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I. THE PHYSICS AND GEOMETRY OF FRAGILE MATTER

In ordinary solids, shocks and cracks are extreme mechanical phenomena: they occur when
rigid materials are torn apart or subjected to violent impacts [1]. But in soft materials things are
different. Granular media, foams and polymer networks (Fig. 1a-c) can be prepared in a state of
vanishing rigidity in which even the tiniest perturbation elicits an extreme mechanical response.
When that happens these materials are not just soft, they have become fragile.

More things are fragile than one would guess. Steel is neither soft nor fragile. Yet, when
many steel balls are loosely packed together, fragility emerges as a collective property. The elastic
modulus and sound speed of such an aggregate (Fig. 1a) can be close to zero [2, 3], even if sound
propagates with a speed larger than 6000 m/s in each ball. In this case, the deformation of elastic
spheres in contact generates a non-linear interaction law [4]. This mechanism leads to a state of
vanishing rigidity, called sonic vacuum, when the balls barely touch [5–7].

Network glasses such as chalcogenides are made of covalent bonds (see Fig. 1d). Yet, they can
still be fragile if the average valence falls below a certain threshold [8–11]. In this case, the energy
cost of microscopically deforming a bond is harmonic: the origin of fragility cannot be traced to
non-linear interatomic forces. This global sonic vacuum state is generated by the weak connectivity
of the network, independently of the strength of the individual bonds.

It is geometry and topology that makes matter fragile.

While ubiquitous, fragility is poorly understood. A sonic vacuum state cannot be described
by linear physics, because there are no linear restoring forces. In recent years, a large effort
to understand the implications of fragility (for soft and glassy materials) has been undertaken.
Typically, one attempts to circumvent the problem of vanishingly linear response by focusing on
systems just above the threshold of vanishing rigidity [2, 12, 13]. This yields a narrow window of
linear response characterized by familiar excitations like phonons [14–20]. But this window shrinks
to zero as these solids become fragile [21].

I propose to take the opposite route focussing on the strongly non-linear, even extreme, mechan-
ical phenomena that characterize fragile matter. Very recently, my group has successfully combined
non-perturbative analytical solutions and simulations to probe non-linear sound in loosely packed
grains [22]. We discovered that not only do phonons have zero speed, there is actually a whole new
class of strongly non-linear shock waves that replace phonons in fragile matter.

I believe that unveiling the full range of ramifications that fragility bears over such a vast class
of materials is an exciting prospect. I will unravel the extreme mechanics of fragile matter, from
shocks in grains to low temperature properties of weakly connected network glasses, in a theoretical
and computational research program based on three projects for which I request two PhD and one
postdoctoral positions.
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Figure 1: (a) Schematic of the experimental set-up. The ”X” marks the diaphragm that is
ruptured to initiate air flow and crack propagation. (b) An example of ductile crack propagation
(right to left), with no films rupturing. Time increases from top to bottom. Broken arrows point
to one example of a T1 transition (see Fig. 2) (c) An example of brittle crack propagation (right
to left) as a succession of film rupture events (see also Fig. 2). Time increases from top to
bottom. Arrows point to the current position of the crack tip.

2.2 Liquid fraction: dry foam and drainage

We can further control the liquid fraction in the foam by changing the liquid flow through

the rewetting chamber and the chamber’s vertical distance to the main channel (foam

drainage [23–25] occurs over this distance). It is important that the foam is dry enough

(liquid fraction ε <∼ 0.01) that the geometry of the foam (see below) is well described by

bubbles that are polyhedral prisms. In order to enhance foam stability, we operate at

ε = 0.01 ± 0.001, as established by two independent methods: (i) an analysis of back-

lit images of the bubbles (cf. also [26]), and (ii) direct weighing of the foam transported

through the Hele-Shaw cell and exiting at the other end. The viscosity of the foaming

liquid is µ = 1.0 × 10
−3

Pa s, and the surface tension was measured by the pendant-drop

method as γ = 0.025kg/s2. Note that the concentration of surfactant used was confirmed

to be well above the critical micelle concentration (cmc) [22, 27].

The rate of foam production translates to an average velocity of 4-5 m/h. Thus, the

foam at the feeder-channel end of the main channel is about 15mins ”younger” than that

at the opposite end. This is potentially important because of film drainage and aging of

the foam (see below).
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FIG. 1: (a) Amorphous packing of steel balls. (b) Foam. (c) Biopolymer network. (d) Network glass.
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I. THE PHYSICS AND GEOMETRY OF FRAGILE MATTER

In ordinary solids, shocks and cracks are extreme mechanical phenomena: they occur when
rigid materials are torn apart or subjected to violent impacts [1]. But in soft materials things are
different. Granular media, foams and polymer networks (Fig. 1a-c) can be prepared in a state of
vanishing rigidity in which even the tiniest perturbation elicits an extreme mechanical response.
When that happens these materials are not just soft, they have become fragile.

More things are fragile than one would guess. Steel is neither soft nor fragile. Yet, when
many steel balls are loosely packed together, fragility emerges as a collective property. The elastic
modulus and sound speed of such an aggregate (Fig. 1a) can be close to zero [2, 3], even if sound
propagates with a speed larger than 6000 m/s in each ball. In this case, the deformation of elastic
spheres in contact generates a non-linear interaction law [4]. This mechanism leads to a state of
vanishing rigidity, called sonic vacuum, when the balls barely touch [5–7].

Network glasses such as chalcogenides are made of covalent bonds (see Fig. 1d). Yet, they can
still be fragile if the average valence falls below a certain threshold [8–11]. In this case, the energy
cost of microscopically deforming a bond is harmonic: the origin of fragility cannot be traced to
non-linear interatomic forces. This global sonic vacuum state is generated by the weak connectivity
of the network, independently of the strength of the individual bonds.

It is geometry and topology that makes matter fragile.

While ubiquitous, fragility is poorly understood. A sonic vacuum state cannot be described
by linear physics, because there are no linear restoring forces. In recent years, a large effort
to understand the implications of fragility (for soft and glassy materials) has been undertaken.
Typically, one attempts to circumvent the problem of vanishingly linear response by focusing on
systems just above the threshold of vanishing rigidity [2, 12, 13]. This yields a narrow window of
linear response characterized by familiar excitations like phonons [14–20]. But this window shrinks
to zero as these solids become fragile [21].

I propose to take the opposite route focussing on the strongly non-linear, even extreme, mechan-
ical phenomena that characterize fragile matter. Very recently, my group has successfully combined
non-perturbative analytical solutions and simulations to probe non-linear sound in loosely packed
grains [22]. We discovered that not only do phonons have zero speed, there is actually a whole new
class of strongly non-linear shock waves that replace phonons in fragile matter.

I believe that unveiling the full range of ramifications that fragility bears over such a vast class
of materials is an exciting prospect. I will unravel the extreme mechanics of fragile matter, from
shocks in grains to low temperature properties of weakly connected network glasses, in a theoretical
and computational research program based on three projects for which I request two PhD and one
postdoctoral positions.
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Figure 1: (a) Schematic of the experimental set-up. The ”X” marks the diaphragm that is
ruptured to initiate air flow and crack propagation. (b) An example of ductile crack propagation
(right to left), with no films rupturing. Time increases from top to bottom. Broken arrows point
to one example of a T1 transition (see Fig. 2) (c) An example of brittle crack propagation (right
to left) as a succession of film rupture events (see also Fig. 2). Time increases from top to
bottom. Arrows point to the current position of the crack tip.

2.2 Liquid fraction: dry foam and drainage

We can further control the liquid fraction in the foam by changing the liquid flow through

the rewetting chamber and the chamber’s vertical distance to the main channel (foam

drainage [23–25] occurs over this distance). It is important that the foam is dry enough

(liquid fraction ε <∼ 0.01) that the geometry of the foam (see below) is well described by

bubbles that are polyhedral prisms. In order to enhance foam stability, we operate at

ε = 0.01 ± 0.001, as established by two independent methods: (i) an analysis of back-

lit images of the bubbles (cf. also [26]), and (ii) direct weighing of the foam transported

through the Hele-Shaw cell and exiting at the other end. The viscosity of the foaming

liquid is µ = 1.0 × 10
−3

Pa s, and the surface tension was measured by the pendant-drop

method as γ = 0.025kg/s2. Note that the concentration of surfactant used was confirmed

to be well above the critical micelle concentration (cmc) [22, 27].

