellatipmemains roughly constant during
the tests (with a slight increase of about 2% for the triateat and less than one percent de-

crease for isotropic compression). ~ 14.3 — 14.5, while C. decreases (increases) by about

30% for triaxial (isotropic) compression, see Fig. 5 (left)
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Figure 5: (Left) Evolution of the coordination numbers ofjedC, and contactg’. during the
isotropic (iso) and triaxial (3a) compression test. Theabdeformation is normalized by its
maximum valuee];** = —20% and —5% for the triaxial and isotropic compression, respec-

tively. (Right) Probability density function af’. andC. in the initial isotropic state.

Figure 5 (right) shows the probability density function@fandC. in the initial isotropic

state, as also studied, e.g. by [Lochmann et al., 2006].
Rattlers (i.e. particles without physical contacts) areigd in the analyses, so there are no
particles withC' = 0, while there are few particles with less than three contadtsfurthermore

observe few particles with less than 8 edges, but most hany mare edges with an average

of C, ~ 14.3.
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5.1.2 Distribution of edge and contact orientations

Figure 6 shows the distribution of the edge orientatip(i3) and contact orientations’(£2),
for the triaxial test. It is clear that they are independdrzomuthal angle), as expected in the
considered triaxial test with its transverse symmetry édse Section 3.1). Therefore, only the

distributionp, () contains relevant information.

06 04 02 0 02 04 06
......... . NG)

08060402 0 0.2040.60.8 06 04 02 0 0.2 04 0.6

Figure 6: (Top) Orientational distribution of edges (ledif)d contacts (right) at peak shear
strength ratiog;; = —2% from the triaxial test. (Bottom) Plot of the polar distribr of edges
po(0) (top), contactyy(f) and virtual contactg;(¢) (bottom left and right, respectively), at
enn = —2% (solid symbols, in red), and for large deformations,= —20% (open symbols, in

green), wherd is the polar angle, with € [0, | by definition.

The distribution of the edge orientatigi(?) is isotropic during the whole deformation, as
was already observed in the two-dimensional case [Totdekt al., 2010]. In contrast, the

polar distribution of contactg;(f) (see Fig. 6, bottom left) is highly anisotropic during the

15



triaxial test. Along the compression axis £ 0) contacts are createggj(¢) > 1/2), while in
the directions of minor principal stressés=¢ 7 /2) contacts are disrupteg{(¢) < 1/2). Note
that the distribution of virtual contacys; () (Fig. 6, bottom right) is not independent and can

be calculated from:

pe(0) = nc pp(0) + (1 —nc) pp(0) , (17)

wherenc is the fraction of edges that are (physical) contacts. Thaistion can be expressed in
terms of the coordination numbets andC. (defined in Egs. (15) and (16)):

c C.

TLCEE—E. (18)

In our simulations the value of- varies from~ 0.3 — 0.5.
In order to study the evolution of the structure, i.e. theapdlistribution of edges and

contactspy (¢#) andpg(¢), in compact terms, we decompose them in Fourier seriés in

pe(0) =~ po+ pacos20 + pycosdf + ... (29)

pe(0) =~ p§+ p3cos20 + pgcosdl + ... (20)

and study the evolution of the Fourier componen@ndps, for: = 0, 2, 4. The coefficientgs 4
andp; , reflect the anisotropy of the structure. Note that odd tefike,cos ¢, are not present
due to symmetry reasons, i.e. the distributions are perimdihe intervald € [0, 7]. Higher
order terms were practically zero in the cases tested, savihaestrict ourselves tb= 0, 2,
and4. From the normalization condition for distribution furatss, [, p(Q)d2 = 1, we then
find thatpy = 1/2 + pa/3 + pa/15.

The evolution during the triaxial test of these Fourier @ogfnts is shown in Fig. 7. As
is shown in Fig. 7 (left) for the edge distribution, the anmispy coefficientsp, and p, are
small compared to the isotropic opg which confirms the isotropic character of the Delaunay
edge network: an isotropic network would corresponggtas 1/2 andp, = py = 0. On the
contrary, the contact network is highly anisotropic. As iieg by Fig. 7 (right), both anisotropy
coefficients,p§ andpg, increase with the deformatian,. In particular, for large deformations

(lexr| > 10%), the higher order Fourier componetjtbecomes as relevant ag&
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Figure 7: (Left) Evolution of the second-order Fourier caments, relative to the isotropic
value, of the polar distribution function of edges(#) and contactg; (). (Right) Evolution
of the fourth-order Fourier components, relative to thergguc value, of the polar distribution

functions of edges and contacts.

