Mechanical Metamaterial

?

Wikipedia: Metamaterials are artificial materials engineered to have properties that may not be found in nature. They are assemblies of multiple individual elements fashioned from conventional microscopic materials such as metals or plastics, but the materials are usually arranged in periodic patterns. Metamaterials gain their properties not from their composition, but from their exactingly-designed structures. Their precise shape, geometry, size, orientation and arrangement can affect the waves of light or sound in an unconventional manner, creating material properties which are unachievable with conventional materials.

Metamaterials: Waves

<u>Negative index metamaterial</u> array configuration, which was constructed of copper <u>split-ring resonators</u> and wires mounted on interlocking sheets of fiberglass circuit board.

An acoustic lens made of soda cans can focus sound waves to a spot as small as 1/25th of a wavelength.

Mechanical Metamaterial: UltraLight

0.9 mg per cm³ 0.9 g per liter 0.9 kg per m³

Mechanical Metamaterials: Responsive

Frictional, simple: compression ~ strength

Mechanical Metamaterials: Auxetic

Science 235 1038 (1987)

Mechanical Metamaterials: Auxetic

Science 235 1038 (1987)

Mechanical Metamaterials

Here: Collective

Here: Collective

Rigidity Loss

Here: Collective

Rigidity Loss

Instability

Usual Approach

Can you shape the feel of a thing?

Mechanical Metamaterial

Linear and Nonlinear Response in Marginal Networks Elastic Instabilities in Holey Sheets

Elasticity Jamming & Rigidity Percolation Buckling, Snapback and Snapthrough

2D $G = \frac{Y}{2(HY)}$ $K = \frac{Y}{2(I-Y)}$ $-l \leq \mathcal{V} \leq l$

$$\begin{aligned} \widehat{G}_{ij} &= C_{ijkl} \quad \forall kl \quad \frac{3D}{2D} \quad \frac{2D}{2D} \\ \widehat{G}_{ij} &= C_{ijkl} \quad \forall kl \quad \frac{81}{16} \quad \frac{16}{16} \\ \widehat{G}_{ij} &= \widehat{G}_{ji} \quad X \quad \forall kl = \forall lk \quad \frac{36}{9} \quad \frac{9}{16} \\ \widehat{G}_{ijkl} &= C_{klij} \quad \frac{21}{6} \quad \frac{6}{15} \\ 1SOTROPIC \quad \frac{2}{2} \quad \frac{2}{16} \end{aligned}$$

$$\sigma_{ij} = \lambda \delta_{ij} \varepsilon_{kk} + 2\mu \varepsilon_{ij}$$

$$\varepsilon_{ij} = \frac{1}{2\mu} \sigma_{ij} - \frac{\nu}{E} \delta_{ij} \sigma_{kk} = \frac{1}{E} [(1+\nu)\sigma_{ij} - \nu \delta_{ij} \sigma_{kk}]$$

 $|SOTROPIC| = \frac{2}{2}$

σ= K X [k] = Nm⁻² my and k~ R/l (30) ~~~~ [Nm-'] K~R (20) $[k] = Nm^{-1}$

2 2 1SOTROPIC

$$\begin{aligned} \overline{C} &= k \, \mathcal{K} \\ \overline{C} \, k \, \mathcal{I} &= N \, m^{-1} \\ \overline{C} \, k \, \mathcal{I} &= N \, m^{-1} \\ \overline{C} \, k \, \mathcal{I} &= N \, m^{-1} \\ \end{aligned}$$

$$\begin{aligned} \overline{C} \, k \, \mathcal{I} &= N \, m^{-1} \\ \end{array}$$

$$\begin{aligned} \overline{C} \, k \, \mathcal{I} &= N \, m^{-1} \\ \end{array}$$

$$\begin{aligned} \overline{C} \, k \, \mathcal{I} &= N \, m^{-1} \\ \end{array}$$

Stress State: Irrelevant
Linear Response
$$v > -1 / -0.5 \dots v > 0$$

 $G \approx K \approx k > 0$

Jamming Marginal Networks Holey Sheet Neg. Compressibility?

Ellenbroek et al, 06/09

Jamming: Special Geometry

W. G. Ellenbroek, Z. Zeravcic, W. van Saarloos and MvH, EPL 87 34004 (2009)

Jamming: Special Geometry

W. G. Ellenbroek, Z. Zeravcic, W. van Saarloos and MvH, EPL 87 34004 (2009)

Jamming: Special Geometry

Jamming ≠ Rig. Percolation NonAffine: Part of the Story

Self Adjusting

W. G. Ellenbroek, Z. Zeravcic, W. van Saarloos and MvH, EPL 87 34004 (2009)

Contact Number

Contact Number

- d: dimension
- N: # particles
- Z: CONTACT NR

Perturbations

Bastiaan Florijn

Perturbations

10

Bastiaan Florijn

If jamming geometry is so special, can we mimic it?