The rate of foam production translates to an average velocity of 4-5 m/h. Thus, the

foam at the feeder-channel end of the main channel is about 15mins ”younger” than that

at the opposite end. This is potentially important because of film drainage and aging of

the foam (see below).
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FIG. 1: (a) Amorphous packing of steel balls. (b) Foam. (c) Biopolymer network. (d) Network glass.
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I. THE PHYSICS AND GEOMETRY OF FRAGILE MATTER

In ordinary solids, shocks and cracks are extreme mechanical phenomena: they occur when
rigid materials are torn apart or subjected to violent impacts [1]. But in soft materials things are
different. Granular media, foams and polymer networks (Fig. 1a-c) can be prepared in a state of
vanishing rigidity in which even the tiniest perturbation elicits an extreme mechanical response.
When that happens these materials are not just soft, they have become fragile.

More things are fragile than one would guess. Steel is neither soft nor fragile. Yet, when
many steel balls are loosely packed together, fragility emerges as a collective property. The elastic
modulus and sound speed of such an aggregate (Fig. 1a) can be close to zero [2, 3], even if sound
propagates with a speed larger than 6000 m/s in each ball. In this case, the deformation of elastic
spheres in contact generates a non-linear interaction law [4]. This mechanism leads to a state of
vanishing rigidity, called sonic vacuum, when the balls barely touch [5–7].

Network glasses such as chalcogenides are made of covalent bonds (see Fig. 1d). Yet, they can
still be fragile if the average valence falls below a certain threshold [8–11]. In this case, the energy
cost of microscopically deforming a bond is harmonic: the origin of fragility cannot be traced to
non-linear interatomic forces. This global sonic vacuum state is generated by the weak connectivity
of the network, independently of the strength of the individual bonds.

It is geometry and topology that makes matter fragile.

While ubiquitous, fragility is poorly understood. A sonic vacuum state cannot be described
by linear physics, because there are no linear restoring forces. In recent years, a large effort
to understand the implications of fragility (for soft and glassy materials) has been undertaken.
Typically, one attempts to circumvent the problem of vanishingly linear response by focusing on
systems just above the threshold of vanishing rigidity [2, 12, 13]. This yields a narrow window of
linear response characterized by familiar excitations like phonons [14–20]. But this window shrinks
to zero as these solids become fragile [21].

I propose to take the opposite route focussing on the strongly non-linear, even extreme, mechan-
ical phenomena that characterize fragile matter. Very recently, my group has successfully combined
non-perturbative analytical solutions and simulations to probe non-linear sound in loosely packed
grains [22]. We discovered that not only do phonons have zero speed, there is actually a whole new
class of strongly non-linear shock waves that replace phonons in fragile matter.

I believe that unveiling the full range of ramifications that fragility bears over such a vast class
of materials is an exciting prospect. I will unravel the extreme mechanics of fragile matter, from
shocks in grains to low temperature properties of weakly connected network glasses, in a theoretical
and computational research program based on three projects for which I request two PhD and one
postdoctoral positions.
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Figure 1: (a) Schematic of the experimental set-up. The ”X” marks the diaphragm that is
ruptured to initiate air flow and crack propagation. (b) An example of ductile crack propagation
(right to left), with no films rupturing. Time increases from top to bottom. Broken arrows point
to one example of a T1 transition (see Fig. 2) (c) An example of brittle crack propagation (right
to left) as a succession of film rupture events (see also Fig. 2). Time increases from top to
bottom. Arrows point to the current position of the crack tip.

2.2 Liquid fraction: dry foam and drainage

We can further control the liquid fraction in the foam by changing the liquid flow through

the rewetting chamber and the chamber’s vertical distance to the main channel (foam

drainage [23–25] occurs over this distance). It is important that the foam is dry enough

(liquid fraction ε <∼ 0.01) that the geometry of the foam (see below) is well described by

bubbles that are polyhedral prisms. In order to enhance foam stability, we operate at

ε = 0.01 ± 0.001, as established by two independent methods: (i) an analysis of back-

lit images of the bubbles (cf. also [26]), and (ii) direct weighing of the foam transported

through the Hele-Shaw cell and exiting at the other end. The viscosity of the foaming

liquid is µ = 1.0 × 10
−3

Pa s, and the surface tension was measured by the pendant-drop

method as γ = 0.025kg/s2. Note that the concentration of surfactant used was confirmed

to be well above the critical micelle concentration (cmc) [22, 27].

The rate of foam production translates to an average velocity of 4-5 m/h. Thus, the

foam at the feeder-channel end of the main channel is about 15mins ”younger” than that

at the opposite end. This is potentially important because of film drainage and aging of

the foam (see below).
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FIG. 1: (a) Amorphous packing of steel balls. (b) Foam. (c) Biopolymer network. (d) Network glass.
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Piston pushing at a constant speed
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Standard solid state approach!

H = harmonic anharmonic+

Phonons: excitations of rigid matter 
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H = anharmonic+

Shocks: “excitations” of fragile matter 

My approach!

harmonic

Strong non-linearities
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anharmonic

Shocks: “excitations” of fragile matter 

My approach!

H = +harmonic

Strong non-linearities
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typical 
strain

γ ∼ δ√
δR

∼ δ
1
2

typical 
stress

σ ∼ γ ∼ δ
1
2

δ

√
δR

R

Force F ∼ σδ ∼ δ
3
2

kU ∼ δ
5
2Energy

Contact Mechanics: Hertz law

δ

The material the grain is made of satisfies linear elasticity
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c ∼ δ0
1
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kU ∼ x
5
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d2U
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x = δ0

Speed of sound: granular chain
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c ∼ δ0
1
4

√
k

c→ 0

δ0 → 0

kU ∼ x
5
2

�
keff ∼ δ

5
2−2
2

0

keff =
d2U

dx2 x = δ0

Sound speed vanishes

Solitons in the “sonic vacuum”

(Daraio Lab)
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Stable fronts: one dimensional model

Gomez et al. PRL 2012

x

1 Shock derivation

There are lots of different continuous approximations to the equations describing

a chain of spheres with a Hertzian interaction. I wanted to find one that can be

derived from a Lagrangian so that energy is conserved. Another goal is to get a

simple-looking equation with a small number of derivatives, so that computers

can handle it.

The Lagrangian for the original spheres is given by

L =

�

n

1

2
u̇2

n −
A

α
(un − un+1)

α
(1)

Now we will replace u by a continuous function and do all the continuum ap-

proximations in L before deriving the equation of motion.

We will define a continuous function φ interpolating through the u(n)’s.

The most obvious choice is φ(n) = un. Then we can approximate the potential

energy by writing un − un+1 = −φ�
(n) − 1

2φ��
(n) − . . . . (I am leaving out the

factors of a; implicitly each term in this expansion has a different power of
1
λ

since each derivative brings a factor of
1
λ . So this series is in powers of

1
λ .)

This approximation will get messy, though, because the next step is to raise

un − un+1 to the αth
power using the binomial theorem.

So, in order to get a simpler equation I’ll take the continuum limit differently.

Define φ by its derivative,

un+1 − un = φ�
(n +

1

2
). (2)

This way, the potential energy will be simple, but we will still have to expand

the kinetic energy in powers of
1
λ . That is easier to do. To invert Eq. (2) so that

we can express un in terms of φ, do a Taylor expansion of the left-hand- side

about n +
1
2 . This gives u�

(n +
1
2 ) +

1
24u���

(n +
1
2 ) = φ�

(n) (up to terms of order

1
λ5 ). Integrate both sides with respect to x, φ(n +

1
2 ) = (1 +

1
24

d2

dx2 )u(n +
1
2 ).

Now solve for u in terms of φ, u(n+
1
2 ) =

1

1+ 1
24

d2
dx2

φ(n+
1
2 ) or by expanding the

ratio in a geometric series:

u(n +
1

2
) ≈ φ(n +

1

2
)− 1

24
φ��

(n +
1

2
). (3)

Thus the kinetic energy of a sphere is
1
2 u̇2

n ≈ 1
2 φ̇(n)

2− 1
24 φ̇(n)φ̇��

(n) (I just kept

the first two terms here).

