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Abstract

A so-called “split-bottom ring shear cell” leads to wide ahdands

under slow, quasi-static deformation. From discrete efgnsenulations
(DEM), several continuum fields like the density, velocdgformation gra-
dient and stress are computed and evaluated with the goairtaufate ob-
jective constitutive relations for the powder flow behaviéirom a single
simulation, by applying time- and (local) space-averagamgonlinear yield
surface is obtained with a peculiar stress dependence.
The anisotropy is always smaller than the macroscopiddrictoefficient.
However, the lower bound of anisotropy increases with tharstrate, ap-
proaching the maximum according to a stretched exponeniiala specific
rate that is consistent with a shear path of about one padiaimeter.

| ntroduction

Granular Matter consists of many independent particleb pétculiar col-
lective flow behavior. Knowing the interaction laws and itisig those into
a discrete element model (DEM), one can follow the partiblegtegrating
Newtons equations of motion (Herrmaenhal, 1998; Kishino, 2001; Lud-
ing et al, 2001; Luding, 2004b; Luding, 2008b).

One goal is to derive continuum constitutive relations —eeded for indus-
trial application. Methods and tools for a so-called mioraero transition



are applied (Vermeest al,, 2001; Latzekt al., 2000; Luding, 2004a; Lud-
ing, 2005b; Luding, 2005a; Luding, 2008b) on small so-chHepresenta-
tive volume elements (RVE). In ring-shear cells, both Ia@dce averaging
(on toroidal sub-volumes at fixed radial and vertical positias well as
time-averaging in the (presumed) steady state can be dppliae obtains
already from a single simulation some of the constitutivatiens aimed for.
Here, the micro-macro averaging is applied to a three-daio@al split-
bottom shear cell as recently presented (Fenistein and ‘eake 2003;
Fenisteinet al, 2004). The special property of a split-bottom ring shear
cell is the fact that the shear band is initiated at the bottitrand its ve-
locity field is well approximated by an error-function (Fsteinet al., 2004;
Luding, 2004b; Luding, 2006) with a width considerably easing from
bottom to top (free surface). In this study, the frictioslemta are examined
closer and the stress- and strain-tensors are studiediireitpensystems and
eigen-directions. A recently proposed evolution equatmrthe deviatoric
stress (Luding, 2008c) is examined here.

The Soft ParticleM olecular DynamicsM ethod

The behavior of granular media can be simulated with thereiselement
method (DEM) (Allen and Tildesley, 1987; Latzet al, 2003; Luding,
2008a). As the basic ingredient, a force-displacementioelahat gov-
erns the interaction between pairs of particles is definedtidRe positions,
velocities and interaction forces are then sufficient tegrnate (explicitly)
Newtons equations of motion and follow all particles durthg evolution
of the system under large strains.

Since the modeling of the internal deformations of the pkasiis much too
complicated, we relate the normal interaction force to trexlap asf = kJd,
with a stiffnessk, if § > 0. In order to account for energy dissipation, the
normal degrees of freedom, i.e. the relative motion of twdiglas in con-
tact, is subject to a viscous, velocity dependent dampimgnfore details
see (Luding, 1998; Luding, 2008a).

Split-bottom ring shear cell

In order to save computing time, only a quarter of the ringpsid geom-
etry is simulated, using quarter periodic boundary cooddiin angular
direction. (In top-view, a patrticle that leaves the quadgstem down-
wards, enters at the same radial position from the right -h waiticording,



unchanged velocity in cylindrical coordinates). The walte cylindrical,
and are roughened due to some (about 3 per-cent of the tatdben)y at-
tached particles (Luding, 2004b; Luding, 2006; Luding, &§0Luding,
2008c). The outer cylinder wall with radiug, = 0.110 m, and part of the
bottomr > R, = 0.085 m are rotating around the symmetry axis with the
same rotation rate, while the inner wall with radids= 0.0147 m, and the
attached bottom-disk < R, remain at rest.

First, the simulation runs for more than 50 s with a rotatief, = 0.01 s~
of the outer cylinder, with angular velocify, = 2« f,. For the average only
larger times are taken into account, thus disregardingréimesient behavior
at the onset of shear. Two snapshots (top and front view) iapdagted in
Fig. 1.

Figure 1:Snapshots from a simulation wifii = 34518 particles, without frictionu = 0.
The colors blue, green, orange and red denote particlesdigfiiacements in tangential
direction per secongdd¢ < 0.5mm,rd¢ < 2mm,rd¢ < 4mm, andrd¢ > 4 mm.

