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Abstract

A so-called “split-bottom ring shear cell” leads to wide shear bands
under slow, quasi-static deformation. From discrete element simulations
(DEM), several continuum fields like the density, velocity,deformation gra-
dient and stress are computed and evaluated with the goal to formulate ob-
jective constitutive relations for the powder flow behavior. From a single
simulation, by applying time- and (local) space-averaging, a nonlinear yield
surface is obtained with a peculiar stress dependence.
The anisotropy is always smaller than the macroscopic friction coefficient.
However, the lower bound of anisotropy increases with the strain rate, ap-
proaching the maximum according to a stretched exponentialwith a specific
rate that is consistent with a shear path of about one particle diameter.

Introduction

Granular Matter consists of many independent particles with peculiar col-
lective flow behavior. Knowing the interaction laws and inserting those into
a discrete element model (DEM), one can follow the particlesby integrating
Newtons equations of motion (Herrmannet al., 1998; Kishino, 2001; Lud-
ing et al., 2001; Luding, 2004b; Luding, 2008b).
One goal is to derive continuum constitutive relations – as needed for indus-
trial application. Methods and tools for a so-called micro-macro transition
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are applied (Vermeeret al., 2001; Lätzelet al., 2000; Luding, 2004a; Lud-
ing, 2005b; Luding, 2005a; Luding, 2008b) on small so-called representa-
tive volume elements (RVE). In ring-shear cells, both localspace averaging
(on toroidal sub-volumes at fixed radial and vertical position) as well as
time-averaging in the (presumed) steady state can be applied. One obtains
already from a single simulation some of the constitutive relations aimed for.
Here, the micro-macro averaging is applied to a three-dimensional split-
bottom shear cell as recently presented (Fenistein and van Hecke, 2003;
Fenisteinet al., 2004). The special property of a split-bottom ring shear
cell is the fact that the shear band is initiated at the bottomslit and its ve-
locity field is well approximated by an error-function (Fenisteinet al., 2004;
Luding, 2004b; Luding, 2006) with a width considerably increasing from
bottom to top (free surface). In this study, the frictionless data are examined
closer and the stress- and strain-tensors are studied in their eigensystems and
eigen-directions. A recently proposed evolution equationfor the deviatoric
stress (Luding, 2008c) is examined here.

The Soft Particle Molecular Dynamics Method

The behavior of granular media can be simulated with the discrete element
method (DEM) (Allen and Tildesley, 1987; Lätzelet al., 2003; Luding,
2008a). As the basic ingredient, a force-displacement relation that gov-
erns the interaction between pairs of particles is defined. Particle positions,
velocities and interaction forces are then sufficient to integrate (explicitly)
Newtons equations of motion and follow all particles duringthe evolution
of the system under large strains.
Since the modeling of the internal deformations of the particles is much too
complicated, we relate the normal interaction force to the overlap asf = kδ,
with a stiffnessk, if δ > 0. In order to account for energy dissipation, the
normal degrees of freedom, i.e. the relative motion of two particles in con-
tact, is subject to a viscous, velocity dependent damping, for more details
see (Luding, 1998; Luding, 2008a).

Split-bottom ring shear cell

In order to save computing time, only a quarter of the ring-shaped geom-
etry is simulated, using quarter periodic boundary conditions in angular
direction. (In top-view, a particle that leaves the quartersystem down-
wards, enters at the same radial position from the right – with according,
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unchanged velocity in cylindrical coordinates). The wallsare cylindrical,
and are roughened due to some (about 3 per-cent of the total number) at-
tached particles (Luding, 2004b; Luding, 2006; Luding, 2008b; Luding,
2008c). The outer cylinder wall with radiusRo = 0.110 m, and part of the
bottomr > Rs = 0.085 m are rotating around the symmetry axis with the
same rotation rate, while the inner wall with radiusRi = 0.0147 m, and the
attached bottom-diskr < Rs remain at rest.
First, the simulation runs for more than 50 s with a rotation ratefo = 0.01 s−1

of the outer cylinder, with angular velocityΩo = 2πfo. For the average only
larger times are taken into account, thus disregarding the transient behavior
at the onset of shear. Two snapshots (top and front view) are displayed in
Fig. 1.

Figure 1:Snapshots from a simulation withN = 34518 particles, without frictionµ = 0.
The colors blue, green, orange and red denote particles withdisplacements in tangential
direction per secondr dφ ≤ 0.5 mm,r dφ ≤ 2 mm,r dφ ≤ 4 mm, andr dφ > 4 mm.