5.1.3 Characteristicsof branch length and complementary-area vector

In this section the characteristics of the branch vectortaeccomplementary-area vector are
given. This involves the polar distribution, as well as tleletion in the triaxial test of the

Fourier components for the average values.

Branch length

After azimuthal averaging (see Section 3.1), the lengthedges and contacts(#) andi<(6),
respectively, are approximately isotropic during the veltabxial test. This is a consequence of
the statistically uniform spatial distribution of partsl, and thus edges, in the random packings.
Figure 8 shows the evolution of the average length of thediraectors(l). ., for edges,
contacts and virtual contacts. The evolution of the avertige length closely resembles the
volumetric deformation of the assembly (see Fig. 4). Siheetotal volume of the particles is
conserved, the volume fraction should scaleras (r)3/(l)2, where(r) is the mean particle
radius and!). represents an average distance between particles, basied definition of the

Delaunay tessellation. Therefo(g. is proportional to(r) /</v (as shown by the solid line in
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Figure 8: Evolution of the dimensionless average branchovdength(l)/(r), where(r) is
the mean particle radius, for edges (e), contacts (c) amgbicontacts (v). The dimensionless

length1//v (solid line), based on the volume fractionis also shown for comparison.

Fig. 8, with a single proportionality constant that is detared by matching the initial value at
e11).

As expected for a low confining pressure (relative to theigarstiffnessk,,), the macro-
scaledeformation of the assembly does not significantly affeetaberage length of (physical)
contacts(l)., which remains nearly constant during the whole test. Irtrest, larger deforma-
tions occur in the empty space between the particles, eddadé),.

Finally, note that for contact§d)./(r) > 2 (Fig. 8). This is a direct consequence of the
polydispersity of the assembly and has its origin in thealation between the particle radius
and the number of contacts of a given particle: large pagialith large surface area have more
contacts than small particles [Kruyt & Rothenburg, 2001dlsidi et al., 2004, Duran & Luding,
2010].

Complementary-area vector

For the complementary-area vects; only the normal componeat, (6) is different from zero
after azimuthal averaging, due to the statistical uniféyrof the random packing. Thus, even

though the individual complementary-area vecidtsare not parallel to the branch vectdfs
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azimuthally-averagethey are parallel.

The azimuthally-averaged normal component of the compheang-area vectod,, () can
(also) be expressed as a Fourier series in the polar anglg(d) ~ d,o + d,»cos26. The
analysis of the anisotropy ratib,,/d,.o (Fig. 9, left) shows that the normal complementary area
d,(0) is nearly isotropic for edges and contadt,{/d,.o| < 2%), while for virtual contacts it
becomes slightly anisotropic for large deformatioths (d,.o ~ —10%), where a negative value
means that the complementary-area vectors are somewhiégisiméhe compression direction
than in the extension direction. The even smaller coeffi@éthe fourth-order harmonic is not

shown and discussed here.
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Figure 9: Normal component, of the complementary-area vector for edges (e), contagts (c
and virtual contacts (v) in triaxial test. (Left) Evolutiaf the anisotropy ratid,,»/d,, (Right)
Evolution of the normalized averadé,,)(l)/(3(r)*). As shown by the solid line in the right

panel,(d,).(l)./(3(r)?) is proportional to the inverse of the volume fractibh.

The evolution of the normalized average,). .. (I).../(3(r)?) is shown in Fig. 9 (right)
for edges, contacts and virtual contacts. The scalin@gf. with 3(r)?/(l)., where(r) is the

mean particle radius, is suggested by the geometricalitg¢Duran et al., 2010]
(dnl)e =3V/E, (21)

which implies an additional relation with the volume fractiv. Since the number of edges

remains almost constant during the test (see Fig. 5, left)th@ actual volume of the packing
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is proportional to(r)?/v, it follows that (d,,).(l)./(3(r)*) o« 1/v, as shown by the solid line
in Fig. 9 (right). The single proportionality constant haseh set to match the initial value at

€11 — 0.

5.2 Relativedisplacements

In this section we study the relative displacements of ed(s/sical) contacts and virtual
contacts during triaxial and isotropic loading. In partauwe will focus on the orientational
averages and the probability distribution function (PDF)he normal and tangential compo-
nents of the relative displacements for edges, contactsiand! contacts.