Now we can get the continuum formula for the Lagrangian by substituting

for u in terms of φ, and also replacing the sum by an integral. It turns out that

that replacement doesn’t lead to any correction terms (in our long-wavelength

expansion). For a finite sum, there are corrections,

N�

n=1

f(n) =

� N

1
f(x)dx +

1

2
f �

(1) +
1

2
f �

(N) + . . . (4)

1

δ
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α =
5
2

An equation of motion for shocks

3

obtain the pressure dependence of the longitudinal speed

of sound c ∼ δ1/40 ∼ P 1/6 valid for Hertzian interactions
[12]. Figure 3c shows that the numerical data for vS(0),

represented by red symbols, is consistent with the δ1/40
scaling, which is shown as a continuous red line.

We now turn to the regime of high piston speeds,
uP � u∗

P , when the front speed vS becomes nearly in-
dependent of P . Since uP , R and δ0 are all known, we
need one additional relation which combined with Eq. (2)
will make a definite prediction for the shock speed. We
note that for strong shocks, the propagating front gen-
erates a characteristic compression δ � δ0 and a cor-
responding increase in the kinetic energy. By assuming
that the kinetic and potential energies are of the same
order, we obtain u2

P ∼ δ5/2. We have tested numeri-
cally that this non-trivial proportionality relation exists
for strong deformations, see Fig. 3d. Upon combining
the balance between kinetic and potential energy with

Eq. (2), one readily obtains the power law vS ∼ u1/5
P ,

plotted as a dashed line in Fig. 3b. This scaling rela-
tion is clearly consistent with our numerical data for the
speed of strongly non-linear shock waves.

We deduce the dependence on compression of the
crossover speed u∗

P by smoothly matching the two asymp-

totic relations for the front speed vS ∼ u1/5
P and vS(0) ∼

δ1/40 . This leads to the power law relation u∗
P ∼ δ5/40

(continuous blue line in Fig. 3c) that is consistent with
our numerical values (blue symbols). Note that the
data collapse in Fig. 3b depends only on the scaling

u∗
P ∼ δ5/40 and it is not sensitive on the precise defini-

tion of the crossover speed. Upon using the conversion
relation uP ∼ δ5/4, the intuitive expectation that the
crossover takes place when δ ≈ δ0 is confirmed.

We conclude that by controlling δ0 or P, which param-
eterize the distance to the jamming point (at P = 0 and
δ0 = 0), we can tune u∗

P and the onset of the strongly
non-linear response of the packings. Our key numerical
findings on the shock velocity summarized in Fig. 3 can
be grasped from scaling near the jamming point.
Analytical model. In order to account for the depen-
dence of vS on uP and the smoothness of the shocks
profile, we construct the simplest possible 1D model that
quantitatively accounts for the trends observed in Fig. 3
and sheds light on the role of disorder.

In the continuum limit, we obtain the following equa-
tion governing the dynamics of the system in terms of
the strain field δ(x, t) [25]:

R2

3
δttxx − δtt +

4R2ε

m
[δα−1]xx = 0. (3)

To gain some intuition for the physics behind Eq. (3),
note that by setting α = 2, one recovers a linear disper-
sive wave equation, with speed proportional to

�
ε/m in

the long wavelength limit. By contrast, when α > 2 a
non-linear wave equation is obtained. Nonlinearities and
dispersive effects gives rise to finite amplitude waves: ei-

FIG. 3. a) Speed of the front vS versus particle velocity uP

measured in units of vg, the sound speed within the grain, for
decreasing particle overlap δ0. b) Same plot as in (a) but with
vS normalized by vS(0) and uP normalized by the crossover
particle speed u�

P : vS(0) and u�
P are indicated in panel (a).

The dashed line indicates the power law vS ∼ uP
1/5 charac-

teristic of a sonic vacuum. The black line indicates the the-
ory developed here to describe the universal transition from
weakly to strongly non-linear waves in systems close to jam-
ming. c) Variation of vS(0) and u∗

P with distance to the jam-
ming transition parameterized by the initial average overlap
δ0. The dashed lines indicate the power laws vS(0) ∼ δ1/40 ,

u�
P ∼ δ5/40 . d) Variation of the kinetic energy with poten-

tial energy in dimensionless units (see text) - same color code
as in (a-b). The dashed line indicates the linear relationship
observed for strong shocks.

ther solitary waves or shocks are possible depending on
the drive [19].

Shock propagation is modeled by the combined strain
δ(x, t) = δ0 + g(x̃), where g(x̃) gives the shape of the
shock and x̃ ≡ x − vS t. Upon inserting this ansatz into
Eq. (3), we obtain the conservation law 1

2δ
2
x̃+W (δ) = 0,

where W (δ) is given by

W (δ) =
24ε

mαv2S
(δα − δα0 )−

3

R2
(δ2 − δ20)

−24δ0(
ε

mv2S
δα−2
0 − 1

4R2
)(δ − δ0). (4)

This conservation law can be interpreted as describing
the total energy of an effective particle at position δ
rolling down a potential well W (δ), shown as a red line
in Fig. 4a (here x̃ maps to time so that 1

2δ
2
x̃ is the kinetic

3

obtain the pressure dependence of the longitudinal speed

of sound c ∼ δ1/40 ∼ P 1/6 valid for Hertzian interactions
[12]. Figure 3c shows that the numerical data for vS(0),

represented by red symbols, is consistent with the δ1/40
scaling, which is shown as a continuous red line.

We now turn to the regime of high piston speeds,
uP � u∗

P , when the front speed vS becomes nearly in-
dependent of P . Since uP , R and δ0 are all known, we
need one additional relation which combined with Eq. (2)
will make a definite prediction for the shock speed. We
note that for strong shocks, the propagating front gen-
erates a characteristic compression δ � δ0 and a cor-
responding increase in the kinetic energy. By assuming
that the kinetic and potential energies are of the same
order, we obtain u2

P ∼ δ5/2. We have tested numeri-
cally that this non-trivial proportionality relation exists
for strong deformations, see Fig. 3d. Upon combining
the balance between kinetic and potential energy with

Eq. (2), one readily obtains the power law vS ∼ u1/5
P ,

plotted as a dashed line in Fig. 3b. This scaling rela-
tion is clearly consistent with our numerical data for the
speed of strongly non-linear shock waves.

We deduce the dependence on compression of the
crossover speed u∗

P by smoothly matching the two asymp-

totic relations for the front speed vS ∼ u1/5
P and vS(0) ∼

δ1/40 . This leads to the power law relation u∗
P ∼ δ5/40

(continuous blue line in Fig. 3c) that is consistent with
our numerical values (blue symbols). Note that the
data collapse in Fig. 3b depends only on the scaling

u∗
P ∼ δ5/40 and it is not sensitive on the precise defini-

tion of the crossover speed. Upon using the conversion
relation uP ∼ δ5/4, the intuitive expectation that the
crossover takes place when δ ≈ δ0 is confirmed.

We conclude that by controlling δ0 or P, which param-
eterize the distance to the jamming point (at P = 0 and
δ0 = 0), we can tune u∗

P and the onset of the strongly
non-linear response of the packings. Our key numerical
findings on the shock velocity summarized in Fig. 3 can
be grasped from scaling near the jamming point.
Analytical model. In order to account for the depen-
dence of vS on uP and the smoothness of the shocks
profile, we construct the simplest possible 1D model that
quantitatively accounts for the trends observed in Fig. 3
and sheds light on the role of disorder.

In the continuum limit, we obtain the following equa-
tion governing the dynamics of the system in terms of
the strain field δ(x, t) [25]:
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δttxx − δtt +

4R2ε

m
[δα−1]xx = 0. (3)

To gain some intuition for the physics behind Eq. (3),
note that by setting α = 2, one recovers a linear disper-
sive wave equation, with speed proportional to

�
ε/m in

the long wavelength limit. By contrast, when α > 2 a
non-linear wave equation is obtained. Nonlinearities and
dispersive effects gives rise to finite amplitude waves: ei-
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vS normalized by vS(0) and uP normalized by the crossover
particle speed u�

P : vS(0) and u�
P are indicated in panel (a).

The dashed line indicates the power law vS ∼ uP
1/5 charac-
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ther solitary waves or shocks are possible depending on
the drive [19].

Shock propagation is modeled by the combined strain
δ(x, t) = δ0 + g(x̃), where g(x̃) gives the shape of the
shock and x̃ ≡ x − vS t. Upon inserting this ansatz into
Eq. (3), we obtain the conservation law 1
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ε
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0 − 1

4R2
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This conservation law can be interpreted as describing
the total energy of an effective particle at position δ
rolling down a potential well W (δ), shown as a red line
in Fig. 4a (here x̃ maps to time so that 1
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x̃ is the kinetic
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FIG. 2.

