<u>JMBC Workshop</u> Jamming and glassy behavior in colloids

3. Insight from Colloidal Glasses

Peter Schall University of Amsterdam

Colloidal suspensions

Why important ?

Colloidal Hard Spheres

Hard-sphere Phase Diagram

Colloidal Hard Spheres

(Alder, Wainwright 1957)

Colloidal Hard Spheres

Scaling of the Moduli Elastic Modulus ~ Energy / a³

Colloidal suspensions

Colloidal Glasses

1. Thermal Energy kT

3. Dense system⇒ Elastic modulus

 ϵ_{ii}

೧::

compression

σ_{kk}

 $\boldsymbol{\epsilon}_{kk}$

shear

Colloids: 3D Analogue Computers

Colloidal Systems Time Scale

Collision time $\tau = (1/100)$ s

Total "simulation" time :10 h \approx 3million τ Time increment :1 min \approx 6000 τ

Light Scattering

Time Auto Correlation Function $C(\tau) = \langle I(t)I(t + \tau) \rangle$ $C(\tau) \propto exp(-Dq^{2}\tau)$

Light Scattering

• Light scattering

van Megen *et al.* (PRE 1998)

Colloidal glass transition $\phi_g \sim 0.57$

Confocal Microscope Image

Colloidal Glasses

Free volume distribution

Heterogeneous!

Particle displacements

Application of str

Confocal microscopy

Strain and non-affine displacements

Affine transformation : γ

$$\boldsymbol{d_i}^{\text{aff}} = \boldsymbol{d_i} + \boldsymbol{\gamma} \boldsymbol{d_i}$$

Symmetric part of γ

Strain tensor
$$\varepsilon_{ij} = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \end{pmatrix}$$

STZ in colloidal glasses

Χ

r³

Incremental strain

(PS, Weitz, Spaepen, Science 2007)

Continuum elasticity

Spatial Correlations

$$C_{A}(\Delta) = \frac{\left\langle A(\bar{r})A(\bar{r} + \Delta) \right\rangle - \left(\left\langle A \right\rangle\right)^{2}}{\left\langle (A)^{2} \right\rangle - \left(\left\langle A \right\rangle\right)^{2}}$$

▲ : difference vector
⟨ ⟩ : spatial average

A(**r**+∆) A(r)

 $A = \mathcal{E}_{XZ}$ Strain correlation Non-affine correlation : $A = D^2_{min}$

Affine part: Shear Strain ε_{xz}

Non-affine part

Non-affine part

Solid-Liquid transition: Shear banding

Shear banding transition

Spatial distribution of Flow ?

Structural transition ?

Shear banding

Increasing Strain rate

Anisotropy of Strain correlations

New correlations with anisotropic, stress-dependent scaling

Shear banding transition

What is the right order parameter ?

First order transition ?

Soft Spheres: beyond the glass transition

... compress beyond close packing

Temperature-sensitive colloids

Quench beyond glass transition

Rhology: Hard and Soft Sphere Glasses

Soft Spheres: High elastic component!

Rhology: Hard and Soft Sphere Glasses

Soft spheres → Strong Glasses Hard Spheres → Fragile Glasses Mattsson, Weitz (*Nature* 2010)

Soft Spheres

Weaker volume fraction dependence

Soft Spheres : Hertzian Interaction

Hertzian Interaction

$$u = \frac{8}{15} \sqrt{\frac{R}{2}} E_p \, \delta^{2.5},$$

Suspension Modulus

$$G_{\infty} = \frac{2\pi}{15} n^2 \int_0^{2R} g(r) \frac{d}{dr} [r^4 \frac{du(r)}{dr}] dr,$$

Cloitre, Bonnecaze (J. Rheol. 2006)

Soft Spheres : Hertzian Interaction

1. Particle Modulus

(Atomic Force Microscopy)

2. Pair Distribution Function

(Confocal Microscopy)

Soft Spheres : Hertzian Interaction

Shear Modulus: Model & Measurement

How does elasticity affect microscopic relaxation?

Correlations of Displacements

Large Dynamic susceptibility!

Long-range correlations ...

... ubiquitous in Soft Matter!

Conclusions

Colloidal Glasses
 Insight into flow of amorphous materials

- Strain correlations : central to material arrest, flow and failure
- New anisotropic correlations:
 Stress-dependent anisotropic scaling → Strain localization
- \rightarrow Dynamic first order transition in 4D space-time