Translational invariance is assumed in the tangentidirection, and
averaging is thus performed over toroidal volumina over ynsmapshots
in time (typically 40-60), leading to fieldQ(r, z) as function of the radial
and vertical positions. Here, averaging is performed withcings ofAr ~
0.0025 andAz = 0.0028 in radial and vertical direction. The choice of these
spacings is arbitrary, since they do not affect the resittsudsed below if
varied somewhat. However, much smaller spacing leads tsta#idtics and
stronger fluctuations while much larger spacing leads te pEsolution and
thus loss of information.

The averaged data from simulations lead to density, coatidim number,
and the isotropic fabric, all decreasing with height andesystically lower
in the shear band due to dilatancy. From a set of simulatiatis different
filling heights (data not shown, see (Luding, 2004b)), justined from
the top (like in the original experiments), it becomes cteat the shearband
moves inwards with increasing filling height and also becomiger. From
the front-view, the same information can be evidenced, sgellFas well as



shear band shape and width inside the bulk. The shear banesmapidly
inwards deep in system — close to the slit in the bottom — witslposition
does not change much more further up.

From the velocity field gradient, the strain rate

9 g\ 2
= \Jd? + 3= \/ s % +<%), (1)

is obtained, as discussed in Ref. (Depletral., 2006), see Eq. (7) therein,
where the geometrical termy, /r in Eq. (1), comes from the cylindrical
coordinate system. From the eigenvalue analysis of theciglgradient,
one finds that shear planes are well described by the norniavector
4 = (cos#,0,sin @), with § = 6(r,z) = arccos(d;/7), as predicted in
Ref. (Depkeret al, 2006). This unit-vectory, is the eigen-vector of the
vanishing eigenvalue of the velocity gradient tensor, wliile other two
are opposite-equal, with their eigen-vectors in the plar@endicular tay.
From the simulation, one can determine the components dft#tie stress
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Figure 2: Graphic representation of the strain rgtavith the values given in the
inset, plotted as function of radial and vertical positiombke solid line indicates
the centeiR. and the dashed lines show plus-minus the half-widlthas obtained
by fitting an error-function to the velocity data

tensor
Ouf = Z falg, (2)
CGV
with the contact normal forcef, and branch vectols components. The
sum includes contacts in the vicinity of the averaging vauin, weighted
according to their vicinity.



Since thes,., =~ 0 component is small, as compared to the other averaged
non-diagonal stresses, the shear stress can be definedag\atmthe ve-
locity gradient, as proposed in (Depkenal., 2006):

|T| = ”Uv%(b + Ug(z) . (3)

A more detailed study of the stress- and strain eigenvalnggigensystems
leads to the three eigenvalueg.x, oo, andom;, corresponding to the max-
imum, intermediate and minimum stress, respectively, wiiresponding
eigen-directionsax, 09, andomin. In Fig. 4, the shear stre$s| and the
deviator stress

op = \/(Umax - Umin)2 + (Umax - 00)2 + (UO - O'min)Q/\/g

are plotted against the pressyre= (omax + 00 + omin)/3. Note that the
definition ofop is equivalent ta; = (0 max — omin)/2 in the case of a stress
tensor withoy = (0max — Omin)/2-

Shear stress;, and deviator p quantify the stress anisotropy and are al-
most identical, see Figs. 3 and 4, oaly appears systematically somewhat
larger than|r|. The ratioocp/T > 1 is decaying with the strain rate (data
not shown here — but note the big scatter) and indicates hod tje stress
tensor conforms with the assumptions that lead to Eq. (3}keiktrain rate
is large.

From the (almost) constant shear stress intensity andtdewaess in the
shear zone, one can determine the Mohr-Coulomb-typedricigle of the
equivalent macroscopic constitutive law, @s~ arcsin pimacro. INtErest-
ingly, without friction is rather large, i.e., much larger than expected from
a frictionless material, whereas it is rather small withietion coefficient as
used in Ref. (Luding, 2008b) (data not shown here). Simitravior was
already observed in two-dimensional bi-axial shear téjtsTthere the crit-
ical state macroscopic friction coefficient is finite for shwantact friction
u — 0 under a finite confining stress, and saturates at a rathet gahaé
for large contact frictionu > 0.2. A detailed study of different coefficients
of contact friction is far from the scope of this study.

From Fig. 4, one observes that the anisotropy is stress depgnin-
creasing up to moderate stress levels, and then remaining ondess con-
stant within the fluctuations.