The present results motivates a deeper study on the
dynamics of Hertzian chains, and their relationship with
jamming. Often, long wavelengths continuous models
are very helpful to obtain robust general results on non-
linear wave propagation. In the case of Hertzian chains,
Nesterenko derived a continuous model for the case of
zero overlap between particles, the sonic vacuum as he
named it, which predicted and accurately catched the
features of solitary wave propagation on Herztian chains
without pre-compression. However, the complexity of the
derived partial differential equation avoided any further
study. Here we propose a new simpler continuous model
for wave propagation. The model describe chains inter-
acting through an α-potential with different degrees of
pre-compression [13]:

φ̈ − 1
12

φ̈′′ +
∂

∂x
(−φ′)α−1 = 0, (2)

where φ is the continuous approximation of the displace-
ment. Although still not integrable, the model guaranties
energy conservation due to is derived from a Lagrangian.
Here we use the model to study the transition from lin-
ear waves to shocks. To do that we consider an initial
chain with a given pre-compression −φ(x)′ = δ0. A shock
wave travelling with velocity v in the x direction can be
expressed as φ(x, t) = −δ0 x+g(x−vt), where g(x) gives
the form of the shock. This expression can be inserted
into Equation 1, and after some analysis [13], we ob-
tain the following parametric equation for the relation
between the wave velocity as and the initial velocity on

the particles:

u = v(δmax − δ0)

v2 =
2δmax

α − 2αδ0
α−1 δmax + 2(α − 1)δ0

α

α(δ0 − δmax)2
(3)

Note that this approximation correctly gives the asymp-
totic results v ∼ c in the case δmax << δ0, and v ∼ u1/5

for δmax >> δ0. Figure 3-b) also shows the results of v
vs. u in this continuum approximation. Although the
approximation catch the right shape of the curves ob-
tained through the molecular dynamics, the agreement
it is not perfect. This is related with the rough approxi-
mation done to describe the wave as just formed by one
travelling soliton. In general, in the case of a chain with
pre-compression, a radiative-tail like radiation travels in
addition to solitary waves. Such modes of energy prop-
agation are not taken into account in Equations 2, such
that all the energy goes into the wave front, and the ap-
proximation overestimates the velocity as compared with
molecular dynamics.

We finally focus on the attenuation of the shocks waves
due to the scattering with the structural disorder. In gen-
eral linear waves are exponentially attenuated by scatter-
ing with the disorder. Here we find that the attenuation
of the shock wave can also be approximated by an expo-
nential allowing to extract a characteristic distance ξ for
shock propagation (inset Fig. 2).

[1] Xu, N., Vitelli, V., Wyart, M., Liu, A. J. & Nagel, S. R.
Energy transport in jammed sphere packings. Phys. Rev.

Lett. 102, 038001 1-4 (2009).
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3.4 Setup 3
The third and last setup is of a completely different kind compared to the first two setups. The container is
a square aluminum tank, with dimensions 45 cm x 45 cm x 45 cm and 5 mm thick walls. Attached to this
tank on one flank is a freely moving, 4 kg heavy cylindrical piston (made of PVC and metal) inside a fixed
cylindrical tube, see figure 10. Measurements in this setup used all gauges described in table 1.

Figure 10: Setup 3. Left shows the (filled) square tank, including the (grey) piston inside the (black) tube.

On the right a schematic picture is shown, which defines the configuration of the experiment. Two probe

distances are used (5 and 15 centimeters). The piston is placed in the center of the flank and has a diameter

of 10 centimeters. The gauges are placed at a height of 22 cm, measured from the bottom of the tank. The

filling height of the tank is kept variable, because this regulates the pressure at the gauge-depth.

Figure 11: Configuration of setup 3. Left is shown a top view, with the piston at the bottom.A blue dotted

line represents a taut wire on which the sensors are hung. On the right is a ’piston view’ which indicates how

the piston ’sees’ the gauges. Sensor reference letters are used to clarify which type of sensor is placed at that

position, for the definition of the sensor references see table 1 on page 9.

11

Figure 21: (Left) The final result of setup 3. Presented is Hugoniot-data for three different pressures (three

different colours) by combining figures 18b, 19b and 20b. The different shapes of the data points represent

different sensors used for the determination of vs. In the regimes where the respective sensors are not accurate,

the data has been removed. This graph should be compared to the one shown in figure 7 on page 8, of which

a small simplified version is re-shown here in the upper right corner. When comparing, it should be stressed

that a different horizontal axis has been used, as described in section 4.6. All theoretically predicted features

are present; the shapes of the three curves, the difference in c, the slope in the nonlinear regime and the

shifting critical points where the transition from linear to nonlinear pulses occurs.

This means that the slope of the nonlinear part in the Hugoniot plot should be 1/6th
. This result is in

agreement with numerous other derivations that relate vs to force[4][2]. The data agrees perfectly with this

prediction, as can be seen in figure 21 (dotted line). It is, however, not clear exactly what force should be

used. In theoretical predictions a quasistatic argument is used in the derivation of equation (25), which means

in this experiment that the shockwave should not alter much during his trip across the 10 centimeters between

sensors. That would be the case if the excitement of the system were to be done with a constant velocity

piston, which is what numerical calculations use. In the experiment, as noted before, it is a hammer exciting

the system which has a limited amount of energy, ammounting to the fact that the shockwave is not constant

during his voyage through the beads. However, the sensors are close enough to ensure that the shockwave is

reasonably constant in that interval and the shockwave is never completely dissipated. For this reason it is

assumed to be permissible to plot the average force Fa in the sensor-interval and still be able to compare it

to theory.

Let’s focus on figure 21. It can be theoretically predicted what the linear acoustic speed should be for each

pressure. The pressure the sensors are subjected to in every measurement is p100kg = 100kgs · g/(0.452) =
4.9 kPa, p28kg = 1.4 kPa and p8kg = 0.4kPa kPa. Using that csetup1 was 750 m/s in setup 1 when the

pressure was 2.34 MPa, it can be calculated that the linear sound speed in setup 3 should be

c100kg ∼ p1/6
100kg =

�psetup1
478

�1/6
⇒ c100kg = csetup1

2.8 = 270 m/s (26)

c28kg ∼ p1/6
28kg =

�psetup1
1690

�1/6
⇒ c28kg = csetup1

3.45 = 217 m/s (27)

c8kg ∼ p1/6
8kg =

�psetup1
5920

�1/6
⇒ c8kg = csetup1

4.25 = 180 m/s (28)

Compare these predicted values with the measured values of the linear sound speed
17

: c100kg = 280 m/s,

c28kg = 210 m/s and c8kg = 150 m/s. It can safely be concluded that there is a nice agreement, though

17Quoted measured value for c is the average value of the first three data points for each different pressure measurement.
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Global non linearities: shear shocks in networks
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Global non linearities: shear shocks in networks

zzc = 4

}

δz

γ

σ ∼ Gγ +k γ|γ| +η
dγ

dt

G ∼ δz

η ≈ η0

δz Wyart et al. PRL 2009 Tighe et al. PRL 2009

dissipation fvisc ∼ −η0v
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Conclusion

At the critical point sound propagates by shocks only

Away from the critical point the same shocks control energy 
transport for large dynamical strains
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Disorder acts as an effective viscosity

3

obtain the pressure dependence of the longitudinal speed

of sound c ∼ δ1/40 ∼ P 1/6 valid for Hertzian interactions
[12]. Figure 3c shows that the numerical data for vS(0),

represented by red symbols, is consistent with the δ1/40
scaling, which is shown as a continuous red line.

We now turn to the regime of high piston speeds,
uP � u∗

P , when the front speed vS becomes nearly in-
dependent of P . Since uP , R and δ0 are all known, we
need one additional relation which combined with Eq. (2)
will make a definite prediction for the shock speed. We
note that for strong shocks, the propagating front gen-
erates a characteristic compression δ � δ0 and a cor-
responding increase in the kinetic energy. By assuming
that the kinetic and potential energies are of the same
order, we obtain u2

P ∼ δ5/2. We have tested numeri-
cally that this non-trivial proportionality relation exists
for strong deformations, see Fig. 3d. Upon combining
the balance between kinetic and potential energy with

Eq. (2), one readily obtains the power law vS ∼ u1/5
P ,

plotted as a dashed line in Fig. 3b. This scaling rela-
tion is clearly consistent with our numerical data for the
speed of strongly non-linear shock waves.

