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From particle-systems to continuum theory 

Stefan Luding, MSM, CTW, MESA+, UTwente, NL 

•  Introduction MSM 

  What is Multi Scale Mechanics? 

   www.msm.ctw.utwente.nl 

    



2	


N. Rivas, 
 MSM, 2011 

Example 1:  Agitation/Vibration 

P. V. Quinn, D. Hong, SL, PRL 2001 

Example 2:  Segregation/Mixing 
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A. Gupta et al., MSM, 2010 

Example 2:   
Mixing 

Single  
        particle 

Contacts 

Many  
    particle  
          simulation 

Continuum Theory 

Overview 
 

 Introduction 

 Contact models 

 Many particle simulation 

 Local coarse graining 

 Continuum Theory 

 … Anisotropy 
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Deterministic Models … 

Method Abbrev. Theory 

Molecular dynamics (soft particles) MD … 

Event Driven (hard particles) ED (Kinetic Theory) 

Monte Carlo (random motion) MC Stat. Phys. 

Direct Simulation Monte Carlo DSMC Kinetic Theory 

Lattice (Boltzmann) Models LB Navier Stokes 

PCSE – steps in simulation … 
 

1. Setting up a model 
2. Analytical treatment 
3. Numerical treatment 
4. Implementation 
5. Embedding 
6. Visualisation 
7. Validation 

1. Particle model 
2. Kinetic theory  
3. Algorithms for MD 
4. FORTRAN or C++/MPI 
5. Linux – research codes 
6. xballs X11 C-tool  
7.  theory/experiment 
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What is Molecular Dynamics ? 

1. Specify interactions  
 between bodies (for example: 
         two spherical atoms) 

 
2. Compute all forces 
 
3. Integrate the equations  

 of motion for all particles (Verlet, 
 Runge-Kutta, Predictor-Corrector, …) 

    with fixed time-step dt 
m!!xi = f j!i

j"i
#

j i→f

Equations of motion 

mi
d 2!ri
dt2

=
!
fi

Overlap ! = 1
2
di + d j( )! !ri ! !rj( ) " !n

n! = !nij =
!ri !
!rj( )

!ri !
!rj

 
!
fi =

!
fi
c

c! +
!
fi
w +miw! g

Forces and torques: 

Normal 

Contacts 

Many  
    particle  

          simulation 

Discrete particle model 

Contact if Overlap > 0 
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1 for un-/re-loading
hys
i

k
f

δ⎧
⎪= ⎨
⎪⎩

- (really too) simple J 
- linear 

- very easy to implement 

Linear Contact model 

- really simple J 
- linear, analytical 

- very easy to implement 

Linear Contact model 
if

δ

overlap 

rel. velocity 

acceleration 

http://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdf 

! = 1
2 di + dj( )! !ri ! !rj( ) " n̂

!! = ! !vi !
!vj( ) " n̂

!!! = ! !ai !
!aj( ) " n̂

fi
(n) = fi = !mij

!!! = k! + " !!



7	


- really simple J 
- linear, analytical 

- very easy to implement 

Linear Contact model 
if

δ

overlap 

rel. velocity 

acceleration 

http://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdf 

! = 1
2 di + dj( )! !ri ! !rj( ) " n̂

!! = ! !vi !
!vj( ) " n̂

!!! = ! !ai !
!aj( ) " n̂ = ! fi

mi
! f j

mj

#
$%

&
'(

!
f j=!

!
fi

= ! 1
mij

!
fi " n̂

fi
(n) = fi = !mij

!!! = k! + " !!

- really simple J 
- linear, analytical 

- very easy to implement 

Linear Contact model 

elastic freq. 0
ij

k
mω =

eigen-freq. 

visc. diss. 

2 2
0ω ω η= −

2 ijm
γη =

fi = !mij
!!! = k! + " !!

k! + " !! +mij
!!! = 0

k
mij

! + 2 "
2mij

!! + !!! = 0

!0
2" + 2# !! + !!! = 0
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- really simple J 
- linear, analytical 

- very easy to implement 

Linear Contact model 

elastic freq. 0
ij

k
mω =

eigen-freq. 

visc. diss. 