Translational invariance is assumed in the tangentialφ-direction, and
averaging is thus performed over toroidal volumina over many snapshots
in time (typically 40-60), leading to fieldsQ(r, z) as function of the radial
and vertical positions. Here, averaging is performed with spacings of∆r ≈
0.0025 and∆z ≈ 0.0028 in radial and vertical direction. The choice of these
spacings is arbitrary, since they do not affect the results discussed below if
varied somewhat. However, much smaller spacing leads to badstatistics and
stronger fluctuations while much larger spacing leads to poor resolution and
thus loss of information.
The averaged data from simulations lead to density, coordination number,
and the isotropic fabric, all decreasing with height and systematically lower
in the shear band due to dilatancy. From a set of simulations with different
filling heights (data not shown, see (Luding, 2004b)), just examined from
the top (like in the original experiments), it becomes clearthat the shearband
moves inwards with increasing filling height and also becomes wider. From
the front-view, the same information can be evidenced, see Fig. 1, as well as
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shear band shape and width inside the bulk. The shear band moves rapidly
inwards deep in system – close to the slit in the bottom – whileits position
does not change much more further up.
From the velocity field gradient, the strain rate

γ̇ =
√

d2
1
+ d2

2
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√
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is obtained, as discussed in Ref. (Depkenet al., 2006), see Eq. (7) therein,
where the geometrical term,vφ/r in Eq. (1), comes from the cylindrical
coordinate system. From the eigenvalue analysis of the velocity gradient,
one finds that shear planes are well described by the normal unit vector
γ̂ = (cos θ, 0, sin θ), with θ = θ(r, z) = arccos(d1/γ̇), as predicted in
Ref. (Depkenet al., 2006). This unit-vector,̂γ, is the eigen-vector of the
vanishing eigenvalue of the velocity gradient tensor, while the other two
are opposite-equal, with their eigen-vectors in the plane perpendicular tôγ.
From the simulation, one can determine the components of thestatic stress
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Figure 2: Graphic representation of the strain rateγ̇, with the values given in the
inset, plotted as function of radial and vertical positions. The solid line indicates
the centerRc and the dashed lines show plus-minus the half-widthW , as obtained
by fitting an error-function to the velocity data

tensor

σαβ =
1

V

∑

c∈V

fαlβ , (2)

with the contact normal forcesfα and branch vectorlβ components. The
sum includes contacts in the vicinity of the averaging volume,V , weighted
according to their vicinity.
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Since theσrz ≈ 0 component is small, as compared to the other averaged
non-diagonal stresses, the shear stress can be defined in analogy to the ve-
locity gradient, as proposed in (Depkenet al., 2006):

|τ | =
√

σ2

rφ + σ2

zφ . (3)

A more detailed study of the stress- and strain eigenvalues and eigensystems
leads to the three eigenvaluesσmax, σ0, andσmin corresponding to the max-
imum, intermediate and minimum stress, respectively, withcorresponding
eigen-directionŝσmax, σ̂0, andσ̂min. In Fig. 4, the shear stress|τ | and the
deviator stress

σD =
√

(σmax − σmin)2 + (σmax − σ0)2 + (σ0 − σmin)2/
√

6

are plotted against the pressurep = (σmax + σ0 + σmin)/3. Note that the
definition ofσD is equivalent toq = (σmax −σmin)/2 in the case of a stress
tensor withσ0 = (σmax − σmin)/2.

Shear stress,τ , and deviatorσD quantify the stress anisotropy and are al-
most identical, see Figs. 3 and 4, onlyσD appears systematically somewhat
larger than|τ |. The ratioσD/τ > 1 is decaying with the strain rate (data
not shown here – but note the big scatter) and indicates how good the stress
tensor conforms with the assumptions that lead to Eq. (3) – ifthe strain rate
is large.
From the (almost) constant shear stress intensity and deviator stress in the
shear zone, one can determine the Mohr-Coulomb-type friction angle of the
equivalent macroscopic constitutive law, asψ ≈ arcsinµmacro. Interest-
ingly, without frictionψ is rather large, i.e., much larger than expected from
a frictionless material, whereas it is rather small with a friction coefficient as
used in Ref. (Luding, 2008b) (data not shown here). Similar behavior was
already observed in two-dimensional bi-axial shear tests (?). There the crit-
ical state macroscopic friction coefficient is finite for small contact friction
µ → 0 under a finite confining stress, and saturates at a rather small value
for large contact frictionµ > 0.2. A detailed study of different coefficients
of contact friction is far from the scope of this study.

From Fig. 4, one observes that the anisotropy is stress dependent, in-
creasing up to moderate stress levels, and then remaining more or less con-
stant within the fluctuations.

Plotting the shear stress intensity|τ |/p and the anisotropyσD/p against
either the strain ratėγ, or against the non-dimensional strain rate

I = γ̇d0

√

̺/p , (4)

5



 80

 60

 40

 20

 0
 500 400 300 200 100 0

|τ
|

p

0.01
0.02
0.04
0.06
0.08
0.16

 80

 60

 40

 20

 0
 500 400 300 200 100 0

σ D

p

0.01
0.02
0.04
0.06
0.08
0.16

Figure 3: Shear stress|τ | and deviator stressσD, plotted against pressurep for
different strain rates as given in the inset. All points withlarge strain rate are
found close to the yield surfaceµmacrop, as represented by the solid line, with
constantµmacro = 0.15.
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Figure 4: (Left) Shear stress ratio|τ |/p and (Right) anisotropyσD/p, plotted
against pressurep for different strain rates as given in the inset.
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with the mean particle diameterd0, and the bulk density,̺, as proposed in
Ref. (MiDi, 2004), neither leads to a better trend nor a better data collapse.
Therefore, we define the dimensionless shear path

lγ = ∆t γ̇ , (5)

with the simulation averaging time interval∆t = 25.4 s, used for averag-
ing. The shear-path,lγ , indicates about how far the shear planes have been
sheared relative to each other. Note that a different definition was used in
Ref. (Luding, 2008c).