We deduce the dependence on compression of the
crossover speed u∗

P by smoothly matching the two asymp-

totic relations for the front speed vS ∼ u1/5
P and vS(0) ∼

δ1/40 . This leads to the power law relation u∗
P ∼ δ5/40

(continuous blue line in Fig. 3c) that is consistent with
our numerical values (blue symbols). Note that the
data collapse in Fig. 3b depends only on the scaling

u∗
P ∼ δ5/40 and it is not sensitive on the precise defini-

tion of the crossover speed. Upon using the conversion
relation uP ∼ δ5/4, the intuitive expectation that the
crossover takes place when δ ≈ δ0 is confirmed.

We conclude that by controlling δ0 or P, which param-
eterize the distance to the jamming point (at P = 0 and
δ0 = 0), we can tune u∗

P and the onset of the strongly
non-linear response of the packings. Our key numerical
findings on the shock velocity summarized in Fig. 3 can
be grasped from scaling near the jamming point.
Analytical model. In order to account for the depen-
dence of vS on uP and the smoothness of the shocks
profile, we construct the simplest possible 1D model that
quantitatively accounts for the trends observed in Fig. 3
and sheds light on the role of disorder.

In the continuum limit, we obtain the following equa-
tion governing the dynamics of the system in terms of
the strain field δ(x, t) [25]:

R2

3
δttxx − δtt +

4R2ε

m
[δα−1]xx = 0. (3)

To gain some intuition for the physics behind Eq. (3),
note that by setting α = 2, one recovers a linear disper-
sive wave equation, with speed proportional to

�
ε/m in

the long wavelength limit. By contrast, when α > 2 a
non-linear wave equation is obtained. Nonlinearities and
dispersive effects gives rise to finite amplitude waves: ei-

FIG. 3. a) Speed of the front vS versus particle velocity uP

measured in units of vg, the sound speed within the grain, for
decreasing particle overlap δ0. b) Same plot as in (a) but with
vS normalized by vS(0) and uP normalized by the crossover
particle speed u�

P : vS(0) and u�
P are indicated in panel (a).

The dashed line indicates the power law vS ∼ uP
1/5 charac-

teristic of a sonic vacuum. The black line indicates the the-
ory developed here to describe the universal transition from
weakly to strongly non-linear waves in systems close to jam-
ming. c) Variation of vS(0) and u∗

P with distance to the jam-
ming transition parameterized by the initial average overlap
δ0. The dashed lines indicate the power laws vS(0) ∼ δ1/40 ,

u�
P ∼ δ5/40 . d) Variation of the kinetic energy with poten-

tial energy in dimensionless units (see text) - same color code
as in (a-b). The dashed line indicates the linear relationship
observed for strong shocks.
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of sound c ∼ δ1/40 ∼ P 1/6 valid for Hertzian interactions
[12]. Figure 3c shows that the numerical data for vS(0),

represented by red symbols, is consistent with the δ1/40
scaling, which is shown as a continuous red line.

We now turn to the regime of high piston speeds,
uP � u∗

P , when the front speed vS becomes nearly in-
dependent of P . Since uP , R and δ0 are all known, we
need one additional relation which combined with Eq. (2)
will make a definite prediction for the shock speed. We
note that for strong shocks, the propagating front gen-
erates a characteristic compression δ � δ0 and a cor-
responding increase in the kinetic energy. By assuming
that the kinetic and potential energies are of the same
order, we obtain u2

P ∼ δ5/2. We have tested numeri-
cally that this non-trivial proportionality relation exists
for strong deformations, see Fig. 3d. Upon combining
the balance between kinetic and potential energy with

Eq. (2), one readily obtains the power law vS ∼ u1/5
P ,

plotted as a dashed line in Fig. 3b. This scaling rela-
tion is clearly consistent with our numerical data for the
speed of strongly non-linear shock waves.

We deduce the dependence on compression of the
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P by smoothly matching the two asymp-

totic relations for the front speed vS ∼ u1/5
P and vS(0) ∼

δ1/40 . This leads to the power law relation u∗
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our numerical values (blue symbols). Note that the
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P ∼ δ5/40 and it is not sensitive on the precise defini-

tion of the crossover speed. Upon using the conversion
relation uP ∼ δ5/4, the intuitive expectation that the
crossover takes place when δ ≈ δ0 is confirmed.

We conclude that by controlling δ0 or P, which param-
eterize the distance to the jamming point (at P = 0 and
δ0 = 0), we can tune u∗

P and the onset of the strongly
non-linear response of the packings. Our key numerical
findings on the shock velocity summarized in Fig. 3 can
be grasped from scaling near the jamming point.
Analytical model. In order to account for the depen-
dence of vS on uP and the smoothness of the shocks
profile, we construct the simplest possible 1D model that
quantitatively accounts for the trends observed in Fig. 3
and sheds light on the role of disorder.

In the continuum limit, we obtain the following equa-
tion governing the dynamics of the system in terms of
the strain field δ(x, t) [25]:
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sive wave equation, with speed proportional to
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the long wavelength limit. By contrast, when α > 2 a
non-linear wave equation is obtained. Nonlinearities and
dispersive effects gives rise to finite amplitude waves: ei-
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1 Shock derivation

There are lots of different continuous approximations to the equations describing

a chain of spheres with a Hertzian interaction. I wanted to find one that can be

derived from a Lagrangian so that energy is conserved. Another goal is to get a

simple-looking equation with a small number of derivatives, so that computers

can handle it.

The Lagrangian for the original spheres is given by

L =

�

n

1

2
u̇2

n −
A

α
(un − un+1)

α
(1)

Now we will replace u by a continuous function and do all the continuum ap-

proximations in L before deriving the equation of motion.

We will define a continuous function φ interpolating through the u(n)’s.

The most obvious choice is φ(n) = un. Then we can approximate the potential

energy by writing un − un+1 = −φ�
(n) − 1

2φ��
(n) − . . . . (I am leaving out the

factors of a; implicitly each term in this expansion has a different power of
1
λ

since each derivative brings a factor of
1
λ . So this series is in powers of

1
λ .)

This approximation will get messy, though, because the next step is to raise

un − un+1 to the αth
power using the binomial theorem.

So, in order to get a simpler equation I’ll take the continuum limit differently.

Define φ by its derivative,

un+1 − un = φ�
(n +

1

2
). (2)

This way, the potential energy will be simple, but we will still have to expand

the kinetic energy in powers of
1
λ . That is easier to do. To invert Eq. (2) so that

we can express un in terms of φ, do a Taylor expansion of the left-hand- side

about n +
1
2 . This gives u�

(n +
1
2 ) +

1
24u���

(n +
1
2 ) = φ�

(n) (up to terms of order

1
λ5 ). Integrate both sides with respect to x, φ(n +

1
2 ) = (1 +

1
24

d2

dx2 )u(n +
1
2 ).

Now solve for u in terms of φ, u(n+
1
2 ) =

1

1+ 1
24

d2
dx2

φ(n+
1
2 ) or by expanding the

ratio in a geometric series:

u(n +
1

2
) ≈ φ(n +

1

2
)− 1

24
φ��

(n +
1

2
). (3)

Thus the kinetic energy of a sphere is
1
2 u̇2

n ≈ 1
2 φ̇(n)

2− 1
24 φ̇(n)φ̇��

(n) (I just kept

the first two terms here).

Now we can get the continuum formula for the Lagrangian by substituting

for u in terms of φ, and also replacing the sum by an integral. It turns out that

that replacement doesn’t lead to any correction terms (in our long-wavelength

expansion). For a finite sum, there are corrections,

N�

n=1

f(n) =

� N

1
f(x)dx +

1

2
f �

(1) +
1

2
f �

(N) + . . . (4)
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derived from a Lagrangian so that energy is conserved. Another goal is to get a

simple-looking equation with a small number of derivatives, so that computers

can handle it.

The Lagrangian for the original spheres is given by

L =

�

n

1

2
u̇2

n −
A

α
(un − un+1)

α
(1)

Now we will replace u by a continuous function and do all the continuum ap-

proximations in L before deriving the equation of motion.