( ) exp( )sin( )t t tδ η ω
ω

= −0v

2 2
0ω ω η= −

2 ijm
γη =

[
]

( ) exp( ) sin( )
cos( )

t t t
t

δ η η ω
ω

ω ω
= − −

+

& 0v

contact duration ct π
ω=

restitution coefficient 
( )

exp( )

c

c

tr

tη

= −

= −
0

v
v

http://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdf 

fi = !mij
!!! = k! + " !!

k! + " !! +mij
!!! = 0

k
mij

! + 2 "
2mij

!! + !!! = 0

!0
2" + 2# !" + !!" = 0

!! (t)

- comments/problems 
Linear Contact model 

restitution coefficient 
Always >= 0 

( )

exp( )

c

c

tr

tη

= −

= −
0

v
v

http://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdf 

Forces negative 
ó adhesion fi = !mij

!!! = k! + " !! < 0

=> Reconsider definition of t_c … 



9	


Linear Contact model  

elastic freq. 0
ij

k
mω =

eigen-freq. 

visc. diss. 

2 2
0ω ω η= −

2 ijm
γη =

contact duration ct π
ω=

restitution coeff. exp( )cr tη= −

particle-particle   particle-wall 

0
0 2
wall

i

k
m

ωω = =

2 2
0 2 4wallω ω η= −

2 2
wall

im
γ ηη = =

wall
wallc ct tπ

ω= >

exp( )wall wall wall
cr tη= −

http://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdf 

Time-scales 

contact duration ct π
ω= wall

wallc ct tπ
ω= >

time-step 50
cttΔ <=

time between contacts 

n ct t<

n ct t>

sound propagation  ... with number of layers L c LN t N

experiment T
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Time-scales 

contact duration ct π
ω= argl e small

c ct t>

time-step 50
cttΔ <=

different sized particles 
n ct t<

n ct t>

sound propagation  ... with number of layers L c LN t N

experiment T

time between contacts 

http://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdf 

3/ 2
1 for un-/re-loading

hys
i

k
f

δ⎧
⎪= ⎨
⎪
⎩

- simple J 
- non-linear 

- easy to implement 

Hertz Contact model 
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Convection 

Segregation 
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Molecular Dynamics example 
from astrophysics 

Algorithmic trick(s) for speed-up 

•  Linked cells neighborhood search O(1) (short range 
forces) 

•  Linked cells update after 10-100 time-steps O(N ) 
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What is Molecular Dynamics ? 

1. Specify interactions  
 between bodies (for example: 
         two spherical atoms) 

 
2. Compute all forces 
 
3. Integrate the equations  

 of motion for all particles (Verlet, 
 Runge-Kutta, Predictor-Corrector, …) 

    with fixed time-step dt 
m!!xi = f j!i

j"i
#

j i→f

Rigid interaction (hard spheres) 

 Stiff (rigid) interactions require dt=0 
 Events (=collisions) occur in zero-time 
(instantaneously) 
 that means: Integration is impossible ! 

 
1.  Propagate particles between collisions 
2.  Identify next event (collision) 
3.  Apply collision matrix 
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Why use hard spheres ? 

+ advantages  
•  Event driven (ED) is faster than MD 
•  Analytical kinetic theory is available  

     (with 99.9% agreement) 
– drawback  
•  Implementation of arbitrary forces is expensive 
•  Parallelization is less successful  

Why use hard spheres ? 

+ advantages  
•  Event driven (ED) is faster than MD 
•  Analytical kinetic theory is available  

     (with 99.9% agreement) 
– drawback  
•  Implementation of arbitrary forces is expensive 
•  Parallelization is less successful  
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Algorithm (serial) 

0. Initialize 

•  Compute all forces O(1 )  

•  Integrate equations of motion t+dt 

•   O(N ) – goto 1. 

      Total effort: O(N ) 

Rigid interaction (hard spheres) 

0.  Stiff (rigid) interactions require dt=0 
 Events (=collisions) occur in zero-time (instantaneously) 
 Integration is impossible ! 

 
1.  Propagate particles between collisions 

2.  Identify next event (collision) 

3.  Apply collision matrix 
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Rigid interaction (hard spheres) 

1. Stiff (rigid) interactions require dt=0 
 Events (=collisions) occur in zero-time (instantaneously) 

Rigid interaction (hard spheres) 

2.  Solve equation of motion between collisions 

-  trajectory 

-  contact 

-  event-time 

( ) ( ) ( ) 21
20 0i i it t t= + +x x v g

( ) ( ) 1 2ij i jt t r rΔ = − = +x x x
( ) ( )( ) ( )2 2

1 20 0ij ij t r rΔ +Δ = +x v
!xij

2 ! r1 + r2( )2
c

! "## $##
+ !xij ! "vij

b
!"# $#

t + !vij
2

a
!

t2 = 0

2

1,2
4

2
b bt ca

a
− ± −=
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Time evolution 
position 

tn 

time 

Rigid interaction (hard spheres) 

( )1,2 1,2 1,21 2P mr= ± Δ+′v v

Collision rule (translational) 

