<u>JMBC Workshop</u> Jamming and glassy behavior in colloids

2. Flow of glassy materials

Peter Schall University of Amsterdam

Macroscopic Stress-Strain Relations Metallic glass F

Constant Strain Rate

Macroscopic Stress-Strain Relations Metallic glass F

Constant Stress (Creep)

Macroscopic Stress-Strain Relations Suspensions

Microscopic Picture?

Bubble raft experiments

- Bragg-Nye Bubble raft: Dislocations and Dislocation motion in crystals (1950's)
- Disordered Bubble raft (Argon, Kuo 1979)
 Shear transformation zones in glasses

Plastic Flow in a Disordered Bubble Raft (an Analog of a Metallic Glass)

A. S. ARGON and H. Y. KUO* Massachusetts Institute of Technology, Cambridge, Mass. 02139 (U.S.A.) (Received November 1, 1978; in revised form December 13, 1978)

Shear transformation zones

Simulations: Falk and Langer PRE 1998

Shear transformation zones

Affine transformation : γ

$$\boldsymbol{d_i}^{\text{aff}} = \boldsymbol{d_i} + \boldsymbol{\gamma} \boldsymbol{d_i}$$

on- Affine

Shear transformation zones

Flow by local shear transformations

From Micro to Macro:

Constitutive Models

Constitutive description: Flow equation

$$\dot{\gamma} = \begin{pmatrix} \text{Volume Fraction} \\ \text{of STZ} \end{pmatrix} \cdot \begin{pmatrix} \text{Strain} \\ \text{per STZ} \end{pmatrix} \cdot \begin{pmatrix} \text{Rate of STZ} \\ \text{Formation} \end{pmatrix}$$

1. Free volume Theory $p(v)dv = \frac{\gamma}{v_f} exp\left(-\frac{\gamma}{v_f}\right)$

Probability for STZ site

$$f = \int_{v^*}^{\infty} p(v) dv = exp\left(-\frac{\gamma v^*}{v_f}\right)$$

(Spaepen Acta Met. 1977)

Constitutive description: Flow equation

$$\dot{\gamma} = \begin{pmatrix} \text{Volume Fraction} \\ \text{of STZ} \end{pmatrix} \cdot \begin{pmatrix} \text{Strain} \\ \text{per STZ} \end{pmatrix} \cdot \begin{pmatrix} \text{Rate of STZ} \\ \text{Formation} \end{pmatrix}$$

2. Strain per STZ

 $\varepsilon_0 \sim 1$

(Spaepen Acta Met. 1977)

Constitutive description: Flow equation

$$\dot{\gamma} = \begin{pmatrix} Volume Fraction \\ of STZ \end{pmatrix} \cdot \begin{pmatrix} Strain \\ per STZ \end{pmatrix} \cdot \begin{pmatrix} Rate of STZ \\ Formation \end{pmatrix}$$

3. Probability of activation $\mathsf{P} \propto exp\left(-\frac{\Delta G}{kT}\right)$

Rate of STZ formation

$$R = v_0 \exp\left(-\frac{\Delta G}{kT}\right)$$

Flow equation

$$\frac{\text{Activation volume}}{\Omega = \int \varepsilon \ dV}$$

$$P \propto exp\left(-\frac{\Delta G}{kT}\right)$$

forward jump $P \propto exp\left(-\frac{\Delta G - \tau \Omega/2}{kT}\right)$

backward jump $P \propto exp\left(-\frac{\Delta G + \tau \Omega/2}{kT}\right)$

Flow equation

Your turn!

$$\dot{\gamma} = f \cdot \epsilon_0 \cdot \nu_0 \cdot exp\left(-\frac{\Delta G}{kT}\right)$$

Flow equation under applied stress?

$$\dot{\gamma} = f \cdot \epsilon_{0} \cdot \nu_{0} \cdot \left\{ exp\left(-\frac{\Delta G - \sigma\Omega/2}{kT}\right) - exp\left(-\frac{\Delta G - \sigma\Omega/2}{kT}\right) \right\}$$
$$\dot{\gamma} = f \cdot \epsilon_{0} \cdot \nu_{0} \cdot sinh\left\{\frac{\sigma\Omega}{2kT}\right\} exp\left\{-\frac{\Delta G}{kT}\right\}$$
Small applied stress: $sinh\left\{\frac{\sigma\Omega}{2kT}\right\} \approx \frac{\sigma\Omega}{2kT}$ Viscosity ?
$$\eta = \frac{\sigma}{\dot{\gamma}} = \frac{kT}{\Omega f \epsilon_{0} \nu_{0}} \cdot exp\left\{\frac{\Delta G}{kT}\right\}$$

Flow equation

Structural order parameter: Free volume

create free volume $v^* - v$

Free volume creation

 $\Delta v^{+} = \begin{pmatrix} \text{#potential} \\ \text{sites} \end{pmatrix} \cdot \begin{pmatrix} \text{net # forward} \\ \text{jumps} \end{pmatrix} \cdot \begin{pmatrix} \text{Amount of} \\ v_{\text{f}} \text{ created} \end{pmatrix}$ Free volume annihilation $\Delta v^{-} = \begin{pmatrix} \text{#potential} \\ \text{sites} \end{pmatrix} \cdot \begin{pmatrix} \text{#jumps} \\ \text{per sec} \end{pmatrix}$

Constitutive description

Constitutive description

Example: creep test of Pd₄₁Ni₁₀Cu₂₉P₂₀ metallic glass

Homogeneous and Inhomogeneous Flow

Deformation Map

Shear banding

Liquefaction?

Shear banding

Suspensions, Granulates

Liquefaction?

Schall, van Hecke Ann. Rev. Fluid Mech. 2010

The determination of the elastic field of an ellipsoidal inclusion, and related problems

By J. D. Eshelby

Department of Physical Metallurgy, University of Birmingham

(Communicated by R. E. Peierls, F.R.S.-Received 1 March 1957)

Elastic Continuum

The determination of the elastic field of an ellipsoidal inclusion, and related problems

By J. D. Eshelby

Department of Physical Metallurgy, University of Birmingham

(Communicated by R. E. Peierls, F.R.S.-Received 1 March 1957)

Elastic Continuum

Displacements

$$u_{1} = Aa^{3} \left\{ \frac{x_{3}}{r^{3}} + 6c(r^{2} - a^{2}) \left(\frac{5x_{1}^{2}x_{3}}{r^{7}} - \frac{x_{3}}{r^{5}} \right) \right\}$$
$$u_{2} = Aa^{3} \left\{ 6c(r^{2} - a^{2}) \left(\frac{5x_{1}x_{2}x_{3}}{r^{7}} \right) \right\}$$
$$u_{3} = Aa^{3} \left\{ \frac{x_{1}}{r^{3}} + 6c(r^{2} - a^{2}) \left(\frac{5x_{1}x_{3}^{2}}{r^{7}} - \frac{x_{1}}{r^{5}} \right) \right\}$$

(Hutchinson 2006)

Strain Field

Long-range Strain Field $\epsilon_{\chi Z} \propto \frac{1}{r^3}$ \rightarrow Correlations between STZ?

Long-range strain correlations

... are rather the rule than the exception!

- Slowly sheared glasses
- Soft glassy materials

Why such a tough problem?

Computational challenge Long Length and Time scales

Experimental challenge: No direct atomic imaging of amorphous structures

... both problems solved with Colloidal Glasses