Objective constitutive relations from DEM

Stefan Luding

Abstract: Powders in a split-bottom ring shear cell geometry showevgidear bands under
slow, guasi-static deformation. From discrete elemenukitions (DEM), several conti-
nuum fields like the density, velocity, deformation gradiand stress are computed and
evaluated with the goal to formulate objective constiritielations for the powder flow
behavior.

From a single simulation, by applying time- and local spaeeraging, a nonlinear
yield surface is obtained with a peculiar stress dependedtcess and strain are observed
to be not perfectly co-linear, and the difference in oridotaseems to be decaying with
shear-rate.

The anisotropy is always smaller than the macroscopicidrictoefficient. However,
the lower bound of anisotropy increases with the shear ggtproaching the maximum
according to a stretched exponential with a specific rateist@nsistent with a shear path
of about one particle diameter.

1 Introduction

Powders or sand consist of many independent particles \eithlar collective flow behavior.

Knowing the interaction laws and inserting those into amitcelement model (DEM), one can
follow the particles by integrating Newtons equations otimo (Herrmann, Hovi, and Luding

1998; Kishino 2001; Luding, L&atzel, and Herrmann 2001; ngd2004b; Luding 2008b).

The goal can be to derive continuum constitutive relatioas reeded for industrial application.
Methods and tools for a so-called micro-macro transiti@negplied (Vermeer, Diebels, Ehlers,
Herrmann, Luding, and Ramm 2001; Latzel, Luding, and Hennm2000; Luding 2004a; Lu-
ding 2005b; Luding 2005a) on small so-called represeratolume elements (RVE). In the
ring-shear cell, both local space averaging (on toroidahslumes at fixed radial and verti-
cal position) as well as time-averaging in the (presumesfdt state can be applied and one
obtains already from a single simulation some of the cautsté relation aimed for.

In this study, the micro-macro averaging is applied to aghdenensional split-bottom shear cell
as recently presented (Fenistein and van Hecke 2003; Eanigan de Meent, and van Hecke
2004). The special property of a split-bottom ring sheat isethe fact that the shear band
is initiated at the bottom slit and its velocity field is wep@oximated by an error-function



(Fenistein, van de Meent, and van Hecke 2004; Luding 2004Mdjrig 2006b) with a width
considerably increasing from bottom to top (free surfate}his study, the frictionless data
are examined and the stress- and strain-tensors are examitieeir eigensystems and eigen-
directions.

2 The Soft Particle M olecular Dynamics M ethod

The behavior of granular media can be simulated with theeliselement method (DEM) (Al-
len and Tildesley 1987; Latzel, Luding, Herrmann, Howelld 8ehringer 2003; Luding 2008a).
The most basic ingredient is a force-displacement reldtiahgoverns the interaction between
pairs of particles. Particle positions, velocities an@iiattion forces are then sufficient to inte-
grate (explicitly) Newtons equations of motion and follolvaarticles during their evolution in
time.

Since the realistic modeling of the deformations of theiplas is much too complicated, we

relate the normal interaction force to the overlagfas kd, with a stiffnessk, if 6 > 0. In order

to account for energy dissipation, the normal degrees etlfse, i.e. the relative motion of two

particles in contact, is subject to a viscous, velocity aeleat damping, for more details see
(Luding 1998; Luding 2006a; Luding 2008a).

3 Ringshear cel in 3D

In order to save computing time, only a quarter of the ringp&d geometry is simulated. The
walls are cylindrical, and are roughened due to some (abqér&ent of the total number)
attached particles (Luding 2004b; Luding 2006b; Luding&80 The outer cylinder wall with
radius R, = 0.110m, and part of the bottorm > R, = 0.085m are rotating around the
symmetry axis, while the inner wall with radiug = 0.0147 m, and the attached bottom-disk
r < R, remain at rest. For small filling height, the shearband igiasrom the top, whereas
for larger filling height, the shearband does not reach theatad other modes of flow can be
observed, see Ref. (Luding 2008b).

3.1 Material and system parameters

First, the simulation runs for more than 50s with a rotatiaterf, = 0.01s™! of the outer
cylinder, with angular velocity2, = 27 f,. For the average only larger times are taken into
account, thus disregarding the transient behavior at tisetasf shear. A snapshot in steady
state (top and front view) is displayed in Fig. 1.