We will define a continuous function φ interpolating through the u(n)’s.

The most obvious choice is φ(n) = un. Then we can approximate the potential

energy by writing un − un+1 = −φ�
(n) − 1

2φ��
(n) − . . . . (I am leaving out the

factors of a; implicitly each term in this expansion has a different power of
1
λ

since each derivative brings a factor of
1
λ . So this series is in powers of

1
λ .)

This approximation will get messy, though, because the next step is to raise

un − un+1 to the αth
power using the binomial theorem.

So, in order to get a simpler equation I’ll take the continuum limit differently.

Define φ by its derivative,

un+1 − un = φ�
(n +

1

2
). (2)

This way, the potential energy will be simple, but we will still have to expand

the kinetic energy in powers of
1
λ . That is easier to do. To invert Eq. (2) so that

we can express un in terms of φ, do a Taylor expansion of the left-hand- side

about n +
1
2 . This gives u�

(n +
1
2 ) +

1
24u���

(n +
1
2 ) = φ�

(n) (up to terms of order

1
λ5 ). Integrate both sides with respect to x, φ(n +

1
2 ) = (1 +

1
24

d2

dx2 )u(n +
1
2 ).

Now solve for u in terms of φ, u(n+
1
2 ) =

1

1+ 1
24

d2
dx2

φ(n+
1
2 ) or by expanding the

ratio in a geometric series:

u(n +
1

2
) ≈ φ(n +

1

2
)− 1

24
φ��

(n +
1

2
). (3)

Thus the kinetic energy of a sphere is
1
2 u̇2

n ≈ 1
2 φ̇(n)

2− 1
24 φ̇(n)φ̇��

(n) (I just kept

the first two terms here).

Now we can get the continuum formula for the Lagrangian by substituting

for u in terms of φ, and also replacing the sum by an integral. It turns out that

that replacement doesn’t lead to any correction terms (in our long-wavelength

expansion). For a finite sum, there are corrections,

N�

n=1

f(n) =

� N

1
f(x)dx +

1

2
f �

(1) +
1

2
f �

(N) + . . . (4)

1
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1 Shock derivation

There are lots of different continuous approximations to the equations describing

a chain of spheres with a Hertzian interaction. I wanted to find one that can be

derived from a Lagrangian so that energy is conserved. Another goal is to get a

simple-looking equation with a small number of derivatives, so that computers

can handle it.

The Lagrangian for the original spheres is given by

L =

�

n

1

2
u̇2

n −
A

α
(un − un+1)

α
(1)

Now we will replace u by a continuous function and do all the continuum ap-

proximations in L before deriving the equation of motion.

We will define a continuous function φ interpolating through the u(n)’s.

The most obvious choice is φ(n) = un. Then we can approximate the potential

energy by writing un − un+1 = −φ�
(n) − 1

2φ��
(n) − . . . . (I am leaving out the

factors of a; implicitly each term in this expansion has a different power of
1
λ

since each derivative brings a factor of
1
λ . So this series is in powers of

1
λ .)

This approximation will get messy, though, because the next step is to raise

un − un+1 to the αth
power using the binomial theorem.

So, in order to get a simpler equation I’ll take the continuum limit differently.

Define φ by its derivative,

un+1 − un = φ�
(n +

1

2
). (2)

This way, the potential energy will be simple, but we will still have to expand

the kinetic energy in powers of
1
λ . That is easier to do. To invert Eq. (2) so that

we can express un in terms of φ, do a Taylor expansion of the left-hand- side

about n +
1
2 . This gives u�

(n +
1
2 ) +

1
24u���

(n +
1
2 ) = φ�

(n) (up to terms of order

1
λ5 ). Integrate both sides with respect to x, φ(n +

1
2 ) = (1 +

1
24

d2

dx2 )u(n +
1
2 ).

Now solve for u in terms of φ, u(n+
1
2 ) =

1

1+ 1
24

d2
dx2

φ(n+
1
2 ) or by expanding the

ratio in a geometric series:

u(n +
1

2
) ≈ φ(n +

1

2
)− 1

24
φ��

(n +
1

2
). (3)

Thus the kinetic energy of a sphere is
1
2 u̇2

n ≈ 1
2 φ̇(n)

2− 1
24 φ̇(n)φ̇��

(n) (I just kept

the first two terms here).

Now we can get the continuum formula for the Lagrangian by substituting

for u in terms of φ, and also replacing the sum by an integral. It turns out that

that replacement doesn’t lead to any correction terms (in our long-wavelength

expansion). For a finite sum, there are corrections,

N�

n=1

f(n) =

� N

1
f(x)dx +

1

2
f �

(1) +
1

2
f �

(N) + . . . (4)

1

1 Shock derivation

There are lots of different continuous approximations to the equations describing

a chain of spheres with a Hertzian interaction. I wanted to find one that can be

derived from a Lagrangian so that energy is conserved. Another goal is to get a

simple-looking equation with a small number of derivatives, so that computers

can handle it.

The Lagrangian for the original spheres is given by

L =

�

n

1

2
u̇2

n −
A

α
(un − un+1)

α
(1)

Now we will replace u by a continuous function and do all the continuum ap-

proximations in L before deriving the equation of motion.

We will define a continuous function φ interpolating through the u(n)’s.

The most obvious choice is φ(n) = un. Then we can approximate the potential

energy by writing un − un+1 = −φ�
(n) − 1

2φ��
(n) − . . . . (I am leaving out the

factors of a; implicitly each term in this expansion has a different power of
1
λ

since each derivative brings a factor of
1
λ . So this series is in powers of

1
λ .)

This approximation will get messy, though, because the next step is to raise

un − un+1 to the αth
power using the binomial theorem.

So, in order to get a simpler equation I’ll take the continuum limit differently.

Define φ by its derivative,

un+1 − un = φ�
(n +

1

2
). (2)

This way, the potential energy will be simple, but we will still have to expand

the kinetic energy in powers of
1
λ . That is easier to do. To invert Eq. (2) so that

we can express un in terms of φ, do a Taylor expansion of the left-hand- side

about n +
1
2 . This gives u�

(n +
1
2 ) +

1
24u���

(n +
1
2 ) = φ�

(n) (up to terms of order

1
λ5 ). Integrate both sides with respect to x, φ(n +

1
2 ) = (1 +

1
24

d2

dx2 )u(n +
1
2 ).

Now solve for u in terms of φ, u(n+
1
2 ) =

1

1+ 1
24

d2
dx2

φ(n+
1
2 ) or by expanding the

ratio in a geometric series:

u(n +
1

2
) ≈ φ(n +

1

2
)− 1

24
φ��

(n +
1

2
). (3)

Thus the kinetic energy of a sphere is
1
2 u̇2

n ≈ 1
2 φ̇(n)

2− 1
24 φ̇(n)φ̇��

(n) (I just kept

the first two terms here).

Now we can get the continuum formula for the Lagrangian by substituting

for u in terms of φ, and also replacing the sum by an integral. It turns out that

that replacement doesn’t lead to any correction terms (in our long-wavelength

expansion). For a finite sum, there are corrections,

N�

n=1

f(n) =

� N

1
f(x)dx +

1

2
f �

(1) +
1

2
f �

(N) + . . . (4)

1

Taylor expand LHS

Lagrangian

Invert it

1 Shock derivation

There are lots of different continuous approximations to the equations describing

a chain of spheres with a Hertzian interaction. I wanted to find one that can be

derived from a Lagrangian so that energy is conserved. Another goal is to get a

simple-looking equation with a small number of derivatives, so that computers

can handle it.

The Lagrangian for the original spheres is given by

L =

�

n

1

2
u̇2

n −
A

α
(un − un+1)

α
(1)

Now we will replace u by a continuous function and do all the continuum ap-

proximations in L before deriving the equation of motion.

We will define a continuous function φ interpolating through the u(n)’s.

The most obvious choice is φ(n) = un. Then we can approximate the potential

energy by writing un − un+1 = −φ�
(n) − 1

2φ��
(n) − . . . . (I am leaving out the

factors of a; implicitly each term in this expansion has a different power of
1
λ

since each derivative brings a factor of
1
λ . So this series is in powers of

1
λ .)

This approximation will get messy, though, because the next step is to raise

un − un+1 to the αth
power using the binomial theorem.

So, in order to get a simpler equation I’ll take the continuum limit differently.

