Cornstarch and other suspensions from a different perspective

Physios of: Hluids

Devaraj van der Meer Stefan von Kann Ceyda Sanli Jacco Snoeijer Detlef Lohse

Physics of Fluids - University of Twente - The Netherlands

Suspensions:
 A rheologist's view versus ?

What if we took the same materials for a completely different experiment?
typical rheological experiment:
well defined geometry, with optimally controlled $\gamma, \sigma_{\mathrm{t}}, \sigma_{\mathrm{n}}$

Cornstarch

"shear thickening suspension"

First experiment

high speed camera

Shaken cornstarch 1

jumping liquid

40 Hz 30 g

Shaken cornstarch 2

stable holes

Shaken cornstarch 3

fingers

Other suspensions

cornstarch

cornstarch
quartz flour

glitter platelets

monodisp. silica

Shaken suspensions

Second experiment

$x(t)$
(depth sphere inside suspension)

Control parameters:
packing fraction φ

- object mass

Increasing packing fraction φ

Increasing sphere mass μ $\varphi=0.44$

Equation of motion

$$
m \ddot{x}=\mu g+D
$$

Added mass corrected mass:

$$
m=m_{\text {sphere }}+m_{\text {added }}=m_{\text {sphere }}+\frac{1}{12} \pi d^{3} \rho_{\text {susp }}
$$

Buoyancy corrected mass:

$$
\mu=m_{\text {sphere }}-m_{\text {buoy }}=m_{\text {sphere }}-\frac{1}{6} \pi d^{3} \rho_{\text {susp }}
$$

use this equation to calculate drag \boldsymbol{D} vs velocity $\dot{\boldsymbol{x}}$

Drag \boldsymbol{D} vs velocity $\dot{\boldsymbol{x}}$

Bulk oscillations

What type of model could describe the bulk oscillations?

Shear thickening or other stress-strain rheology?
No. Leads to monotonic D vs \dot{x}-curve

Visco-elastic liquid models?
No. Leads to damped oscillations
Hysteretic drag model? [R.D. Deegan, Phys. Rev. E 81, 036319 (2010).]
Works reasonably well

Modeling bulk oscillations

Hysteretic drag model

Inspired by:
R.D. Deegan,

Phys. Rev. E 81, 036319 (2010).

$$
m \ddot{x}=\mu g+D
$$

with:

$$
D=\left\{\begin{array}{c}
-B_{1} \dot{x} \\
\text { when } \dot{x} \text { falls below } u_{1} \\
-B_{2} \dot{x} \\
\text { when } \dot{x} \text { rises above } u_{2}
\end{array}\right.
$$

Results for fixed B_{1}, B_{2}

Drawback: u_{1}, u_{2} need to be redefined for each μ

Velocities u_{1}, u_{2} vs mass μ

Stop-go cycles at the bottom

Fast deceleration points to jamming:

- $\dot{x}>0$, liquid squeezed out
- φ increases
- jamming by compaction, $\varphi=\varphi_{\mathrm{cr}}, \dot{x}=0$
- particles rearrange on fluid time scale
- φ decreases, relaxation, $\dot{x}>0$

A minimal model

$$
\left\{\begin{array}{cl}
m \ddot{x}=\mu g+D & \text { when } \phi<\phi_{c r} \\
\dot{x}=0 & \text { when } \phi \geq \phi_{c r}
\end{array}\right.
$$

$$
\dot{\phi}=-c \frac{\dot{x}}{x}-\kappa\left(\phi-\phi_{e q}\right)
$$

increases ϕ decreases ϕ due to compression due to relaxation
($-\dot{x} / x=$ compression rate)

Comparing to experiment

Comparing to experiment

Floating particles on Faraday waves

Floating particles on Faraday waves

Control Parameters:

- D = floater size
- θ = wetting angle
- $\mathrm{a}=$ amplitude
- $\mathrm{f}=$ frequency
- $\phi=$ concentration

$$
\phi=\text { Area floater } \text { Area total }
$$

low ϕ
$f=19 \mathrm{~Hz}$
$a=2 \mathrm{~mm}$
high ϕ
$f=20 \mathrm{~Hz}$
$a=2.2 \mathrm{~mm}$

adding more
floaters
node
clusters

low ϕ : antinode clusters

high ϕ : node clusters
-What is the physical origin of the clustering?

- What happens at intermediate ϕ ?

Structures at intermediate ϕ

Competition between forces

capillarity
 (weak)

$+$

drift force

(strong)

$F \sim 1.2 \mathrm{nN}$ at $\mathrm{L} \sim \mathrm{D}$ (exeeriment)

* G. Falkovich et al. Nature 435, 1045 (2005).

Experimental analysis: Characterizing the antinode node cluster transition

Global characterization: Correlation number c

$$
c=\frac{\left\langle\phi(\mathbf{r}, t) a(\mathbf{r})>_{\mathbf{r}, t}\right.}{\left\langle\phi(\mathbf{r}, t)>_{\mathbf{r}, t}\right.}
$$

Local characterization:
 Pair correlation function $g(r)$

Global vs local characterization

What is the origin of the antinodenode cluster transition?

nodal lines

Competition between capillary and drift energy

- antinode: $U_{\text {drift }}$ favorable, $U_{\text {cap }}$ unfavorable
- node: $U_{\text {drift }}$ unfavorable, $U_{\text {cap }}$ favorable

Competition between capillary and drift energy

- antinode: $U_{\text {drift }}$ favorable, $U_{\text {cap }}$ unfavorable
- node: $U_{\text {drift }}$ unfavorable, $U_{\text {cap }}$ favorable