Plotting the shear stress intensijty] /p and the anisotropy p/p against
either the strain raté, or against the non-dimensional strain rate

I=4doy/o/p, (4)
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Figure 3: Shear stregs| and deviator stress),, plotted against pressugefor
different strain rates as given in the inset. All points widinge strain rate are
found close to the yield surfage,....p, as represented by the solid line, with
constantiyaco = 0.15.
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Figure 4: (Left) Shear stress ratjo|/p and (Right) anisotropy/p, plotted

against pressunefor different strain rates as given in the inset.



with the mean particle diametdp, and the bulk densityy, as proposed in
Ref. (MiDi, 2004), neither leads to a better trend nor a bettta collapse.
Therefore, we define the dimensionless shear path

ly= Aty (5)

with the simulation averaging time intervalt = 25.4 s, used for averag-
ing. The shear-patfi,, indicates about how far the shear planes have been
sheared relative to each other. Note that a different digfinivas used in
Ref. (Luding, 2008c).
When plotting|7|/p andsp := op/p, in Fig. 5, against the shear path,

L, the former appears (again) somewhat smaller than the. |atkes ques-
tion whether the very small systematic discrepancy betwgbear stress and
deviator stress have a physical meaning or are only a coesequof sta-
tistical fluctuations can only be answered by a more carefalyais of the
stress, the fabric, and the velocity gradient, which is farmf the scope of
this study.

Besides their scatter, the data in Fig. 5 (Right) fall betw#® maximum
anisotropy,tmacro = 0.15, and the lower boun@i%in so that:

Umacro = SD > S%in ‘= Hmacro {1 — €exp (_l'ya)} ) (6)

where the exponernt ~ 0.5 seems to be a better choice thar= 1. Note,
however, that this is only an empirical fit-function withautheoretical ba-
sis (yet). The stretched exponential lower bound indicalew relaxation
processes, which require that the granular material shaaeg move along
each other for a certain distance, before the steady state sbgime with
anisotropysp ~ imacro €an be reached.

An initial (local) anisotropy,0 < s% < macro, COUld evolve according to
the evolution equation

0sp
a7 macro ) 7
o, (1 sD) (7)

which would be consistent with = 1, as observed from two-dimensional
simulations and experiments, see Ref. (Luding, 2004a)efedances therein.
A quantitative confirmation of the above evolution law fog 8Btress anisotropy
with shear deformation is subject to further study of botrady and tran-
sient states.

Using the functional form of the lower bound stress anigmtrivom Eq. (6),
for arbitrary initial s?,, leads to the anisotropy evolution with shear path:

SD(l'y) = Mmacro {1 - (Nmacro - SOD) exp <_l’ya)} . (8)
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Figure 5: (Left) Shear stress intensjty/p, and (Right) anisotropyp := op/p,
plotted against the shear pdth The data for small pressurgs< 100 are disre-
garded here. The solid and the dashed lines correspond {@Eqith o = 0.5

anda = 1, respectively.



Differentiation with respect to, leads to a new incremental evolution equa-

tion: 5
S _
=D = al'ya ! (,Umacro - SD) , (9)
al,

with « as a free parameter. In our case, the maximal deviatorisssinag-
nitude is approached by a stretched exponential with pewer0.5.

Conclusion

Simulations of a split-bottom Couette ring shear cell shewigrt qualitative
and good quantitative agreement with experiments. Fridss simulations
are already in 80% percent agreement with the experimemtd thee simu-
lation with friction comes even close to 90%, as was showngh Ruding,
2008b). This is remarkable, since besides the geometryeddhibar cell no
special attention was paid to the choice of material pararagparticle-size
and particle size distribution.

From simulations (like from experiments) one observestti@mshear-planes
are tilted from the horizontal, as proposed in Ref. (Depkeial, 2006).
The shear stress intensity is computed — under the assuntpébthe stress
eigen-system is co-linear with the velocity gradient eiggstem —and com-
pared to the objective stress anisotropy. The latter isy@arger than the
former, decreasing with strain rate to a ratio close to unity

The stress anisotropy is limited by the macroscopic frictoefficientumacro =
0.15. Shear planes with small shear path occur with all valugs..o >
sp > sBin, where the stretching power ~ 0.5 is un-explained. Interest-
ingly, the shear path, is not scaled by a relaxation length. The conclusion
is that shear planes have to move relative to each other Igtande of the
order of one particle diameter before the maximum anisgtogm be estab-
lished.
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List of Symbols

Radial, angular and vertical coordinates r, ¢, andz

Contact force I

Contact stiffness k

Contact deformation (overlap) 0

Contact friction coefficient 7

Macroscopic friction coefficient and friction angle  piacro andey

Radial coordinate r

Outer wall, slit-, and inner wall-radius R,, R, andR;

Center and width of the shearband R.andW

Rotation rate and angular frequency of the outer wafl, and(2,

Angular velocity and strain rate vg and-y

Nondimensional strain rate 1

Shear path Ly

Eigenvector perpendicular to the shear plane A

Tilt of 4 from the horizontal 0

Static stress tensor components Tap

Eigenvalues of the stress tensor Omax, 00, aNdomin

Eigenvectors of the stress tensor O maxs 00, aNAGmin

Shear stress and deviator stress magnitude |7| andop
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