Define φ by its derivative,

un+1 − un = φ�
(n +

1

2
). (2)

This way, the potential energy will be simple, but we will still have to expand

the kinetic energy in powers of
1
λ . That is easier to do. To invert Eq. (2) so that

we can express un in terms of φ, do a Taylor expansion of the left-hand- side

about n +
1
2 . This gives u�

(n +
1
2 ) +

1
24u���

(n +
1
2 ) = φ�

(n) (up to terms of order

1
λ5 ). Integrate both sides with respect to x, φ(n +

1
2 ) = (1 +

1
24

d2

dx2 )u(n +
1
2 ).

Now solve for u in terms of φ, u(n+
1
2 ) =

1

1+ 1
24

d2
dx2

φ(n+
1
2 ) or by expanding the

ratio in a geometric series:

u(n +
1

2
) ≈ φ(n +

1

2
)− 1

24
φ��

(n +
1

2
). (3)

Thus the kinetic energy of a sphere is
1
2 u̇2

n ≈ 1
2 φ̇(n)

2− 1
24 φ̇(n)φ̇��

(n) (I just kept

the first two terms here).

Now we can get the continuum formula for the Lagrangian by substituting

for u in terms of φ, and also replacing the sum by an integral. It turns out that

that replacement doesn’t lead to any correction terms (in our long-wavelength

expansion). For a finite sum, there are corrections,

N�

n=1

f(n) =

� N

1
f(x)dx +

1

2
f �

(1) +
1

2
f �

(N) + . . . (4)

1

φ�(n +
1
2
)
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1 Shock derivation

There are lots of different continuous approximations to the equations describing

a chain of spheres with a Hertzian interaction. I wanted to find one that can be

derived from a Lagrangian so that energy is conserved. Another goal is to get a

simple-looking equation with a small number of derivatives, so that computers

can handle it.

The Lagrangian for the original spheres is given by

L =

�

n

1

2
u̇2

n −
A

α
(un − un+1)

α
(1)

Now we will replace u by a continuous function and do all the continuum ap-

proximations in L before deriving the equation of motion.

We will define a continuous function φ interpolating through the u(n)’s.

The most obvious choice is φ(n) = un. Then we can approximate the potential

energy by writing un − un+1 = −φ�
(n) − 1

2φ��
(n) − . . . . (I am leaving out the

factors of a; implicitly each term in this expansion has a different power of
1
λ

since each derivative brings a factor of
1
λ . So this series is in powers of

1
λ .)

This approximation will get messy, though, because the next step is to raise

un − un+1 to the αth
power using the binomial theorem.

So, in order to get a simpler equation I’ll take the continuum limit differently.

Define φ by its derivative,

un+1 − un = φ�
(n +

1

2
). (2)

This way, the potential energy will be simple, but we will still have to expand

the kinetic energy in powers of
1
λ . That is easier to do. To invert Eq. (2) so that

we can express un in terms of φ, do a Taylor expansion of the left-hand- side

about n +
1
2 . This gives u�

(n +
1
2 ) +

1
24u���

(n +
1
2 ) = φ�

(n) (up to terms of order

1
λ5 ). Integrate both sides with respect to x, φ(n +

1
2 ) = (1 +

1
24

d2

dx2 )u(n +
1
2 ).

Now solve for u in terms of φ, u(n+
1
2 ) =

1

1+ 1
24

d2
dx2

φ(n+
1
2 ) or by expanding the

ratio in a geometric series:

u(n +
1

2
) ≈ φ(n +

1

2
)− 1

24
φ��

(n +
1

2
). (3)

Thus the kinetic energy of a sphere is
1
2 u̇2

n ≈ 1
2 φ̇(n)

2− 1
24 φ̇(n)φ̇��

(n) (I just kept

the first two terms here).

Now we can get the continuum formula for the Lagrangian by substituting

for u in terms of φ, and also replacing the sum by an integral. It turns out that

that replacement doesn’t lead to any correction terms (in our long-wavelength

expansion). For a finite sum, there are corrections,

N�

n=1

f(n) =

� N

1
f(x)dx +

1

2
f �

(1) +
1

2
f �

(N) + . . . (4)

1

1 Shock derivation

There are lots of different continuous approximations to the equations describing

a chain of spheres with a Hertzian interaction. I wanted to find one that can be

derived from a Lagrangian so that energy is conserved. Another goal is to get a

simple-looking equation with a small number of derivatives, so that computers

can handle it.

The Lagrangian for the original spheres is given by

L =

�

n

1

2
u̇2

n −
A

α
(un − un+1)

α
(1)

Now we will replace u by a continuous function and do all the continuum ap-

proximations in L before deriving the equation of motion.

We will define a continuous function φ interpolating through the u(n)’s.

The most obvious choice is φ(n) = un. Then we can approximate the potential

energy by writing un − un+1 = −φ�
(n) − 1

2φ��
(n) − . . . . (I am leaving out the

factors of a; implicitly each term in this expansion has a different power of
1
λ

since each derivative brings a factor of
1
λ . So this series is in powers of

1
λ .)

This approximation will get messy, though, because the next step is to raise

un − un+1 to the αth
power using the binomial theorem.

So, in order to get a simpler equation I’ll take the continuum limit differently.

Define φ by its derivative,

un+1 − un = φ�
(n +

1

2
). (2)

This way, the potential energy will be simple, but we will still have to expand

the kinetic energy in powers of
1
λ . That is easier to do. To invert Eq. (2) so that

we can express un in terms of φ, do a Taylor expansion of the left-hand- side

about n +
1
2 . This gives u�

(n +
1
2 ) +

1
24u���

(n +
1
2 ) = φ�

(n) (up to terms of order

1
λ5 ). Integrate both sides with respect to x, φ(n +

1
2 ) = (1 +

1
24

d2

dx2 )u(n +
1
2 ).

Now solve for u in terms of φ, u(n+
1
2 ) =

1

1+ 1
24

d2
dx2

φ(n+
1
2 ) or by expanding the

ratio in a geometric series:

u(n +
1

2
) ≈ φ(n +

1

2
)− 1

24
φ��

(n +
1

2
). (3)

Thus the kinetic energy of a sphere is
1
2 u̇2

n ≈ 1
2 φ̇(n)

2− 1
24 φ̇(n)φ̇��

(n) (I just kept

the first two terms here).

Now we can get the continuum formula for the Lagrangian by substituting

for u in terms of φ, and also replacing the sum by an integral. It turns out that

that replacement doesn’t lead to any correction terms (in our long-wavelength

expansion). For a finite sum, there are corrections,

N�

n=1

f(n) =

� N

1
f(x)dx +

1

2
f �

(1) +
1

2
f �

(N) + . . . (4)

1

Taylor expand LHS

Lagrangian

rewrite the kinetic term in L

Invert it

1 Shock derivation

There are lots of different continuous approximations to the equations describing

a chain of spheres with a Hertzian interaction. I wanted to find one that can be

derived from a Lagrangian so that energy is conserved. Another goal is to get a

simple-looking equation with a small number of derivatives, so that computers

can handle it.

The Lagrangian for the original spheres is given by

L =

�

n

1

2
u̇2

n −
A

α
(un − un+1)

α
(1)

Now we will replace u by a continuous function and do all the continuum ap-

proximations in L before deriving the equation of motion.

We will define a continuous function φ interpolating through the u(n)’s.

The most obvious choice is φ(n) = un. Then we can approximate the potential

energy by writing un − un+1 = −φ�
(n) − 1

2φ��
(n) − . . . . (I am leaving out the

factors of a; implicitly each term in this expansion has a different power of
1
λ

since each derivative brings a factor of
1
λ . So this series is in powers of

1
λ .)

This approximation will get messy, though, because the next step is to raise

un − un+1 to the αth
power using the binomial theorem.

So, in order to get a simpler equation I’ll take the continuum limit differently.

Define φ by its derivative,

un+1 − un = φ�
(n +

1

2
). (2)

This way, the potential energy will be simple, but we will still have to expand

the kinetic energy in powers of
1
λ . That is easier to do. To invert Eq. (2) so that

we can express un in terms of φ, do a Taylor expansion of the left-hand- side

about n +
1
2 . This gives u�

(n +
1
2 ) +

1
24u���

(n +
1
2 ) = φ�

(n) (up to terms of order

1
λ5 ). Integrate both sides with respect to x, φ(n +

1
2 ) = (1 +

1
24

d2

dx2 )u(n +
1
2 ).