The orientationally-averaged components of the relatigpldcement vector&u\n(e, o),
Z\ut(e,qs) and Z\us(e,qs), are shown in Fig. 10 for the triaxial test. As expected du¢h®
polar symmetry (see also Section 3.1), these averagestpedandent op and the out-of-plane

component vanishegyu, (6, ¢) ~ 0.

Figure 10: Orientational average/fazb(@, ®), @(Q,gb) and @(Q,gb) for edges for triaxial
loading at deformatiom;; = —2%. The magnitude of the average is given by the color code,

where red represents positive values and blue negativesiaNpte thatfu\s is negligible.

In the following, we will therefore study the azimuthallyeaaged normal and tangential
component of the relative displacement of edﬁ,t(ﬁ) by analyzing the behavior of the
contactAu,, ,(#) and virtual contacf\u,, ,(¢) contributions separately. These components are

not independent, as they are related by the normalizatiodion:

po(0)Au,, (0) = ncp§(0)Aus, ,(0) + (1 — ne)py(0)Au, ,(0) | (22)

wherepy(0) andn¢ are defined in Egs. (17) and (18), respectively.
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5.2.1 Normal component

Figure 11 shows the polar distribution of the normal compdmef the azimuthally-averaged
relative displacement&u;, “*(8)/(|e11|(l)e..,) for edges, contacts and virtual contacts, at two
different axial deformations,; during the triaxial test. The relative displacements ofeslg
contacts, and virtual contacts are normalized by the réispeaverage length of the branch

vectors and by the strain incremest; |.

AU_nC/(|811| [[Q) e + ..... . - AU_nV/(|511| DQ) e +

- R — n—\K

01 005 O 0.05 01 15 1 05 0 05 1 15

-~ :/'717&»‘.‘ . v e

i -

Figure 11: Triaxial loading: polar distribution of the sedl normal components of the
azimuthally-averaged relative displacemends,,(9)/(|11|(1)) for edges (top), contacts and
virtual contacts (bottom left and right, respectively)at = —2% (full symbols in red) and

—20% (open symbols in green). Negative)and positive {) labels indicate compression and

extension, respectively.

As expected for triaxial compression, edges are compre(ﬁ‘?efg < 0) inthe X-axis ¢ =
0), while they expand@i > () in the extension directiord(= 7/2), see Fig. 11. However,
this significantly changes when the deformation of contacis virtual contacts is analyzed
separately. Although virtual contacts deform (in the ndrdigction) in a way similar to that
of edges, they are deformed more. On the other hand, corateetsnly slightly compressed
due to the strong repulsive forces active. For large defoamsi;; ~ —20%), they practically

do not deform at all in the contact direction, i.Au, ~ 0 (Fig. 11, left). In this regime, the
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deformation in the normal direction occurs predominantlyhe space between particles, i.e.
‘deformation of voids’ (characterized by the virtual costt.

In general, the compressive (considered as negative) mespn relative displacements is
stronger than the extension (considered as positive) ohes. dbservation is true for the peak
stress (red) and — even stronger — for the large strain re{gmeen). The contacts have no

significant (average) relative displacement in the larga@rstegime in any direction.
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Figure 12: Isotropic loading: evolution of the normalizesuFier componentsy,/|s1;| of the
scaled relative normal displacemeXt,, /(1) for edges (red dots), contacts (green solid circles)
and virtual contacts (blue squares). The solid line remtssthe uniform-strain prediction.

Higher-order Fourier coefficients;*” are small (data not shown).

The dimensionless normal component of the relative digphents for edges, contacts
and virtual contactsXu&<*(0)/{l)...) can be decomposed into a Fourier series, similar to
Eqg. (11a):

Au," (9)

<l>€,C,U

Again, for symmetry reasons, there is no term involving6. Now, it is possible to study

e,c,v

= ay" +a;"cos20 + ... (23)

the evolution of the Fourier components for the differerstdimg conditions used: isotropic
(Fig. 12) and triaxial (Fig. 13) loading. In all cases, orttg first two componenig, anda,, are

relevant and higher harmonics contributions can be negfdgciata not shown).
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Figure 13: Triaxial loading: evolution of the normalizedufier components of the scaled
relative normal displacemenitu,,/(l) ) for edges (red circles), contacts (green dots) and vir-
tual contacts (blue squares): (left)/|s11| and (right)a,,/|e11]. The solid line represents the

uniform-strain prediction.