Evolutionary Algorithms

Evolutionary Algorithms

Evolutionary Algorithms

-0.363

Structure Determines Linear Response Connectivity Geometry Design Geometries

Marginal Point

Close to falling apart...

Close to falling apart...

Close to falling apart...

Intermezzo: Simulations of Spring Networks

W. G. Ellenbroek, Z. Zeravcic, W. van Saarloos and MvH, EPL 87 34004 (2009)

Intermezzo: Simulations of Spring Networks

M Wyart, H Liang, A Kabla and L Mahadevan, PRL 101 215501 (2008)

You Should Be Shocked

M Wyart, H Liang, A Kabla and L Mahadevan, PRL 101 215501 (2008)

Intermezzo: Simulations of Spring Networks

M Wyart, H Liang, A Kabla and L Mahadevan, PRL 101 215501 (2008)

State Diagram

State Diagram

Nonlinear states out of Marginal Point

Linear: Constitution Nonlinear: Driving

Collective Nonlinearity – Material is Linear

Nonlinear near Marginal Points Cross Elasticity?

Holey Sheet

Mullin et al, PRL 99, 2007, 084301

Bastiaan Florijn, Henk Imthorn, Robbin Bastiaansen, Corentin Coulais

Holey Sheet

Kamrin, Priv Comm

Holey Sheet

COMPRESSIONAL WADING VS BENDING MULTIPLE EQUILIBRIA, INSTABILITIES, BIFURCATIUNS

* BENDING MOMENT M

$$M = -\int dA \times G_{ZZ} (3)$$

$$M = Y/p \int dA \times^{2} := (Y/p)] (3)$$

$$[m^{4}] : 2nd \text{ moment of Area}$$

$$M = Y/p \int dA \times^{2} := (Y/p)] (3)$$

* BENDING MOMENT M

$$M = Y/p \int dA x^2 := (Y/p)] \quad \textcircled{}$$

$$* \frac{1}{p} = \partial_z^2 w = w'' = 5$$

$$M = Y w'' = 6$$

Sunday, February 24, 2013 10:06 AM

B

(Z)
$$F(z+dz) = f(z) \Rightarrow f' = 0$$

(X) $S(z+dz) = S(z) \Rightarrow S' = 0$ (1)

$$\rightarrow M' + Fw' + s = 0$$

Buckling Sunday, February 24, 2013 10:06 AM

$$\begin{array}{cccc} & & & & G(2+d_{2})=G(2) \Rightarrow & & & G'=0 \\ \end{array} \\ & & & & & -G(2+d_{2}) \sin \theta(2+d_{2})+G(2) \sin \theta(2) \\ & & & +R(2+d_{2}) \cos \theta(2+d_{2})-R(2) \cos \theta(2) \\ & & & +R(2+d_{2}) \cos \theta(2+d_{2})-R(2) \\ & & & & +R(2+d_{2})-R(2) \\ & & & & +R(2+d_{2})-R(2) \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ \end{array}$$

j2

$$\begin{array}{c} \textcircledleft for formation for the structure is non-linear equation for the s$$

Buckling: Beammodel vs Holey Sheet

Buckling: Beammodel vs Beam

Biholar Sheets: Breaking Symmetry

Biholar Sheets

Biholar Sheets

Weak Symmetry Breaking

Weak Symmetry Breaking

Lateral Forcing

Weak Symmetry Breaking

Buckling in Networks Tunable Mechanical Response Other Hole Patterns?
Outlook: G << K: Pentamode Materials

Acoustic Cloaking

Jammed Better?

2ke 3D Printing (Soluble Mould)

200k\$ 3D Printing

Outlook: Negative Compressibility?

ARTICLES

PUBLISHED ONLINE: 20 MAY 2012 | DOI: 10.1038/NMAT3331

Mechanical metamaterials with negative compressibility transitions

Zachary G. Nicolaou¹ and Adilson E. Motter^{1,2}*

Outlook: Negative Compressibility?

ARTICLES PUBLISHED ONLINE: 20 MAY 2012 | DOI: 10.1038/NMAT3331

Mechanical metamaterials with negative compressibility transitions

Zachary G. Nicolaou¹ and Adilson E. Motter^{1,2}*

Geometry Marginal Points Instabilities

Lots of open questions!