 
Momentum conservation + dissipation 
with restitution coefficient (normal): r 
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Rigid interaction (hard spheres) 
Collision rule (translational and rotational) 

 
 
Restitution coefficient (normal): r        (tangential) rt  
 

( )1,2 1,2 1,21 2P mr= ± Δ+′v v ( )1,2 1,2 1,21 2t Lr Iω ω′ ± Δ= +

Time evolution 

position 

time 

tn tn+1 tn+2 
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Algorithm (ED serial) 

0.  Initialize 

•  Propagate particle(s) to next event O(1)  

•  Compute event (collision or cell-change) 

•  Calculate new events and times O(1)  

•  Update priority queue (heap tree) O(logN )  

•   O(N ) – goto 1. 

     Total effort: O(N logN ) 

Algorithmic trick(s) for speed-up 

•  Linked cells neighborhood search O(1) (short range 
forces) 

 
•  Linked cells update not needed !  



20	


Performance 
•  Short range contacts  
•  Linked cells neighbourhood search 

        Cells per particle 

low density high density 

Algorithm (parallel) 

0.  Initialize 

•   Communication between processors 

•   Process next events tn to tn+m (see serial) 

•   Send and receive border-particle info 

•   If causality error then rollback goto 2. 

•   Synchronisation (for load-balancing and I/O) 

•   goto 1. 
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Parallelization – communication  

processor 1 processor 2 

border zone 

Parallelization – load balancing 

processor 1 

processor 4 

processor 3 

processor 2 
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Parallelization – load balancing 

processor 1 

processor 4 

processor 3 

processor 2 

Parallelization – load balancing 

processor 1 

processor 4 

processor 3 

processor 2 
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Performance (fixed N) 

•  Required memory per processor [MByte] 

1 2
33

c cN c
P P

⎛ ⎞∝ + +⎜ ⎟⎝ ⎠

Performance (3D fixed N) 

•  Fixed density and number of particles  

1/ 2P∝

62.10N C= =
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Performance (3D fixed N/P) 

•  Fixed number of particles per processor  

1/ 2P∝

4/ 4.10N P =

The End (Technical) 
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Single  
        particle 

Contacts 

Many  
    particle  
          simulation 

Continuum Theory 

Overview MultiScale 
 

 Introduction 

 Contact models 

 Many particle simulation 

 Local coarse graining 

 Continuum Theory 

   

Single  
        particle 

Contacts 

Many  
    particle  
          simulation 

Continuum Theory 

Goal: 
 Large Scale systems 
 Applications 

 

 

 

 Continuum Theory 
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Continuum theory 

•  Pressure P 
•  Shear Stress 
•  Energy Dissipation Rate I 

( ) 0i
i

u
t x
ρ ρ∂ ∂+ =

∂ ∂

( ) ( ) dev
i i i

i j
ijk

k

u u u P g
t x x x
ρ ρ ρσ∂ ∂ ∂ ∂+ = − + +

∂ ∂ ∂ ∂

( )2 2 2 21 1 1 1
2 2 2 2k

k

u u uP
t x

ρ ρ ρ
ρ

⎡ ⎛ ⎞∂ ∂+ = − + +⎢ ⎜ ⎟∂ ∂ ⎝ ⎠⎣
v v

mass conservation: 

momentum conservation: 

energy balance: 

dev
ijσ

( )21
2

dev
iki i i

k

u K g
x

Iuρσ ρ
⎤∂− − + −⎥∂ ⎦

v

Continuum theory … 

Method Abbrev. 

Finite Element Method FEM e.g. Structures 

Finite Differences  FD 

Finite Volume FV 

Computational Fluid Dynamics CFD 

Smoothed Particle Hydrodynamics  SPH e.g. astro-phys. 
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Particle based methods … 

Method Abbrev. Theory 

Molecular dynamics (soft particles) MD … 

Event Driven (hard particles) ED (Kinetic Theory) 

Smoothed Particle Hydrodynamics  SPH Astro-Phys. 

Dissipative Particle Dynamics DPD Viscous+Random 

Etc. 

Multiscale modeling 

Fully resolved (DNS) Meso-resolved Atomistic (MD) 

Continuum approach Atomistic approach 

10!11m 10!8m 10!5m 10!2m
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Example 3b: Fluidization DEM-FEM 

Fluidization on moving mesh with 800 particles (with gravity) 

Future work	


Coarse graining 

Ø  Find relations between PDF’s	

Ø  Apply to the moving particles/mesh	

Ø  3D spherical particles	
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Example 3b: Fluidization DEM-FEM 

Fluidization on moving mesh with 800 particles (with gravity) 

Fluid-particle simulation – which length scale? 

