

Deterministic Models ...

Method	Abbrev.	Theory
Molecular dynamics (soft particles)	MD	
Event Driven (hard particles)	ED	(Kinetic Theory)
Monte Carlo (random motion)	MC	Stat. Phys.
Direct Simulation Monte Carlo	DSMC	Kinetic Theory
Lattice (Boltzmann) Models	LB	Navier Stokes

ime-step $\Delta t <=$	$=\frac{t_c}{50}$
contact duration t_c =	$= \frac{\pi}{\omega} \qquad t_n < t_c \\ t_c^{wall} = \frac{\pi}{\omega} > t_c$
	time between contacts
	•
	$t_n > t_c$
sound propagation	$N_L t_c$ with number of layers N_L
experiment	Т

Continuum theory ...

Method	Abbrev.	
Finite Element Method	FEM	e.g. Structures
Finite Differences	FD	
Finite Volume	FV	
Computational Fluid Dynamics	CFD	
Smoothed Particle Hydrodynamics	SPH	e.g. astro-phys.

Darticla	hacod	methods	
r ai titit	Dascu	methous	

Method	Abbrev.	Theory
Molecular dynamics (soft particles)	MD	
Event Driven (hard particles)	ED	(Kinetic Theory)
Smoothed Particle Hydrodynamics	SPH	Astro-Phys.
Dissipative Particle Dynamics	DPD	Viscous+Random
Etc.		

deterministic vs. stochastic models ...

Method	Abbrev.	Theory
Molecular dynamics (soft particles)	MD	
Event Driven (hard particles)	ED	(Kinetic Theory)

Particle method(s) first ... ED ... why?

- Forget about the fluid between the particles
- Particles + dissipation/friction + collisional
 => Kinetic theory works ©
- Challenge: Micro-Meso-Mechanics Effects
 - Structures, agglomerates, ...
 - Dense & static system, ...
 - Advanced contact models, ...
 - Anisotropy, ...

How do contacts influence the continuum behavior?