The first component;“" gives the isotropic contribution to the relative displaegitywhere
negative values mean that the edges/contacts/virtuagctsnire compressed. The contacts are,
in all cases, compressed less than the edges, while thalvidatacts are compressed more
(since there is no repulsive force acting against compoadsr virtual contacts).

Thea%*¥ quantify the anisotropic parts, see Eq. (23), where negatiues mean that the
contacts are compressed in the compresEidirection, while they are stretched in the perpen-
dicular, azimuthal plane. In particular, for isotropic gmmssion the anisotropic components
are all practically zero. For large strain in the triaxiattehe relative displacements of contacts
level out at a small, constant value.

While the relative displacements of the contacts satutdeg@e strains in the triaxial test,
the isotropic (anisotropic) Fourier components of edgekvarual contacts increase (decrease)
in magnitude.

Somewhat surprisingly, the Fourier components of the nbdefmrmation of edges; ,,,
nicely follow the uniform-strain prediction® = (e1; + £22)/2 anda,, = (e11 — £922)/2, See
Egs. (12a) and (12b). As we will see in the next section, tlee applies to the tangential

component of the relative displacements. This represenisportant characteristic of the
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deformation of the Delaunay network.

On average, contacts do not deform according to the unifirain assumption, contrary to
the edges. This is even so for the simple case of isotropipoession (see Fig. 12). For the
more complex triaxial loading, contact deformation is oalfraction of the edge deformation
(see Fig. 13). In triaxial loading, the Fourier componeritthe contact deformation become
very small at about;; ~ —2% when the system reaches the yield point (see Fig. 4). Thexefo
during what we call the deviatoric regime;| > 2%), the azimuthally-averaged length of
contacts does not change (i@i(@) ~ 0) and thus, using Eg. (22), the normal component
of the relative displacement of all edge?@(@)) can be approximated in terms of the virtual

contact deformatio\u,, as
po(0) A, (0) ~ (1 — nc)py(0) A, (6) (24)

which represents an additional (approximate) normabrationdition, valid only in the large

strain regime of the triaxial test.

Probability density functions

Probability density functions of relative displacementsantacts have been studied in the
two-dimensional case in [Kruyt & Rothenburg, 2003]. Here probability density functions
of edges, (physical) contacts and virtual contacts arengige the normal component of the
relative displacement. Figure 14 shows the probabilitysdgriunction of the dimensionless
normal deformatiomAu, " /|11|(1)..., Of edges, contacts and virtual contacts for the triaxial
loading, along three characteristic directiofis= 0°, 45° and90°.

The range of relative displacements at contacts is narroemyered at zero, while virtual
contacts deform over a much wider range. In both cases, thendation involves positive and
negative contributions (i.e. both extension and compoessespectively). The edge average
of the relative normal displacement in the compressionctioe (¢ = 0°) is negative, in the
extension directiond= 90°) it is positive, and in shear directiofi & 45°) it vanishes. All this
is consistent with the previous observations and with etghen, since positive and negative
correspond to compression and tension, respectively.

Although not shown, similar qualitative behavior is obsshfor the probability density
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Figure 14: Probability density function &u, " /(|e11|(I)e...,) along three characteristic direc-

tions, for the triaxial loading at;; = —2%.

function in isotropic loading. The two main differences #nat: (i) the contact normal dis-
placement is virtually truncated at zero, i.e. only verytoompression at contacts can be
achieved, due to the strong repulsive contact forces apth@iprobability density functions
for Au$v are closer to Gaussian distributions (data not shown),enfoil triaxial loading the

probability density functions have near-exponentiaktéskee Fig. 14).

5.2.2 Tangential component

Fig. 15 shows the polar distribution of the normalized tarigé components of the azimuthally-
averaged relative displacemems;, “”/(|e11|(l)....,) for edges, contacts and virtual contacts,
at different axial deformations; during triaxial loading.
These averages are well described by a truncated Fouries semilar to Eq. (11b):
Au(6)
(Decw

The evolution of the Fourier coefficient$ " during the triaxial test is plotted in Fig. 16.