Van der Hoef, M. A., van Sint Annaland, Deen, N. G., & Kuipers, J. A. M. (2008). 
Numerical simulation of dense gas-solid uidized beds: A multiscale modeling strategy. 

Annual Review of Fluid Mechanics, 40 (1), 47{70. 

Length scale of interest 
determines simulation 

method 

Fluid resolution > 
particle diameter 
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Example 3a: Powder dispersion SPH-DEM  
 1 2 1&2 

•  initial results 
•  SPH fluid-phase 
•  DEM model 

Simulation of powder dispersion by a liquid jet 

•  Application: Particle dispersion  
 (collaboration with Nestle) 

 
•  Method: SPH-DEM 

•  Results: 
•  Wet – Recovers qualitative features 

from experiment: Jet, dispersion …  
•  Dry – Fails to recover some  

major features (e.g. bed lift regime).  
•  Surface tension not modeled yet. 
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deterministic vs. stochastic models … 
 
 
 
 
 
 
Particle method(s) first … ED … 

       why? 

Method Abbrev. Theory 

Molecular dynamics (soft particles) MD … 

Event Driven (hard particles) ED (Kinetic Theory) 

Algorithmic trick(s) for speed-up 

•  Linked cells neighborhood search O(1) (short range forces) 

•  Linked cells update not needed ! <- cell-crossing events  
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S. Gonzalez-Briones, MSM, 2010 

Example 4:  Agglomeration 

Challenge: 

Fast contact detection 
between particles with 
strongly different sizes 

Size ratio >> 10 

Number of particles > 106 
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Challenge: DEM with realistic sizes 

… highly polydisperse powders 

Challenge: 

Fast contact detection 
between particles with 
strongly different sizes 

Size ratio >> 10 

Number of particles > 106 

•  Breakage / Grinding 

•  Concrete 

fly ash sample at 2000x magnification, 
University of Kentucky,  CAER 
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112 

Mono-disperse Bi-disperse 

Uniform volume Uniform size 

Different size distributions … 

Colour 
by size 

Kinetic Theory – Towards Jamming 
 
Dimensionless pressure:  Z=1+4νgO(ν) 

 
 
 
 
 
 
 
 
 
 

The moments are enough! 3 -> 5 
… in the fluid regime and also above, towards jamming 

gO !( ) = 1!!( )2 + 3O1 1!!( )+O2 3!!( )!
4 1!!( )3

O1 =
a a2

a3
and O2 =

a2
3

a3
2
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Hierarchical grid: fast, robust & flexible 
example: L=2 level grid 

Analytical prediction vs Simulations 

2* >L2* ≅L

uniform size uniform volume 

)( KmNLT L +=

optimal L=7 
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Large Scales - Continuum theory 

•  Forget about the fluid between the particles 

•  Particles + dissipation/friction + collisional 
=> Kinetic theory works J 

 
•  Challenge: Micro-Meso-Mechanics Effects 

-  Structures, agglomerates, … 
-  Dense & static system, …  
-  Advanced contact models, …  
-  Anisotropy, … 

How do contacts influence the continuum behavior? 
 

 

Film of cooling gas 
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Continuum theory 

•  Pressure P 
•  Shear Stress 
•  Energy Dissipation Rate I 

( ) 0i
i

u
t x
ρ ρ∂ ∂+ =

∂ ∂

( ) ( ) dev
i i i

i j
ijk

k

u u u P g
t x x x
ρ ρ ρσ∂ ∂ ∂ ∂+ = − + +

∂ ∂ ∂ ∂

( )2 2 2 21 1 1 1
2 2 2 2k

k

u u uP
t x

ρ ρ ρ
ρ

⎡ ⎛ ⎞∂ ∂+ = − + +⎢ ⎜ ⎟∂ ∂ ⎝ ⎠⎣
v v

mass conservation: 

momentum conservation: 

energy balance: 

dev
ijσ

( )21
2

dev
iki i i

k

u K g
x

Iuρσ ρ
⎤∂− − + −⎥∂ ⎦

v

Freely cooling system 

( )21
2 I

t
ρ∂ = −

∂
v

homogeneous steady state: 

mass & momentum conservation – OK 

energy balance: 

0
ix

∂ =
∂

0i ig u= =

( )21I rρ∝ − 3v

mean field (MF) solution: ( )2
1

1 1 trα
=

+ −0 0

v
v v

( )( )22

1

1 1 r tα
=

+ −0 0

E
E v
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Freely cooling system (HCS) 

clustering 

HCS 

t/t0 

E/E0 

Kinetic theory with Coulomb friction 
… 

µ=0.5	


… possible, but serious hard work … 
      NO shortcut 

µ=∞	




39	


   

