Shocks in fragile matter

Vincenzo Vitelli

Instituut-Lorentz for Theoretical Physics (Leiden)

Collaborators: L. Gomez, S. Ulrich, B. van Opheusden, A.Turner, N. Upadhyaya, M. van Hecke, R. van Loo, S.van den Wildenberg

Shocks in fragile matter

Vincenzo Vitelli

Instituut-Lorentz for Theoretical Physics (Leiden)

Collaborators: L. Gomez, A.Turner, B. van Opheusden, S. Ulrich, N. Upadhyaya, M. van Hecke, R. van Loo, S.van den Wildenberg

Fragile Matter

Glasses

Polymer

Granular media

What is the origin of fragility ?

Sound speed 6000 m/s

The geometry of fragile objects

Sound speed $6000 \mathrm{~m} / \mathrm{s}$

Sound speed ≈ 0

Piston pushing at a constant speed

Gomez et al. PRL 2012
INSTITUUT

Piston pushing at a constant speed

¿ $v_{S}\left(u_{p}\right)$?

Standard solid state approach

$$
H=\text { harmonic }+ \text { anharmonic }
$$

Phonons: excitations of rigid matter

Strong non-linearities

$$
H=\text { hatmonic }+ \text { anharmonic }
$$

Shocks: "excitations" of fragile matter

Strong non-linearities

$$
H=\text { harmonic }+ \text { anharmonic }
$$

Shocks: "excitations" of fragile matter

Contact Mechanics: Hertz law

typical strain	$\gamma \sim \frac{\delta}{\sqrt{\delta R}} \sim \delta^{\frac{1}{2}}$
typical stress	$\sigma \sim \gamma \sim \delta^{\frac{1}{2}}$
Force	$F \sim \sigma \delta \sim \delta^{\frac{3}{2}}$
Energy	$U \sim k \delta^{\frac{5}{2}}$

The material the grain is made of satisfies linear elasticity

Speed of sound: granular chain

$$
U \sim k x^{\frac{5}{2}}
$$

$$
k_{e f f}=\left.\frac{d^{2} U}{d x^{2}}\right|_{x=\delta_{0}}
$$

$$
c \sim \sqrt{k} \delta_{0}^{\frac{1}{4}}
$$

$$
\sqrt{k_{e f f}} \sim \delta_{0}^{\frac{5}{2-2}}
$$

Solitons in the "sonic vacuum"

(Daraio Lab)

V. Nesterenko, J. Appl.
Mech. Tech. Phys. $\mathbf{5}, 733$
(1983).

$$
U \sim k x^{\frac{5}{2}}
$$

$$
c \sim \sqrt{k} \delta_{0}^{\frac{1}{4}}
$$

$$
\delta_{0} \rightarrow 0
$$

$$
\downarrow
$$

$$
c \rightarrow 0
$$

Sound speed vanishes

Stable fronts: one dimensional model

Gomez et al. PRL 2012

An equation of motion for shocks

$$
\begin{gathered}
\frac{R^{2}}{3} \delta_{t t x x}-\delta_{t t}+\frac{4 R^{2} \varepsilon}{m}\left[\delta^{\alpha-1}\right]_{x x}=0 . \quad \alpha=\frac{5}{2} \\
\delta(x, t)=\delta_{0}+g(\tilde{x}), \quad \tilde{x} \equiv x-v_{S} t
\end{gathered}
$$

$$
\frac{1}{2} \delta_{\tilde{x}}^{2}+W(\delta)=0
$$

Non-linear waves and shocks

$$
c \sim \sqrt{k} \delta_{0}^{\frac{1}{4}}
$$

$v_{s} \sim \delta^{\frac{1}{4}}$
$M u_{p}^{2} \sim \delta^{\frac{5}{2}}$
$v_{s} \sim u^{\frac{1}{\overline{5}}}$

Gomez et al. PRL 2012

Collapse on single master curve

Comparison to simulations

compressed uncompressed
Gomez et al.PRL 2012

Preliminary experimental results

Dashed line has the predicted slope

Dynamic crossover

Gomez, Turner, Vitelli, unpublished.

Global non linearities: shear shocks in networks

S. Ulrich, N. Upadhyaya, B. van Opheusden, V.Vitelli, unpublished

Global non linearities: shear shocks in networks

$G \sim \delta z$

$$
\frac{\partial \sigma}{\partial x}=\rho_{0} \frac{\partial^{2} y}{\partial t^{2}}
$$

Global non linearities: shear shocks in networks

$$
\begin{aligned}
& G \sim \delta z \\
& \eta \approx \frac{\eta_{0}}{\delta z}
\end{aligned}
$$

$$
\sigma \sim G \gamma+k \gamma|\gamma|+\eta \frac{d \gamma}{d t}
$$

Wyart et al. PRL 2009
Tighe et al. PRL 2009

Velocity of Shear Front

Linear regime vanishes when $\Delta z \rightarrow 0$

Conclusion

At the critical point sound propagates by shocks only
Away from the critical point the same shocks control energy transport for large dynamical strains

Disorder acts as an effective viscosity

$$
\begin{gathered}
\frac{R^{2}}{3} \delta_{t t x x}-\delta_{t t}+\frac{4 R^{2} \varepsilon}{m}\left[\delta^{\alpha-1}\right]_{x x}=0 . \quad \alpha=\frac{5}{2} \\
\delta(x, t)=\delta_{0}+g(\tilde{x}), \quad \tilde{x} \equiv x-v_{S} t \\
\frac{1}{2} \delta_{\tilde{x}}^{2}+W(\delta)=0
\end{gathered}
$$