Now solve for u in terms of φ, u(n+
1
2 ) =

1

1+ 1
24

d2
dx2

φ(n+
1
2 ) or by expanding the

ratio in a geometric series:

u(n +
1

2
) ≈ φ(n +

1

2
)− 1

24
φ��

(n +
1

2
). (3)

Thus the kinetic energy of a sphere is
1
2 u̇2

n ≈ 1
2 φ̇(n)

2− 1
24 φ̇(n)φ̇��

(n) (I just kept

the first two terms here).

Now we can get the continuum formula for the Lagrangian by substituting

for u in terms of φ, and also replacing the sum by an integral. It turns out that

that replacement doesn’t lead to any correction terms (in our long-wavelength

expansion). For a finite sum, there are corrections,

N�

n=1

f(n) =

� N

1
f(x)dx +

1

2
f �

(1) +
1

2
f �

(N) + . . . (4)

1

1 Shock derivation

There are lots of different continuous approximations to the equations describing

a chain of spheres with a Hertzian interaction. I wanted to find one that can be

derived from a Lagrangian so that energy is conserved. Another goal is to get a

simple-looking equation with a small number of derivatives, so that computers

can handle it.

The Lagrangian for the original spheres is given by

L =

�

n

1

2
u̇2

n −
A

α
(un − un+1)

α
(1)

Now we will replace u by a continuous function and do all the continuum ap-

proximations in L before deriving the equation of motion.

We will define a continuous function φ interpolating through the u(n)’s.

The most obvious choice is φ(n) = un. Then we can approximate the potential

energy by writing un − un+1 = −φ�
(n) − 1

2φ��
(n) − . . . . (I am leaving out the

factors of a; implicitly each term in this expansion has a different power of
1
λ

since each derivative brings a factor of
1
λ . So this series is in powers of

1
λ .)

This approximation will get messy, though, because the next step is to raise

un − un+1 to the αth
power using the binomial theorem.

So, in order to get a simpler equation I’ll take the continuum limit differently.

Define φ by its derivative,

un+1 − un = φ�
(n +

1

2
). (2)

This way, the potential energy will be simple, but we will still have to expand

the kinetic energy in powers of
1
λ . That is easier to do. To invert Eq. (2) so that

we can express un in terms of φ, do a Taylor expansion of the left-hand- side

about n +
1
2 . This gives u�

(n +
1
2 ) +

1
24u���

(n +
1
2 ) = φ�

(n) (up to terms of order

1
λ5 ). Integrate both sides with respect to x, φ(n +

1
2 ) = (1 +

1
24

d2

dx2 )u(n +
1
2 ).

Now solve for u in terms of φ, u(n+
1
2 ) =

1

1+ 1
24

d2
dx2

φ(n+
1
2 ) or by expanding the

ratio in a geometric series:

u(n +
1

2
) ≈ φ(n +

1

2
)− 1

24
φ��

(n +
1

2
). (3)

Thus the kinetic energy of a sphere is
1
2 u̇2

n ≈ 1
2 φ̇(n)

2− 1
24 φ̇(n)φ̇��

(n) (I just kept

the first two terms here).

Now we can get the continuum formula for the Lagrangian by substituting

for u in terms of φ, and also replacing the sum by an integral. It turns out that

that replacement doesn’t lead to any correction terms (in our long-wavelength

expansion). For a finite sum, there are corrections,

N�

n=1

f(n) =

� N

1
f(x)dx +

1

2
f �

(1) +
1

2
f �

(N) + . . . (4)

1

φ�(n +
1
2
)
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1 Shock derivation

There are lots of different continuous approximations to the equations describing

a chain of spheres with a Hertzian interaction. I wanted to find one that can be

derived from a Lagrangian so that energy is conserved. Another goal is to get a

simple-looking equation with a small number of derivatives, so that computers

can handle it.

The Lagrangian for the original spheres is given by

L =

�

n

1

2
u̇2

n −
A

α
(un − un+1)

α
(1)

Now we will replace u by a continuous function and do all the continuum ap-

proximations in L before deriving the equation of motion.

We will define a continuous function φ interpolating through the u(n)’s.

The most obvious choice is φ(n) = un. Then we can approximate the potential

energy by writing un − un+1 = −φ�
(n) − 1

2φ��
(n) − . . . . (I am leaving out the

factors of a; implicitly each term in this expansion has a different power of
1
λ

since each derivative brings a factor of
1
λ . So this series is in powers of

1
λ .)

This approximation will get messy, though, because the next step is to raise

un − un+1 to the αth
power using the binomial theorem.

So, in order to get a simpler equation I’ll take the continuum limit differently.

Define φ by its derivative,

un+1 − un = φ�
(n +

1

2
). (2)

This way, the potential energy will be simple, but we will still have to expand

the kinetic energy in powers of
1
λ . That is easier to do. To invert Eq. (2) so that

we can express un in terms of φ, do a Taylor expansion of the left-hand- side

about n +
1
2 . This gives u�

(n +
1
2 ) +

1
24u���

(n +
1
2 ) = φ�

(n) (up to terms of order

1
λ5 ). Integrate both sides with respect to x, φ(n +

1
2 ) = (1 +

1
24

d2

dx2 )u(n +
1
2 ).

Now solve for u in terms of φ, u(n+
1
2 ) =

1

1+ 1
24

d2
dx2

φ(n+
1
2 ) or by expanding the

ratio in a geometric series:

u(n +
1

2
) ≈ φ(n +

1

2
)− 1

24
φ��

(n +
1

2
). (3)

Thus the kinetic energy of a sphere is
1
2 u̇2

n ≈ 1
2 φ̇(n)

2− 1
24 φ̇(n)φ̇��

(n) (I just kept

the first two terms here).

Now we can get the continuum formula for the Lagrangian by substituting

for u in terms of φ, and also replacing the sum by an integral. It turns out that

that replacement doesn’t lead to any correction terms (in our long-wavelength

expansion). For a finite sum, there are corrections,
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proximations in L before deriving the equation of motion.
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The most obvious choice is φ(n) = un. Then we can approximate the potential

energy by writing un − un+1 = −φ�
(n) − 1

2φ��
(n) − . . . . (I am leaving out the

factors of a; implicitly each term in this expansion has a different power of
1
λ

since each derivative brings a factor of
1
λ . So this series is in powers of

1
λ .)

This approximation will get messy, though, because the next step is to raise
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1

(the Euler Maclaurin sum formula), but the corrections are boundary terms.
We can drop them for an infinite chain. (Obviously the sum isn’t exactly equal
to the integral, but I think the corrections go as e

−λ, so they won’t appear if
you are expanding in powers of 1

λ .) Therefore

L ≈
� �

1
2
φ̇2 − 1

24
φ̇φ̇�� − 1

α
(−φ�)α

�
dx

≈
� �

1
2
φ̇2 +

1
24

(φ̇�)2 − 1
α

(−φ�)α

�
dx (5)

We will now derive everything starting from this Lagrangian–I don’t want to
make any more approximations because additional approximations will violate
conservation of energy. The equation of motion is

φ̈− 1
12

φ̈�� +
∂

∂x
(−φ�)α−1 = 0 (6)

Rewriting this equation (trying to get a form that is good for
numerics)...

Set ξ = −φ� and differentiate Eq. (6) to get an equation for ξ, (1− 1
12

∂2

∂x2 )ξ̈ =
∂2

∂x2 ξα−1. With the help of the Green function G(x, x
�) =

√
3e
−
√

12|x−x�| of
the operator L = 1 − 1

12
∂2

∂x2 , we can obtain an easier equation for numerical
integration:

ξ̈ =
√

3
�

e
−
√

12|x−x�| ∂2

∂x�2
ξ(x�)α−1 (7)

Conserved stuff.
We can derive conservation laws by using Noether’s theorem. There is one

thing that I don’t understand–there turn out to be two types of conserved
momentum. The obvious one is

�
dxφ̇(x), just the integral of the velocities

of all the particles. But the conserved thing corresponding to translations is
different

�
φ̇φ� + 1

12 φ̇�φ��. You can find the Hamiltonian by looking at time
translations:

H =
�

dx
1
2
φ̇2 +

1
24

(φ̇�)2 +
1
α

(−φ�)α (8)
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