Clustering/Agglomeration 

dissipation 

gas 

clustering 

   

Clustering/Agglomeration 

dissipation 

gas 

clustering 

   long range forces 
repulsive       attractive 
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•  particle of interest is in any 
  H0 cell (= linked cell) 

The Hierarchical Linked Cell Structure (HLC) 

LC
3l3 og1D

DN H
n

N NN= −⋅ ∝

•  construct H1 level (H =1) 
  (= 26 H0 cells) and consider 
  inner cut-off sphere around 

  particle of interest 

•  construct H2 level (H =2) 
  (= 26 H1 cells, each: 27 H0) 

•  construct H3 level (H =3) 
  (= 26 H2 cells, each: 27 H1) 

•  consider outer cut-off sphere  
  around particle of interest 

Molecular Dynamics 
example 
from astrophysics 
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ring-shaped astrophysical systems  

0.60 2 5br c e= = −1.00 2 5br c e= = −

M. K. Mueller, PhD thesis, 2008 

Roadmap (Homogeneous Systems) –    
  Kinetic Theory + Extensions 

dissipative 
 
 
 

+friction 

elastic 

short-range 
potential 

wide long-range 

short long-range 

wide long-range  

long-range 
repulsive potential 

long-range 
attractive potential 
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Inherent Yield Stress 

Powders heap Liquid spreads 

Yield stress = resistance against flow 

Powder and Liquid Flow (differences) 

Mechanical 
(dp>10µm) 

Chemical 
(10nm<dp<10µm) 

Atomic Cluster 
(dp<10nm) 

Particle Interactions 
Surface and Field Forces Material Connections 

by: J. Tomas,  
Magdeburg 
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Equations of motion 

mi
d 2!ri
dt2

=
!
fi

Overlap ! = 1
2
di + d j( )! !ri ! !rj( ) " !n

 
!
fi =

!
fi
c

c! +
!
fi
w +miw! g

Forces and torques: 

Ii
d!
!"
i

dt
= ti
"

 ti
!
= ri

! c
!
!
fi
c

c"

Contacts 

Many  
    particle  
          simulation 

Discrete particle model 

How to model Contacts? 

Atomistic/Molecular  … 
Continuum theory + Contact Mechanics 
Experiments (Nano-Ind., AFM, Mech., HSMovies) 
Contact Modeling 
•  Full/All Details … too much!  
•  Mesoscopic type Models 
•  (Over-)Simplified Models 
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1 for un-/re-loading
hys
i

k
f

δ⎧
⎪= ⎨
⎪⎩

- (really too) simple J 
- linear 
- very easy to implement 

Linear Contact model 

3/ 2
1 for un-/re-loading

hys
i

k
f

δ⎧
⎪= ⎨
⎪
⎩

- simple J 
- non-linear 
- easy to implement 

Hertz Contact model 
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Contact force measurement (AFM) 

Contact force measurement (AFM) 

0 50 100 150 200 250
-5

0

5

10

15

20
Polystryrene

D
ef

or
m

at
io

n 
H

ys
te

re
si

s 
in

 n
m

Force in nN
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Contact force measurement (AFM) 
	  

40 50 60 70 80 90 100 110
0

500

1000

1500

2000

2500

3000

Ad
he

sio
n 

Fo
rc

e 
(n

N)

Temperature (oC)

Elastic spheres 

 Before          During      After   

Elasto-plastic spheres 
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Cohesive contact 

1. loading 
 
 
2. unloading 
3. re-loading 
 
 
4. tensile failure 
 

2

transition to 
stiffness: k

max. tensile 
force

2

elastic un/re-loading 
stiffness: k

Sliding contact points: 
-  static Coulomb friction  
-  dynamic Coulomb friction 
-  objectivity 
Sliding/Rolling/Torsion  

Tangential contact model 

( ) ( )
( )
( )

t

t

slidin

rolli

to

ˆ

ˆ

ˆ rsi

g

ˆ

g

n

on

i j

ij i

i

i i jj

ij

j

j

n

n a a

a n

a n

ω ω

ω

ω

ω

ω −

⎧ − + ×⎪
⎪= ×⎨
⎪

⋅
⎩

+

−⎪

v v

v
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Flow with friction & rolling resistance 

0.5µ = 0.5
0.2r

µ
µ
=
=

… details of interaction 

 Attraction + Dissipation = Agglomeration 



49	


tension - uni-axial  

2 1 2tk k =

uni-axial compression-tension 
 

 
 