Figure 1: Snapshots from a simulation with= 34518 particles, without frictiorp, = 0. The
colors blue, green, orange and red denote particles wifflasiements in tangential direction
per second d¢ < 0.5mm,rd¢ < 2mm,rd¢ < 4mm, andrde¢ > 4 mm.

3.2 Averaging and micro-macro procedure

Since we assume translational invariance in the tangepviiection, averaging is performed
over toroidal volumina and over many snapshots in time ¢ihy 40-60), leading to fields
Q(r,z) as function of the radial and vertical positions. Here, agerg is performed with spa-
cings of Ar ~ 0.0025 andAz =~ 0.0028 in radial and vertical direction.

From the simulations, one observes that the density, thedowiion number and the isotropic
fabric decrease with height and are systematically lowehénshear band due to dilatancy.
From a set of simulations with different filling heights (datot shown, see (Luding 2004b)),
just examined from the top (like in the original experimgntdecomes clear that the shearband
moves inwards with increasing filling height and also becemiler. From the front-view, the
same information can be evidenced, see Fig. 1, as well ahdpesnd width of the shear band
inside the bulk. The shear band moves rapidly inwards detyeibulk — close to the slitin the
bottom — while its position does not change much more furtiper

From the velocity field gradient, the strain rate

— ) Ovy\ 2
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can be obtained, as discussed in Ref. (Depken, van Saaslodsan Hecke 2006), see Eq. (7)
therein (the geometrical term,/r in Eq. (1), comes from the cylindrical coordinate system
used here). From the eigenvalue analysis of the velocitfigng one finds that shear planes are
well described by the normal unit vectdr= (cos 6, 0, sin #), with = 0(r,z) = arccos(d, /%),
as predicted in Ref. (Depken, van Saarloos, and van Hecke)20fis unit-vector;y, is the




eigen-vector of the vanishing eigenvalue of the velocigdignt tensor, while the other two are
opposite-equal, with their eigen-vectors in the plane @edgcular to?.
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Figure 2: Graphic representation of the strain fatas given in the inset, plotted as function of
radial and vertical positions — larger symbols correspdsd @ largery. The lines indicate the
centerR, and the half-widtHV" of the shear band. (Luding 2008)

From the simulation, one can determine the components dtthss tensor
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with the components of the contact normal forggsand branch vectors;. The sum extends
over all contacts within or close to the averaging voluigweighted according to their vicini-

ty.

Since ther,. =~ 0 component is small, as compared to the other averaged agoithl stresses,
the shear stress can be defined in analogy to the velocityegtads proposed in (Depken, van

Saarloos, and van Hecke 2006):
7| = \/ 0’3¢ + qub : 3)

A more detailed study of the stress- and strain eigenvalngé®aensystems leads to the three
eigenvaluesr,.., 09, ando,,;, corresponding to the maximum, intermediate and minimum
stress, respectively, with corresponding eigen-diresté, ..., 69, andas,;,. In Fig. 4, the shear
stress|7| and the deviator stress) = /(Tmax — Tmin)? + (Tmax — 00)2 + (00 — Omin)2/V6

are plotted against the pressure= (oyax + 0o + omin)/3. Note that the definition of, is
equivalent ta; = (omax — omin)/2 in the case of a stress tensor With= (oax — Tmin) /2-

Shear stress;, and deviatorrp, quantify the stress anisotropy and are almost identical, se
Figs. 3 and 4, only,, appears systematically somewhat larger thanThe ratioop /7 > 1

is a decaying function of the shear rate (data not shown héxd rote their big scatter) and
indicates how good the stress tensor conforms with the gssoms that lead to Eq. (3). The
closer the ratio is to unity, the closer the presumed steessthe objective stress.
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Figure 3: Shear stregs| and deviator stress),, plotted against pressugefor different strain
rates, limits are given in the inset. All points with high&ear rate are found close to the yield
surfaceup, as represented by the solid line, with consjaat 0.15.

