

Cornstarch and other suspensions from a different perspective

Devaraj van der Meer Stefan von Kann Ceyda Sanli Jacco Snoeijer Detlef Lohse

Physics of Fluids – University of Twente – The Netherlands

Suspensions: A rheologist's view versus ?

What if we took the same materials for a completely different experiment?

typical rheological experiment: well defined geometry, with optimally controlled γ , σ_t , σ_n

Cornstarch

diameter: 5-20 μ m, flat distribution of sizes (numbers) Irregular shapes $\rho = 1.5 \text{ g/cm}^3$

"shear thickening suspension"

Shaken cornstarch 1

jumping liquid

40 Hz 30 *g*

Shaken cornstarch 2

stable holes

80 Hz 20 *g*

Shaken cornstarch 3

fingers

80 Hz 30 *g*

Other suspensions

cornstarch

quartz flour

glitter platelets

Shaken suspensions

Increasing packing fraction φ

Increasing sphere mass μ $\varphi = 0.44$

Equation of motion

$$m\ddot{x} = \mu g + D$$

Added mass corrected mass:

$$m = m_{sphere} + m_{added} = m_{sphere} + \frac{1}{12}\pi d^3 \rho_{susp}$$

Buoyancy corrected mass:

$$\mu = m_{sphere} - m_{buoy} = m_{sphere} - \frac{1}{6}\pi d^3 \rho_{susp}$$

use this equation to calculate drag D vs velocity \dot{x}

Drag D vs velocity \dot{x}

Bulk oscillations

What type of model could describe the bulk oscillations?

Shear thickening or other stress-strain rheology? No. Leads to monotonic D vs \dot{x} -curve

Visco-elastic liquid models?

No. Leads to damped oscillations

Hysteretic drag model? [R.D. Deegan, Phys. Rev. E 81, 036319 (2010).] Works reasonably well

Modeling bulk oscillations

Hysteretic drag model

Inspired by: R.D. Deegan, *Phys. Rev. E* 81, 036319 (2010).

$$m\ddot{x} = \mu g + D$$

with:

$$D = \begin{cases} -B_1 \dot{x} \\ \text{when } \dot{x} \text{ falls below } u_1 \\ -B_2 \dot{x} \\ \text{when } \dot{x} \text{ rises above } u_2 \end{cases}$$

Results for fixed *B*₁, *B*₂

Drawback: u_1 , u_2 need to be redefined for each μ

Velocities u_1 , u_2 vs mass μ

Stop-go cycles at the bottom

A minimal model

$$\begin{cases} m\ddot{x} = \mu g + D \\ \dot{x} = 0 \end{cases}$$

when $\phi < \phi_{cr}$ when $\phi \ge \phi_{cr}$

$$\dot{\phi} = -c\frac{\dot{x}}{x} - \kappa(\phi - \phi_{eq})$$

increases ϕ decreases ϕ due to compression due to relaxation $(-\dot{x}/x = \text{compression rate})$

Comparing to experiment

Comparing to experiment

Floating particles on Faraday waves

Floating particles on Faraday waves

Control Parameters:

- D = floater size
- θ = wetting angle
- a = amplitude
- f = frequency
- ϕ = concentration

$$igoplus$$
 = Area _{floater} / Area _{total}

5 mm

f = 19 Hz *a* = 2 mm

antinode clusters

node clusters

f = 20 Hz *a* = 2.2 mm

low ϕ : antinode clusters

high ϕ : node clusters

- What is the physical origin of the clustering?
- What happens at intermediate ϕ ?

Structures at intermediate ϕ

Competition between forces

capillarity

(weak)

F ~ 1.2 nN at L~D (experiment)

drift force (strong)

* G. Falkovich et al. Nature 435, 1045 (2005).

Experimental analysis: Characterizing the antinode – node cluster transition

Global vs local characterization

What is the origin of the antinodenode cluster transition?

add particles: ▶at antinode ▶at node energy: (capillary & drift) $U_{\text{cap,anti}} = U_{\text{cap,node}}$ *U*drift,anti < *U*drift,node

wave pattern add particles: •at antinode •at node

add breathing:

Competition between capillary and drift energy

antinode: U_{drift} favorable, U_{cap} unfavorable
node: U_{drift} unfavorable, U_{cap} favorable

Competition between capillary and drift energy

antinode: U_{drift} favorable, U_{cap} unfavorable
node: U_{drift} unfavorable, U_{cap} favorable