~ —ay;"sin 26 . (25)

Similarly to the results for the normal component, the tamigé component of the relative
displacement of edges closely follows the uniform-stragdictiona, = a,, = (e11 — €22)/2,
see Eqg. (12c). Note that, contrary to the normal compon#msangential (physical) contact
displacements are largest, while the edge- and virtualacblisplacements are smaller. The

edges have approximately the same magnitude of deformitibath normal and tangential
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direction, since they deform affine, on average (see als¢12q)).

AT /(Jegy| I) osee.
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Figure 15: Polar distributions aku,(6)/(|e11/(1)) ate;; = —2% () and—20% (o) for triaxial

loading.

Probability density function

Figure 17 shows the probability density functionof; /(|1 |{) for edges, contacts and virtual
contacts for the triaxial test, along three characteridiiectionsd = 0°, 45° and90°. The
probability density functions have near-exponentialstaiinlike for isotropic loading, where
the distributions are closer to Gaussian (data not shown).

The probability density functions of the out-of-plane campnt,Au$“?, for edges, contacts

€,C,v

and virtual contacts, are qualitatively similar to thoséhef tangential componeu,’

5.3 Deviationsfrom uniform defor mation

For development of micro-mechanical constitutive relagiothe uniform-strain assumption is
often used as the kinematic “localisation assumption” [Gamet al., 1995]. Here the ap-
propriateness of this assumption is investigated by comgaine orientation-averaged relative
displacements with those according to the uniform-strasumption, Eqgs. (12a), (12b) and

(12¢).
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Figure 16: Triaxial loading: evolution of the normalizedufier componentsy; /||, of the
tangential relative displacements.,/(l) for edges (e: red symbols), contacts (c: green sym-

bols) and virtual contacts (v: blue symbols). The solid liapresents the uniform-strain pre-

diction.
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Figure 17: Probability density function @f«,” " /(|e11/(l)...») for edges, contacts and virtual

contacts, along three characteristic directions, durilagial loading ate;; = —2%.

The results of the DEM simulations show that the (azimuyhaVeraged relative displace-
mentsﬂiﬁ’”(@) can be expressed as a Fourier series with coefficigljts see Egs. (23) and
(25). Note that the edges’ coefficients, , conform to the uniform-strain assumption, while

the (physical) contacts and virtual contacts do not behawgerding to the uniform-strain pre-
diction.
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The deviations in deformation from the case of uniformist ar affine) deformation of
edges, contacts and virtual contacts can be characteryzib batio between the actual Fourier
coefficients ¢;,;) and those predicted by the uniform strai (), i.e. by the set of coeffi-

cients:

e,c,v
Qa
e,c,ov . 0t
fYO,n,t - = : (26)
aO,n,t

Figure 18 shows the evolution of the set of coefficient§; as function of the imposed
deformation, for isotropic and triaxial loading. As wasealdy clear from the previous sections,
the deformation of edges follows quite closely the unifstrain prediction,,, ~ 1), and
thus their deformation is on average affine.

In contrast, contact deformation strongly deviates frornfanm-strain deformation. The
main reason is that the high interparticle stiffness lirtiitsrelative displacements of contacts in
the normal direction, compared to that of virtual contatserefore, the normal component of
the relative displacement of contacts is much smaller thahdf edges and of virtual contacts.

For the tangential component, the reverse observatiorstold lesser degree: the defor-
mation of physical contacts and virtual contacts are of #meesorder of magnitude, but that of
physical contacts is larger. Contrary to virtual contatits,tangential stiffness limits the total
deformation of contacts at the contact point, which cosgitranslational as well as rotational
parts. This rotational part will counteract the translasiopart (‘rolling mode of deformation’),
i.e. have an opposite sign. This suggests that the tangeotrgonent of the relative displace-
ments of contacts is smaller than that according to the tmHstrain assumption.

Thus, the main contribution to the strain arises from thexeétion of the voids and from

the tangential deformation of contacts.

6 Discussion

Bagi's micro-mechanical formulation [Bagi, 1996] for thgasn tensor involves an average
over edges of the Delaunay tessellation of relative digptent vectors between particles and
the complementary-area vectors. The set of edges can beisigainto physical contacts and

virtual contacts.
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Figure 18: Deviations from the uniform-strain predictigiven by the set of coefficientg,;

for edges(e), contacts(c) and virtual contact$v), as function of the axial deformation, for

isotropic (left) and triaxial (right) loading. In the formease only the isotropig, are shown,

whereas in the latter case the coefficients for edges (opehag) and contacts (solid symbols)

are shown. Note that symbols likén), for instance, have to be interpretechgs

The statistics of: (1) coordination numbers, (2) the edgentations, (3) the branch vectors,

(4) the complementary-area vectors and (5) the relatiy@aiement vectors have been studied

here,

that:

1.

using results from DEM simulations of isotropic amaial compression tests. Itis found

The coordination number for edges is almost constant®icompression and triaxial

tests, while the coordination number for contacts shovesigtchanges.

