## Shocks in fragile matter

#### Vincenzo Vitelli

#### Instituut-Lorentz for Theoretical Physics (Leiden)



## Shocks in fragile matter

#### Vincenzo Vitelli

#### Instituut-Lorentz for Theoretical Physics (Leiden)



Collaborators: L. Gomez, A. Turner, B. van Opheusden, S. Ulrich, N. Upadhyaya, M. van Hecke, R. van Loo, S.van den Wildenberg

## **Fragile Matter**



#### Polymer



#### Granular media



## What is the origin of fragility ?



#### Sound speed 6000 m/s

## The geometry of fragile objects





#### Sound speed 6000 m/s

#### Sound speed $\approx 0$

## Piston pushing at a constant speed







Gomez et al. PRL 2012

### Piston pushing at a constant speed



 $v_S(u_p)$  ?





#### Standard solid state approach

# H = harmonic + anharmonic





**Phonons: excitations of rigid matter** 

#### Strong non-linearities

# H = harmonic + anharmonic





Shocks: "excitations" of fragile matter

#### Strong non-linearities

## H = harmonic + anharmonic



#### Shocks: "excitations" of fragile matter

#### Contact Mechanics: Hertz law





The material the grain is made of satisfies **linear** elasticity

#### Speed of sound: granular chain



 $U \sim k \ x^{\frac{5}{2}}$ 

 $c \sim \sqrt{k} \delta_0^{\frac{1}{4}}$ 

 $k_{eff} = \frac{d^2 U}{dx^2} \bigg|_{x = \delta_0}$ 

 $\sqrt{k_{eff}} \sim \delta_0^{\frac{5}{2}-2}$ 







 $U \sim k x^{\frac{5}{2}}$ 

 $c \sim \sqrt{k} \delta_0^{\frac{1}{4}}$ 

 $\delta_0 \rightarrow 0$ 

 $c \rightarrow 0$ 

### um"

 $k_{eff} = \frac{d^2 U}{dx^2} \bigg|_{x = \delta_0}$ 

 $\sqrt{k_{eff}} \sim \delta_0^{\frac{5}{2}-2}$ 

#### Sound speed vanishes



#### Stable fronts: one dimensional model



$$L = \sum_{n} \frac{1}{2} \dot{u}_n^2 - \frac{A}{\alpha} (u_n - u_{n+1})^{\alpha}$$

$$\delta$$



Gomez et al. PRL 2012

#### An equation of motion for shocks

$$\frac{R^2}{3}\delta_{ttxx} - \delta_{tt} + \frac{4R^2\varepsilon}{m} [\delta^{\alpha-1}]_{xx} = 0. \qquad \alpha = \frac{5}{2}$$

$$\delta(x,t) = \delta_0 + g(\tilde{x}), \qquad \qquad \tilde{x} \equiv x - v_S t.$$

$$\frac{1}{2}\delta_{\tilde{x}}^2 + W(\delta) = 0$$





Gomez et al. PRL 2012

#### Non-linear waves and shocks



Thursday, March 7, 2013

#### Collapse on single master curve





#### Comparison to simulations



### Preliminary experimental results



#### Dashed line has the predicted slope



#### Dynamic crossover



#### Global non linearities: shear shocks in networks







S. Ulrich, N. Upadhyaya, B. van Opheusden, V.Vitelli, unpublished

#### Global non linearities: shear shocks in networks



### Global non linearities: shear shocks in networks



## Velocity of Shear Front



#### Conclusion

At the critical point sound propagates by shocks only

Away from the critical point the same shocks control energy transport for large dynamical strains