•  Compression 
•  Tension 

 



50	


compression - uni-axial  

2 1 2tk k =

compression - uni-axial  

2 1 2tk k =
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compression - uni-axial  

2 1 2tk k =

compression - uni-axial  

2 1 2tk k =
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1.  Preparation 
2.  Heating 
3.  Sintering / 

Cementation 
4.  Cooling 
5.  Relaxation 
6.  Testing 

Sintering / Cementation (back to 2D) 

T(t) 

Sintering /Cementation 2 

( )1 1loading stiffness: k k T=

maxmaximum overlap ed: fix δ +

0neutral overlap increasin : g δ +

2.  Heating 
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Sintering /Cem. 

2.  Heating 

( )1 1loading stiffness: k k T=

maxmaximum overlap ed: fix δ +

0neutral overlap increasin : g δ +

Sintering / Cem. 3 

3.  Sintering / Cementation - Reaction 
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Sintering 3 

3.  Sintering 

( ) ( ) ( )
( )

2
1 1

1
1 0

time delay: 

,
,

k T k T t
k T t
t k T t

−⎡ ⎤∂ ⎣ ⎦= ±
∂

0 10st =

( ) ( ) ( ) ( )

1

1 1
1 0 1 0

1, 1
1

tk T t k T
k T k T t

−⎧ ⎫⎛ ⎞⎪ ⎪= − −⎜ ⎟⎨ ⎬⎜ ⎟−⎝ ⎠⎪ ⎪⎩ ⎭

-  slow dynamics (t0) 

-  diffusion, … 

-  trick: increase t0 

Sintering 4 

4.  Cooling 
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Sintering 4 

4.  Cooling 

maxincremaximum asinoverlap :g  δ −

0neutral overla fixedp : δ −

Sintering 5 

5.  Relaxation 
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Sintering 6 
6.  Testing 

p=const. 

strain … 

Sintering 6 
6.  Testing 

p=const. 

strain … 



57	


Sintering 6 
6.  Testing 

p=const. 

strain … 

Sintering 6 
6.  Testing 

p=const. 

strain … 
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Sintering 6 
6.  Testing 

p=const. 

strain … 

cracks 

Sintering (Temperature+Pressure) 
Vibration test  

p=100 p=10 
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•  Micro-/Macro-Flow Rheology 

-  micro-adhesion … macro-cohesion 

-  micro-contact-friction … macro-friction-angle 

•  Non-Newtonian Rheology (Anisotropy?, Micro-polar?) 

 

Micro-macro GLOBAL 

Biaxial box element test 

•  Top wall: strain controlled 

•  Right wall: stress controlled 

•  Evolution with time … ? 
 

( )0 f
f( ) 1 cos

2
z zz t z tω−= + +

const.p =
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Mode 0: Isotropic 

Mode 1: Uni-axial 

Mode 2: Deviatoric 

Mode 3: Bi-axial (side-stress controlled) 

Mode 4: Bi-axial (isobaric, p-contolled) 

Constitutive model  
 various deformation modes 

d! = 0

!V = 0

Bi-axial box (stress chains) 
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Bi-axial box (stress chains) 

Bi-axial box (kinetic energy) 
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Bi-axial box (kinetic energy) 

Bi-axial box (rotations) 
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Bi-axial box (rotations) 

    

inhomogeneity & anisotropy, rotations instabilities & structures, 

Multiple micro-mechanisms 
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Bi-axial compression with px=const. 

Microscopic interpretation: memory? 
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Yield loci 

critical state yield 

2/ 0, 1/2, 1, 2, and 4ck k =

fmin 

1 2
0

2

1
1 c

k kc c
kk

−=
+

macro cohesion 

Micro-macro for cohesion  

micro adhesion: fmin 
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Micro-macro for friction 

prepared µ=0 

prepared µ=0.5 

steady-state shear 

micro contact-friction µ macro friction-angle µm 

µm
:=

 

NOTE: each point = 5-10 simulations 

Anisotropy <-> Shear ? 