Gomez et al. PRL 2012

Non-linear wave equation for ID front

$$
L=\sum_{n} \frac{1}{2} \dot{u}_{n}^{2}-\frac{1}{\alpha}\left(u_{n}-u_{n+1}\right)^{\alpha} \quad \quad \text { Lagrangian }
$$

$$
u_{n+1}-u_{n}=\phi^{\prime}\left(n+\frac{1}{2}\right)
$$

Taylor expand LHS

Non-linear wave equation for ID front

$$
\begin{gathered}
L=\sum_{n} \frac{1}{2} \dot{u}_{n}^{2}-\frac{1}{\alpha}\left(u_{n}-u_{n+1}\right)^{\alpha} \quad \text { Lagrangian } \\
u_{n+1}-u_{n}=\phi^{\prime}\left(n+\frac{1}{2}\right) \quad u_{n}-u_{n+1}=-\phi^{\prime}(n)-\frac{1}{2} \phi^{\prime \prime}(n)-\ldots
\end{gathered}
$$

Non-linear wave equation for ID front

$$
\begin{gathered}
L=\sum_{n} \frac{1}{2} \dot{u}_{n}^{2}-\frac{1}{\alpha}\left(u_{n}-u_{n+1}\right)^{\alpha} \\
u_{n+1}-u_{n}=\phi^{\prime}\left(n+\frac{1}{2}\right) \\
u^{\prime}\left(n+\frac{1}{2}\right)+\frac{1}{24} u^{\prime \prime \prime}\left(n+\frac{1}{2}\right)=\phi^{\prime}\left(n+\frac{1}{2}\right) \quad \text { Taylor expand LHS }
\end{gathered}
$$

Non-linear wave equation for ID front

$$
\begin{gathered}
L=\sum_{n} \frac{1}{2} \dot{u}_{n}^{2}-\frac{1}{\alpha}\left(u_{n}-u_{n+1}\right)^{\alpha} \quad \text { Laylor expand LHS } \\
u_{n+1}-u_{n}=\phi^{\prime}\left(n+\frac{1}{2}\right) \\
u^{\prime}\left(n+\frac{1}{2}\right)+\frac{1}{24} u^{\prime \prime \prime}\left(n+\frac{1}{2}\right)=\phi^{\prime}\left(n+\frac{1}{2}\right) \quad \text { Invert it } \\
u\left(n+\frac{1}{2}\right) \approx \phi\left(n+\frac{1}{2}\right)-\frac{1}{24} \phi^{\prime \prime}\left(n+\frac{1}{2}\right) \quad \text { rewrite the kinetic term in L }
\end{gathered}
$$

Non-linear wave equation for ID front

$$
\begin{gathered}
L=\sum_{n} \frac{1}{2} \dot{u}_{n}^{2}-\frac{1}{\alpha}\left(u_{n}-u_{n+1}\right)^{\alpha} \quad \text { Lagrangian } \\
u_{n+1}-u_{n}=\phi^{\prime}\left(n+\frac{1}{2}\right) \quad \text { Taylor expand LHS } \\
u^{\prime}\left(n+\frac{1}{2}\right)+\frac{1}{24} u^{\prime \prime \prime}\left(n+\frac{1}{2}\right)=\phi^{\prime}\left(n+\frac{1}{2}\right) \quad \text { Invert it } \\
u\left(n+\frac{1}{2}\right) \approx \phi\left(n+\frac{1}{2}\right)-\frac{1}{24} \phi^{\prime \prime}\left(n+\frac{1}{2}\right) \quad \text { rewrite the kinetic term in } \mathrm{L} \\
\frac{1}{2} \dot{u}_{n}^{2} \approx \frac{1}{2} \dot{\phi}(n)^{2}-\frac{1}{24} \dot{\phi}(n) \dot{\phi}^{\prime \prime}(n) \quad \text { substitute in Lagrangian }
\end{gathered}
$$

Non-linear wave equation for ID front

$$
\begin{gathered}
L \approx \int\left(\frac{1}{2} \dot{\phi}^{2}+\frac{1}{24}\left(\dot{\phi}^{\prime}\right)^{2}-\frac{1}{\alpha}\left(-\phi^{\prime}\right)^{\alpha}\right) d x \quad \text { Lagrangian } \\
u_{n+1}-u_{n}=\phi^{\prime}\left(n+\frac{1}{2}\right) \quad \text { Taylor expand LHS } \\
u^{\prime}\left(n+\frac{1}{2}\right)+\frac{1}{24} u^{\prime \prime \prime}\left(n+\frac{1}{2}\right)=\phi^{\prime}\left(n+\frac{1}{2}\right) \quad \text { Invert it } \\
u\left(n+\frac{1}{2}\right) \approx \phi\left(n+\frac{1}{2}\right)-\frac{1}{24} \phi^{\prime \prime}\left(n+\frac{1}{2}\right) \quad \text { rewrite the kinetic term in } \mathrm{L} \\
\frac{1}{2} \dot{u}_{n}^{2} \approx \frac{1}{2} \dot{\phi}(n)^{2}-\frac{1}{24} \dot{\phi}(n) \dot{\phi}^{\prime \prime}(n) \quad \text { substitute in Lagrangian }
\end{gathered}
$$