#### Disorder acts as an effective viscosity

$$\frac{R^2}{3}\delta_{ttxx} - \delta_{tt} + \frac{4R^2\varepsilon}{m} [\delta^{\alpha-1}]_{xx} = 0. \qquad \alpha = \frac{5}{2}$$

$$\delta(x,t) = \delta_0 + g(\tilde{x}), \qquad \tilde{x} \equiv x - v_S t.$$
$$\frac{1}{2}\delta_{\tilde{x}}^2 + W(\delta) = 0$$



$$L = \sum_{n} \frac{1}{2} \dot{u}_n^2 - \frac{1}{\alpha} (u_n - u_{n+1})^{\alpha}$$
 Lagrangian

$$u_{n+1} - u_n = \phi'(n + \frac{1}{2})$$

Taylor expand LHS



$$L = \sum_{n} \frac{1}{2} \dot{u}_n^2 - \frac{1}{\alpha} (u_n - u_{n+1})^{\alpha}$$
 Lagrangian

$$u_{n+1} - u_n = \phi'(n + \frac{1}{2}) \qquad u_n - u_{n+1} = -\phi'(n) - \frac{1}{2}\phi''(n) - \frac$$



$$L = \sum_{n} \frac{1}{2} \dot{u}_n^2 - \frac{1}{\alpha} (u_n - u_{n+1})^{\alpha}$$
 Lagrangian

$$u_{n+1} - u_n = \phi'(n + \frac{1}{2})$$

Taylor expand LHS

$$u'(n+\frac{1}{2}) + \frac{1}{24}u'''(n+\frac{1}{2}) = \phi'(n+\frac{1}{2})$$

Invert it



$$L = \sum_{n} \frac{1}{2} \dot{u}_n^2 - \frac{1}{\alpha} (u_n - u_{n+1})^{\alpha}$$
 Lagrangian

$$u_{n+1} - u_n = \phi'(n + \frac{1}{2})$$

Taylor expand LHS

$$u'(n+\frac{1}{2}) + \frac{1}{24}u'''(n+\frac{1}{2}) = \phi'(n+\frac{1}{2})$$
 Invert it

$$u(n+\frac{1}{2}) \approx \phi(n+\frac{1}{2}) - \frac{1}{24}\phi''(n+\frac{1}{2}) \qquad \text{rewr}$$

rewrite the kinetic term in L



$$L = \sum_{n} \frac{1}{2} \dot{u}_n^2 - \frac{1}{\alpha} (u_n - u_{n+1})^{\alpha}$$
 Lagrangian

$$u_{n+1} - u_n = \phi'(n + \frac{1}{2})$$

**Taylor expand LHS** 

$$u'(n+\frac{1}{2}) + \frac{1}{24}u'''(n+\frac{1}{2}) = \phi'(n+\frac{1}{2})$$
 Invert it

$$u(n+\frac{1}{2}) \approx \phi(n+\frac{1}{2}) - \frac{1}{24}\phi''(n+\frac{1}{2})$$

rewrite the kinetic term in L

 $\frac{1}{2}\dot{u}_n^2 \approx \frac{1}{2}\dot{\phi}(n)^2 - \frac{1}{24}\dot{\phi}(n)\dot{\phi}''(n)$ 

substitute in Lagrangian



$$L \approx \int \left(\frac{1}{2}\dot{\phi}^2 + \frac{1}{24}(\dot{\phi}')^2 - \frac{1}{\alpha}(-\phi')^\alpha\right) dx \qquad \text{Lagrangian}$$

$$u_{n+1} - u_n = \phi'(n + \frac{1}{2})$$

**Taylor expand LHS** 

$$u'(n+\frac{1}{2}) + \frac{1}{24}u'''(n+\frac{1}{2}) = \phi'(n+\frac{1}{2})$$
 Invert it

$$u(n+\frac{1}{2}) \approx \phi(n+\frac{1}{2}) - \frac{1}{24}\phi''(n+\frac{1}{2})$$

rewrite the kinetic term in L

 $\frac{1}{2}\dot{u}_n^2 \approx \frac{1}{2}\dot{\phi}(n)^2 - \frac{1}{24}\dot{\phi}(n)\dot{\phi}''(n)$ 

substitute in Lagrangian