•  Simple shear 

                        Rotation +  symmetric shear 
•  Rotate symmetric shear tensor by 45 degrees 

•  Biaxial “shear”: compression+extension 

0 00 2
0 00 0
ε εε

ε
ε ε

⎛ ⎞ ⎛ ⎞⎛ ⎞
= = +⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

s ss

s s

45 45

0 0
0 0
ε ε

ε ε
⎛ ⎞ ⎛ ⎞
⋅ ⋅ =⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

s sT

s s

R R
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An-isotropy 
in stress 

An-isotropy (Stress) 

( )maxβ
ε
∂ = −

∂ sD D
D

ss s
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Stiffness/structure tensor 

vertical 

horizontal 

shear 

Different moduli: 
•  against shear C2 

•  perpendicular C1 

•  one shear modulus 

An-isotropy (Stress & Structure) 

( )maxβ
ε
∂ = −

∂ sD D
D

ss s

( )maxF
D

A A Aβ
ε
∂ = −

∂



69	


An-isotropy (Stress & Structure) 

( )maxβ
ε
∂ = −

∂ sD D
D

ss s

( )maxF
D

A A Aβ
ε
∂ = −

∂

Friction 

Modulus 

Isotropic stress 

Deviatoric stress 

Anisotropy 

 

abbrev. stress-isotropy 

 

Isotropic|deviatoric strain increment 

 

B … Bulk-, G … Shear-, A … Anisotropy-Modulus 

Constitutive model – isobaric (mode 4) 
 scalar! (in the biaxial box eigen-system) 

0 = 2B!V + ASd"

!" = !# D = A$V + 2GSd%

!A = "A Amax ! A( ) d#
S =1!! D

! D
max =1!

sD
sD
max

!V | d"
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Constitutive model – scalar 
  (in the biaxial box eigen-system) 

!A = "A Amax ! A( ) d#

!A

Constitutive model – scalar 
  (in the biaxial box eigen-system) 

!A

Dε
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Constitutive model – scalar 
  (in the biaxial box eigen-system) 

Dε

!A

Constitutive model – cyclic loading 
  (in the biaxial box eigen-system) 

400Aβ =2000Aβ =
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V V DAEδσ ε ε= +

Constitutive model – scalar: dilatancy 
  (in the biaxial box eigen-system) 

D V DBAδσ ε ε= +

( )max
AA A A dδ β γ= −

2000Aβ =

Dε

V V DAEδσ ε ε= +

Constitutive model – scalar: contractancy 
  (in the biaxial box eigen-system) 

D V DBAδσ ε ε= +

( )max
AA A A dδ β γ= −

400Aβ =

Dε
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V V DAEδσ ε ε= +

Constitutive model – anisotropy rate 
  (in the biaxial box eigen-system) 

D V DBAδσ ε ε= +

( )max
AA A A dδ β γ= −

Constitutive model – scalar 
  (in the biaxial box eigen-system) 

 
Bulk modulus B: 
compression leads to pressure 
 
Shear modulus G: 
shear strain leads to shear stress 
 
Anisotropy: 
shear strain leads to pressure 
compression leads to shear-stress 
 
Cross-coupling of isotropic and deviatoric parts 
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Constitutive model – scalar 
  (in the biaxial box eigen-system) 

 
Anisotropy: 
 
Strain-controlled: 
shear strain leads to pressure 
compression leads to shear-stress 
 
Stress-controlled: 
shear stress leads to dilatancy/compactancy 
compression leads to shear-deformation 
 

+ successful tool – few parameters 

- microscopic foundations ? 

- extensions & parameter identification 

Continuum Theory 

deformation  -  rotations 

0.5

0.6

0.7

0.8

0.9

1.0

-0.1 0 0.1
0.5

0.6

0.7

0.8

0.9

1.0

u/h

e

cyclic deformations - creep 

Hypoplastic FEM model 



75	


Ring geometry 

Ring shear cell experiment 
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2D shear cell – force chains 
= inhomogeneity  
+ anisotropy 

2D shear cell – energy  
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Ring geometry 

Ring geometry 
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2D shear cell: 
- shear localization 
- non-Newtonian 

Ring geometry 
2D 
 
 
 
 
 
 
 
 
 
     shear velocity 
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Averaging Formalism 

Any quantity: 
 
 
- Scalar 
- Vector 
- Tensor 

1p p p p
V

p V
Q Q w V Q

V ∈

= = ∑

p c

c
Q Q=∑

Averaging Formalism 

Any quantity: 
 
 
In averaging volume:  

1p p p p
V

p V
Q Q w V Q

V ∈

= = ∑

pQ
V

V
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Averaging Density 
1 p p

V
p V

Q w V
V

ν
∈

= = ∑

V
1pQ =

Any quantity: 
 
 
- Scalar: Density/volume fraction 

Density profile 

Global volume fraction 
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Any quantity: 
 
 
- Scalar 
- Vector – velocity density 

Averaging Velocity 
1 p p

V
p V

pQ w V
V

ν
∈

= = ∑r r
v v

V
ppQ = rv

prv

Velocity field -> velocity gradient 

exponential 
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Velocity field -> velocity gradient 

