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Experimental chute setup and coordinate system

Cui & Gray J. Fluid. Mech., in press.




Derivation of the depth-averaged equations

Mass and momentum balances
V-u=20
0
a(w)+v-(pU®u)=V-0+pg,

assume density p constant
bulk velocity v = (u,w)?! and ® is the dyadic product
stress o split into a pressure p and a deviatoric part 7

c=—-pl4+T71
subject to kinematic conditions at surface and base

at z=s(z,t) and z=10b(xz,1t),

and surface and basal traction conditions

z = s(x,t) : on = 0,
z=b(x,t) : on = —(u/|lu)u(n-on)+n(n- -on),

where n is the normal and u is the friction coefficient.
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integrate V-« = 0 through depth using Leibniz’ Rule

s(A) s(A) s(\)
9 fdz=/ F 42 + [faz} ,
b

A Jyon oy OX O] 0y

to exchange the order of integration and differentiation

s(x,t)
/ (Bu_l_@w)dzzﬂ(
b(e.t) ox 0z ox

s(x,t)
/ U dz) — [
b(x,t) 0

Defining the depth-averaged velocity and thickness

1 S
u = E/ udz, h(xz,t) = s(x,t) — b(z,t)
b

and using the kinematic boundary conditions the depth-
averaged mass balance becomes

5h B
o L9 (b =o.
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Making the shallowness approximation
the normal momentum balance and the surface traction

condition imply that the pressure p is lithostatic

p = pg(s — z) cos(
depth-averaging the downslope momentum balance

o, _ 0, —= 0z 0z \1°
p(a(hU)+%(hu ))—[pu(a+u——w}]b

0 G, S
= pghsin ¢ + — (ho77) — | Frems — o]
ox

| Oz -

Using the Kinematic condition, approximating the basal
traction, neglecting 7,, and assuming u? = w?

0 0 o /1
—(hw) + —(hT? — | =gh?cos )
— () + - () + = (29 ¢
= hgcos¢(tan¢ — u(u/|u])) — hga_ Cos(¢
X
finally the equations are non-dimensionalized
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Two-dimensional depth-averaged system

e For avalanche thickness A and mean velocity u = (u, v)
in the downslope x and cross-slope y directions.

oh
ot

P
+ By (hu) -+ 3_3,{(}”})
2 ity + vy + 2 iy 2 (rzcosc)
£ () + 5 (T2) + (D) + (2h cos ¢
2+ 2Ly + 200+ 2 (Lircose)
5 (19) S (hTT) + 5 () + o (2h cos ¢

e source terms composed of gravity, basal friction u and
gradients of the basal topography b

b
Sy = sin¢— pu(u/|ul)cos¢ — 8—cosg,
xXr

e ob
Sw = —u(v/lul)cosc—a—ycoscj
Grigorian et al. 1967; Gray et al. P. Roy. Soc. 1999, JFM 2093




Upslope propagating granular bores

> o

e Observations suggest a shock separating constants states

T < & h(x,t) = h1, u(x,t) = u1,
X > 5 : h(.’L’,t) — hQa ’L_L(CC,t) — aQa




e At shocks the mass and momentum jump conditions are

[~ (7 — vp)]
[ha(z — va)] + [5h2 cos(] 0,

e where v, is the normal propagation speed and [-] is the
jump across the discontinuity.

e Assuming the grains come to rest after a

Up = —\/hl (hl + h2> COS (.

ho 2

e In the lab experiments

hi=0.61cm, hp,=7.29cm = v,=—-16.99cm/s
e lies within 10% of the measured value of v, = —15.4cm/s

Gray, Tai & Noelle (2003) J. Fluid Mech. 491, 161-181.




Proposed defence for the Schneefernerhaus, Zugspitze

e Use avalanche model to compute the flow past obstacles




Gray, Tai & Noelle (2003) J. Fluid Mech. 491, 161-181.




Weak, strong and detached oblique shocks
Fri—1o00—20° 8 =—V3c"

tan 3 (\/1 + 8Frssin? 3 — 3)
2tan?gB — 1+ \/1 + 8Fr7sin? 3 w = 30.7° (29° + 1°)

Gray & Cui (2007) J. Fluid Mech. 579, 113-136.

tanf =




Weak Oblique Shock




Strong Oblique Shock




Detached Oblique Shock




Granular jets and hydraulic jumps on an inclined plane

CAMBRIDGE 25 May 2011
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Oblique impingement of an
inviscid jet
(Hasson & Peck 1964)

Friction law for rough beds

tan{o, —tan (s
1+ Bh/(LFr)’

u=tan{; +

including treatment of static
material for 0 < Fr < g
(Pouliquen & Forterre 2002)

Johnson & Gray (2011) J. Fluid Mech. 675, 87-116
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Gray & Hutter (1997) ij'rntin. Thermodyﬂ* 9(6), 341-345




Fluid and solid-like regions




Coupled avalanche model for flow in arotating drum

e Avalanche: use hydraulic model with mass transfer
Oh
ot

T )+ -2 (n 9 (Z28K2) = AS— haZ —ud
o “)+aa:( “ )+aa: (25 “5n

where § are source terms a = cos( and 8 = K«

+ L ha) = —at+,
ox

e INnterfacial conditions: Coupling of fluid and solid regions by
mMass jump condition

[[p(u ’ nb _ U’?L)]] — Oa

e Solid rotating granular material: treated as a rigid body ro-
tating with angular velocity (&)

uw = -0z, w = QX.