. The orientational distribution function of edges is el¢s isotropic during all tests. The

distribution of physical contacts and virtual contactsdyees anisotropic in the triaxial
test. All these distribution functions are reasonably vaplbroximated by second-order

Fourier series.

. The average length of the branch vectors of edges ané@Mbatacts is varying, whereas

that of physical contacts is practically constant.

. The complementary-area vector, on average, only has &eronnormal component.

This average normal component is isotropic for edges anthcts) while that for virtual
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contacts shows a mild anisotropy. The average values ottiggh of the branch vector
and the normal component of the complementary-area vedoekted to each other and

to the volume fraction of the assembly.

5. The orientational averages of the relative displacesifamtthe edges, contacts and vir-
tual contacts are well approximated by second-order Fosgeges. The evolution of
these Fourier coefficients with imposed strain has beenextumhd compared to those

according to the (averaged) uniform-strain assumptiorssess its accuracy.

The total deformation of the assembly, as given by the catesrial averages of the rel-
ative displacements of the edges of the Delaunay tessellgllows the uniform-strain
prediction. However, neither the deformation of the contetwork nor of the virtual
contact network has this property. The normal componertefélative displacement of
physical contacts is smaller than that according to theoamifstrain assumption, while
that of the virtual contacts is larger. The reverse obsemdiolds for the tangential com-
ponent of the relative displacement vector.

In isotropic compression the probability density functdar the relative displacements
of edges, contacts and virtual contacts are close to Gawsgmle in the triaxial test they

exhibit near-exponential tails.

This difference in behavior of the networks of physical amtinal contacts poses a chal-
lenge for micro-mechanical modeling. The deformation efphysical contact network, which
represents thmicro-scalestructure of those edges that contribute to the stiffnedglars to the
continuum, macro-scakgress, can not easily be predicted. For a micro-mechafiealisa-
tion assumption”, an additional relationship between tregage deformation of virtual contacts
and physical contacts needs to be established, like Eqg. T22)left-hand side of this equation
follows from the uniform-strain assumption, so that knay#itherAw,, ,(6) or A, ,(6) would
allow one to close the problem by obtaining a “localisatisslanption”.A possible approach
is to investigate, from the DEM results, the interconnatbetween local contact geometry and
local deformation of small clusters of particlésowever, this is a topic for future research.

In addition, it is recommended to also consider other logdiases, for example a case

where the direction of (initial) anisotropy does not codewith the direction of loading, as well
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as other initial conditions, such as a loose initial packifipe Bagi micro-mechanical strain
expression, Eq. (3), involves only relative displacementsarticle centers, and hence excludes
particle rotationsSince this expression is actually for the displacemendligrd tensor, it does
describe the continuum-mechanical rotation, i.e. the asgirical part of the displacement
gradient. The investigation of the role of particle rotations on defation measures is also a

topic for further study.
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7 Appendix: uniform strain

Here the relative displacement vector according to unifetrain assumption is expressed in
the local, edge-based coordinate systant, s) (see Section 3.1) for triaxial loading.
According to the uniform-strain assumption (see Eq. (6)g,relative displacementu; of

an edge characterized by the branch vetter in; is given by :
Aui = 5z'jlj (27)

with normal and tangential components,

Aun = nisijlj (28&)
Aut = tigijlj (28b)
Aus = Sigijlj (280)

wheret ands are the tangential edge vectors, defined in Eq. (8).
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In the triaxial compression test; = 55, and hence the strain tensor is given by

€11 0 0
g = 0 822 0 (29)
0 0 £99

Using Eq. (8), it follows that the orientational-averagethtive displacements (see Section

3) according to uniform strain are given by:

Aun(6,6) — <z>{(¥)+(¥) COSQQ} (30a)
Auy(0,0) = —() K@) sin29] (30b)
Auy(0,6) = 0 (30c)

where the isotropy of the branch vectd(d, ¢)|| ~ (I) has been used (see Section 5.1.3).
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