Velocity distribution 
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Averaging Stress 

Any quantity: 
 
 
- Scalar 
- Vector 
- Tensor: Stress 

1pp pc c
p

c
Q

V
= = ∑σ l f

1 p pc c
V

p V c
Q w

V ∈

= = ∑∑σ l f

p

V

cf

Stress tensor (static) 

shear stress 
 

2r−∝

à 



84	


Stress tensor (dynamic) 
à 

exponential 

Stress equilibrium (1) 
( )1 ( ) 1 rrr

r r

rr
e er r r r

φ
φφφ φ

σσσ σ σ
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

∂∂⇒∇⋅ = − + +
∂ ∂

r r

( )( ) und rrr
r

rr
r r

φ
φφ φ

σσ σ σ
∂∂⇒ = = −

∂ ∂0 2( und )rr r rr rφφ φ φσ σ σ σ −∝ ∝ ∝ ∝

( )d
dt ta v v v v∂

∂= = + ⋅∇
rr r r r r

20 ( )rr
rra v r

rφ φφ
σρ σ ρ σ σ∂=∇⋅ ⇒ = + + − ,
∂

rr

0 ( )r
r rr

r
φ

φ φ

σ
σ σ

∂
= + + ,

∂

acceleration: 
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Stress equilibrium (2) 
20 ( )rr

rra v r
rφ φφ
σρ σ ρ σ σ∂=∇⋅ ⇒ = + + − ,
∂

rr 0 ( )r
r rr

r
φ

φ φ

σ
σ σ

∂
= + + ,

∂

? 
? 

Any quantity: 
 
 
- Scalar: contacts 
- Vector: normal 
- Contact distribution 

pp pc pc

c
Q = =∑F n n

1 p p pc pc
V

p V c
Q w V

V ∈

= = ∑ ∑F n n

p

V

c

Averaging Fabric (Structure&Force-chains) 
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Fabric tensor 
contact probability … 

 

center wall 

Fabric tensor (trace) 

contact number density 



87	


Fabric tensor (deviator) 

an-isotropy (!) 

Averaging Deformations 

Deformation: 
 
 
- Scalar 
- Vector 
- Tensor: Deformation 

1p pc c
V

p V c

hQ w
V
π −

∈

⎛ ⎞
= = ⋅⎜ ⎟

⎝ ⎠
∑ ∑ Fl Δε

p

V

c
Δ

( )2
minimal !c pcS ε= − ⋅ lΔ
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Macro (contact density) 

Macro (bulk modulus) tr
tr

E
σ
ε

=
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Macro (shear modulus) dev
dev

G
σ
ε

=

Anisotropy – not co-linear! 
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Averaging Rotations 

Deformation: 
 
 
- Scalar 
- Vector: Spin density 
- Tensor 

p

V

c
p pQ ω=

1 p p p
V

p V c
Q w V

V
νω ω

∈

= = ∑∑

pω

Rotations – spin density 
*

rW φω ω= −eigen-rotation: 
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Spin distribution 

Macro (torque stiffness) 2 M
lµ

κ
=

2lµ



92	


does global averaging make sense? 
 
micro-macro for various deformation modes 

 - visco-elasticity   
 - yield stress 
 - anisotropy 

But: inhomogeneity is ignored 
 
Advantages of local ring-averaging: 

 - shearband position known! 
 - long time-averaging -> slow 

  - space-averaging -> small 

Split-bottom ring-shear cell (Leiden, 2003- …) 
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Constitutive relations – shear rate  

no friction                                       

γ

Constitutive relations – shear rate  

no friction                              friction 

γ
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Constitutive relations – shear rate  γ

90% quantitative agreement with experiments … 

Constitutive relations: Mohr-Coulomb 

no friction                              friction 

µm=0.15 µm=0.32 

µ=0 µ=0.4 
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Constitutive relations: Mohr-Coulomb 

no friction/cohesion                   cohesion 

Obtain constitutive relations from  
 one SINGLE simulation: 

-  Mohr Coulomb yield stress 
-  shear softening viscosity 
-  compression/dilatancy …  
-  inhomogeneity (force-chains) 
-  (almost always) an-isotropy 
-  micro-polar effects (rotations) … 

3D Flow behavior – steady state shear 
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Goal (see also www.pardem.eu) 

DEM particle (element-test) simulations  
 with quantitative, predictive value 

 
+ contact models (which? how detailed?) 
+ micro-macro transition (LOCAL!!!) 
Verification <-> Validation -> Experiments 
 
=> Larger scale … models … continuum … 

Application 
From Lab- and industrial scales …  

The End 