From the (almost) constant shear stress intensity in ther gtome, one can determine the Mohr-
Coulomb-type friction angle of the equivalent macroscagmastitutive law, as) ~ arcsin .
Interestingly, without friction) is rather large, i.e., much larger than expected from adnigss
material, whereas it is astonishingly small with frictiatata not shown, see (Luding 2008b)).
From Fig. 4, one observes that the anisotropy is stress depgnncreasing up to moderate
stress levels and then remaining more or less constanipwtiité fluctuations.

Plotting the shear stress intensjty/p and the anisotropy, /p against the shear rate or the

non-dimensional shear rate
I =4do/o/p (4)

with the mean patrticle diametdy, and the bulk density,, as proposed in Ref. (MiDi 2004),
neither leads to a better trend nor a better data collapsstfeer of the two possibilites. There-
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Figure 4: (Left) Shear stress ratio| /p and (Right) anisotropy  /p, plotted against pressupe
for different strain rates as given in the inset.

fore, we define the dimensionless shear path

B At Ar

L = .
d d() v (5)

with the simulation averaging time intervdlt = 25.4s, and the radial bin-widthAr =
2.451073m, used to compute the velocity gradient. The shear-gathndicates about how
many particle diamters the shear planes have been shetatdr® each other.

When plotting|7|/p andop/p, in Fig. 5, against the shear path, the former appears (again)
somewhat smaller than the latter. The question whetherghesmall systematic discrepancy
between shear stress and deviator stress have a physigahgeaare only a consequence of
statistical fluctuations can only be answered by a more abaeglysis of the stress, the fabric,
and the velocity gradient, which is far from the scope of gaper.

Besides considerable scatter, the data in Fig. 5 (RigHtp&iveen the maximum anisotropy,
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Figure 5: (Left) Shear stress intensjty/p, and (Right) anisotropy /p, plotted against the
shear path,. The data for small pressurgs< 100 are disregarded here. The solid and the
dashed lines correspond to Eqg. (6), with= 0.5 anda = 1, respectively.

1 = 0.15, and the lower bound:

%D > p 1 —exp (—13)] 6)

where the exponent = 0.5 seems to be a better choice than= 1. Note, however, that this
is only an empirical fit-function without a theoretical basirhe stretched exponential lower
bound indicates slow relaxation processes, which regoéethe granular material shear planes
move relative to each other by much more than one particimetier, before the steady state
shear regime with anisotropy, /p ~ 1 is reached.

Thus anisotropy requires a certain shear path before @bledted and fully developed. This mi-
nimal displacement is consistent with the particle diamétg a much more detailed parameter
study is required to confirm this.

A local anisotropysp := op/p, starting from random initial situations, < sp < p, and



evolving according to

0s
87;’ = (u—sp) , (7)

would be consistent with = 1, see the two-dimensional results (Luding 2004a). A quaini
confirmation of the above evolution law for the stress anignt with shear deformation is
subject to further study of both steady and transient states

4 Conclusion

Simulations of a slit-bottom Couette ring shear cell shoviigm qualitative and good quantitati-
ve agreement with experiments. Frictionless simulatisasieady in 80% percent agreement
with the experiments - and the simulation with friction cam®®en close to 90%. This is remar-
kable, since besides the geometry of the shear cell no $pdtEation was payed to the choice
of material parameters, particle-size and particle sig&itution.

From the simulations, we learn that the shear-planes &ed filom the horizontal as proposed
in Ref. (Depken, van Saarloos, and van Hecke 2006). The shress intensity is computed —
under the assumption that the stress eigen-system is €arhmith the velocity gradient eigen-
system — and compared to the objective stress anisotropgylafter is always larger than the
former, decreasing with shear rate to values close to unity.

The objective stress anisotropy is limited by the macroscopction coefficienty ~ 0.15.
Shear planes with small shear rate occur with all valpes, s, > 0, while the anisotropy is
limited by a lower bound that approachesvith increasing shear path. The major conclusion is
that shear planes have to move relative to each other by maneoine particle diameter before
the maximum anisotropy can be established.

The functional behavior of the evolution of anisotropy wstiear path has to be studied further
for different parameters, system sizes, simulation doma&nd also for transient states.
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