When plotting|τ |/p andsD := σD/p, in Fig. 5, against the shear path,
lγ , the former appears (again) somewhat smaller than the latter. The ques-
tion whether the very small systematic discrepancy betweenshear stress and
deviator stress have a physical meaning or are only a consequence of sta-
tistical fluctuations can only be answered by a more careful analysis of the
stress, the fabric, and the velocity gradient, which is far from the scope of
this study.
Besides their scatter, the data in Fig. 5 (Right) fall between the maximum

anisotropy,µmacro = 0.15, and the lower boundsmin
D so that:

µmacro ≥ sD > smin

D := µmacro

[

1 − exp
(

−l α
γ

)]

, (6)

where the exponentα ≈ 0.5 seems to be a better choice thanα = 1. Note,
however, that this is only an empirical fit-function withouta theoretical ba-
sis (yet). The stretched exponential lower bound indicatesslow relaxation
processes, which require that the granular material shear planes move along
each other for a certain distance, before the steady state shear regime with
anisotropysD ≈ µmacro can be reached.
An initial (local) anisotropy,0 ≤ s0D ≤ µmacro, could evolve according to
the evolution equation

∂sD

∂lγ
= (µmacro − sD) , (7)

which would be consistent withα = 1, as observed from two-dimensional
simulations and experiments, see Ref. (Luding, 2004a) and references therein.
A quantitative confirmation of the above evolution law for the stress anisotropy
with shear deformation is subject to further study of both steady and tran-
sient states.
Using the functional form of the lower bound stress anisotropy from Eq. (6),
for arbitrary initials0D, leads to the anisotropy evolution with shear path:

sD(lγ) = µmacro

[

1 − (µmacro − s0D) exp
(

−l α
γ

)]

. (8)
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Figure 5: (Left) Shear stress intensity|τ |/p, and (Right) anisotropysD := σD/p,
plotted against the shear pathlγ . The data for small pressuresp < 100 are disre-
garded here. The solid and the dashed lines correspond to Eq.(6), with α = 0.5
andα = 1, respectively.

9



Differentiation with respect tolγ leads to a new incremental evolution equa-
tion:

∂sD

∂lγ
= αl α−1

γ (µmacro − sD) , (9)

with α as a free parameter. In our case, the maximal deviatoric stress mag-
nitude is approached by a stretched exponential with powerα = 0.5.

Conclusion

Simulations of a split-bottom Couette ring shear cell show perfect qualitative
and good quantitative agreement with experiments. Frictionless simulations
are already in 80% percent agreement with the experiments - and the simu-
lation with friction comes even close to 90%, as was shown in Ref. (Luding,
2008b). This is remarkable, since besides the geometry of the shear cell no
special attention was paid to the choice of material parameters, particle-size
and particle size distribution.
From simulations (like from experiments) one observes thatthe shear-planes
are tilted from the horizontal, as proposed in Ref. (Depkenet al., 2006).
The shear stress intensity is computed – under the assumption that the stress
eigen-system is co-linear with the velocity gradient eigen-system – and com-
pared to the objective stress anisotropy. The latter is always larger than the
former, decreasing with strain rate to a ratio close to unity.
The stress anisotropy is limited by the macroscopic friction coefficientµmacro ≈
0.15. Shear planes with small shear path occur with all values,µmacro ≥
sD ≥ smin

D , where the stretching powerα ≈ 0.5 is un-explained. Interest-
ingly, the shear pathlγ is not scaled by a relaxation length. The conclusion
is that shear planes have to move relative to each other by a distance of the
order of one particle diameter before the maximum anisotropy can be estab-
lished.
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List of Symbols

Radial, angular and vertical coordinates r, φ, andz
Contact force f
Contact stiffness k
Contact deformation (overlap) δ
Contact friction coefficient µ
Macroscopic friction coefficient and friction angle µmacro andψ
Radial coordinate r
Outer wall, slit-, and inner wall-radius Ro,Rs, andRi

Center and width of the shearband Rc andW
Rotation rate and angular frequency of the outer wallfo andΩo

Angular velocity and strain rate vφ andγ̇
Nondimensional strain rate I
Shear path lγ
Eigenvector perpendicular to the shear plane γ̂
Tilt of γ̂ from the horizontal θ
Static stress tensor components σαβ

Eigenvalues of the stress tensor σmax, σ0, andσmin

Eigenvectors of the stress tensor σ̂max, σ̂0, andσ̂min

Shear stress and deviator stress magnitude |τ | andσD
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