Steady-state solutions

constant angular velocity, $2g

steady state 0/0t =0 and v, =0

slope assumed to be non-accelerative, ( =9
For classical smooth solutions

Z(ha) = (o /o) (0l

b
Q
ox T Om)’

hﬂ@—l—g (1(3h2> —hcosq@.

dx = Ox \2 ox
We will investigate special class of solutions with

u = up,




Steady-state drum solution and associated particle-paths

A=3.00, [=0.60 BO=O.3’?, [=0.60

e for fills greater than 50% fastest circuit times performed by
grains close to drum wall

e for fills less than 509% the situation is reversed




Mixing of mono-disperse grainsin acircular drum

Gray (2001) J. Fluid. Mech. 441, 1-29




The Continuum Sand—Glass

Rheology: We define viscosity using friction

We form the visco-plastic law: (Jop et al 2006)

"l'cff
Tij — [LP 0.55- e o
O am O
pP 0.50 - o
Tig = T 3 Vij @56 ©
| l 0.45 CITO
2 93))0) a »_J_,,.«-“"'K_‘
. ) 0.40 o o P
I') rheology: 4 & .
using the phenomenological 1i([) rheology: A oot
0.35 // - /':/0
Hd — [s 0.30- o
pl) = ps+

T T T T T T 1
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Gdr MIDI 2004, Dacruz et al 2005, Jop et al 2006

- M IO/I o 1 0.25—’f.r
I — D | r}/ | 0.20
Valid for dense flows

Courtesy Lydie Staron



7T1r?C ontinuum Sand—Glass

Solver: We apply the Open-source Gerris (Popinet 2003)
http://gfs.sourceforge.net
(incompressible Navier-Stokes equations using a VOF method) (Popinet 2003, 2009)

5 Vau = 0
P (8—? + fu,.Vu) = —Vp+ V.2nD) + pg
dc
a—t + V.(CU) =
p = ¢ pair + (1 _ C) pgrains
N = C TNair = (1 — C) Tgrains

= We chose p.ir << Pgrains
=> The free surface is solved in the course of time
= We implement the viscosity:

P
Tlgrains — min (u—; 77ma:1:> ?
[ 7 |

Lagree, Staron & Popinet 2011
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ontinuum and—Glass

No slip

We chose the following value for the rheological parameters:

ps = 0.32, ug = 0.60, Iy =04

Staron, Lagree & Popinet 2011



saturated with water

runs down an 82m flume
on to a runout pad
we deploy tracers near mouth

. a.r‘]_d deflect watery tail
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egregation

e there is strong size s

larger particles are less mobile

x L, o]
e are shouldered into levees ~ .*
'-~ o o § ‘.;. Y > lk};?';'" u ,"“""'\")-
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Measure velocity and levee emplacement time with 2cm cubes
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Surface velocity in stationary and front centred frames
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e Oxyz are the downslope, cross-slope and normal directions




A simple kinematic model for 3D velocity field in the moving frame

e Bulk velocity u = (u,v w) is assumed to be incompressible

ou
ox 84

e Integrating through the avalanche depth A

oh
ot

where the depth-averaged velocity

I
-l-ax(hu)‘l‘a—y(hv)—o

e In frame & = x — upt the bulk flow is steady

o _ o . _.
8—§(h(u—up))—l-a—y(hv)—0




e define a streamfunction
oY oY

— = h(u—ur), — = —hv

oy o€

e empirical front shape

yo(€) = W [tanh (_%)

e self similar thickness h

H ygn . y2n
h(yoay) — W ( ygn—l )

e recirculating streamfunction

(& y) = ¥ (yo,y)

to approximate the flow




Reconstruction of the 3D velocity field

1: plug-flow

=

0: simple shear

o

0.5: shear and basal slip

o

e assuming linear velocity profles with depth z

(u,v) = (a +2(1— @%) @)




<{: ——
) e half cubes lie at the surface

‘.o mainly on top of the levee walls

e in reverse order, i.e.

.




Large particle tracer stone heights

e Strong evidence for size segregation and recirculation

e BUT, stones never rise to the free surface again
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o Large vvhlte partlcles rlse up 1 2cm every metre

e twO seams of large white tracers on inside of levee wall§
\
e _overrun B at the outer base othe Ievee wall




s

e central white grains carried to flow front and reach 15cm height. _,

overrun -at the front
A F‘}";
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Schematic diagram of the levee formation process

oarse-enriched surface ayer

Breaking size-segregation wavej

Deposition point

e larger particles are shouldered to the sides to create levees

e this is an example of a segregation-mobility feedback effect
41




