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Abstract

Homogeneously distributed and ring-shaped dilute granular systems with both
short-ranged (contact) and long-ranged interactions are studied, using Molecular
Dynamics (MD) methods in three dimensions.

From the technical and algorithmical side, a new algorithm for MD methods
is developed that handles long-range forces in a computationally efficient and
scientifically accurate way for a certain parameter range. For each particle, the
new method is a hierarchy of the known linked cell structure in combination
with a multi-pole expansion of the long-range interaction potentials between the
particle and groups of particles far away. It is shown that the computational
time expense reduces dramatically as compared to the straight-forward direct
summation method.

The interplay between dissipation at contact and long-range repulsive/attractive
forces in homogeneous dilute particle systems is studied theoretically. The pseudo-
Liouville operator formalism, originally introduced for hard-sphere interactions,
is modified such that it provides very good results for weakly dissipative systems
at low densities. By numerical simulations, the theoretical results are general-
ized to higher densities, leading to an empirical correction factor depending on
the density. In the case of repulsive systems, this leads to good agreement with
the simulation results, while dissipative attractive systems, for intermediate den-
sities, surprisingly show nearly the same cooling behavior as systems whithout
mutual long-range interactions. As most essential observation, we note that the
Hierarchical Linked Cell algorithm provides good results, as long as the thermal
energy is higher than the Coulomb/escape energy barrier between two particles.

Ring-shaped dissipative particle systems with long-range attraction forces in a
central gravitational potential are studied as an astrophysical example, using the
HLC algorithm. It is found that for a given attraction strength, weak dissipation
does not support clustering whereas strong dissipation leads to the formation
of moonlets. On the other hand, the space and density dependent viscous be-
haviour of ring shaped particle systems is investigated by solving an approximate
Navier-Stokes hydrodynamic set of equations for the density and by comparing
its behavior with dynamical simulations. We find that non-gravitating rings show
better agreement with theory than self-gravitating rings.
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1 Introduction

Many-body systems consist of many particles interacting with each other through
forces. Depending on the particle size1, we deal with systems that can be de-
scribed by a quantum-mechanical approach or by the laws of classical mechanics.
In the latter case, particles are macroscopic in size, and an inherent feature of
these particles is their capability to dissipate kinetic energy during mechanical
contacts.
In this thesis, we will exclusively deal with the simulation of macroscopic dis-
sipative particle systems. These particle systems are commonly referred to as
granular media and are – from the point of view of modern physics – complex
systems far from thermodynamic equilibrium since they do not obey the energy
conservation law. Earliest scientific research on granular media was carried out
by C.A. de Coulomb in the eighteenth century, G. Hagen (1852), O. Reynolds
(1885) and much more recent by R.A. Bagnold (1954).
Granular media occur in our daily life in the form of sand at the beach, phar-
maceutical pills, pebbles used for constructing streets and buildings, or simply
cereals we eat for breakfast. The behavior of granular media under gravity is
manifold, and it depends on its packing density whether it behaves like a solid,
a liquid [66] or a gas. Granular media with high densities are encountered in
industrial sintering where they form extremely rigid solids. In other processes,
the knowledge about the flow behavior of a more dilute granular medium such as
suspensions or pastes is important. Furthermore, the behavior of a dilute assem-
bly of granules under gravity controls, e.g., landsliding and debris avalanches.
In this thesis, we will mainly deal with dilute granular media, commonly referred
to as granular gases which are not subject to gravity (or at least subject to a
vanishing external net force).
Naturally occurring granular gases are planetary rings in which the gravitational
force towards the central planet acting on the particles is balanced by the cen-
trifugal force [11,31,37,87,130]. Vertically shaken or heated containers filled with
granules under gravity [29, 83] are another example of granular gases. The one
component plasma [7, 57] is composed of positive ions with a negatively charged
background of free electrons that are smeared out in order to maintain a neutral
net charge. These systems can be regarded as the elastic limit of a granular gas

1The most apparent difference between molecules and macroscopic granules is their size:
molecular size ranges between Angstroms (molecular hydrogen) and some hundreds of nano-
meters (polymeric molecules) whereas the size of granules can be observed between a few
microns (fine powders) and dozens of meters (icy rocks in planetary rings).
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and represent an important practical example for the simulated elastic systems
in this work.
Granular gases [13, 97] are dilute, thermodynamically open, systems for which
the mechanical energy is persistently removed by dissipative collisions amongst
the granules. In contrast to molecules, macroscopic granules will transfer kinetic
energy into their internal structure, where it is irreversibly lost, e.g., it is used for
the excitation of rotational and vibrational modes within the particles. Plastic
deformation and heating or even fragmentation of the particles can be the conse-
quence. Many collective phenomena due to the dissipative nature of a granular
gas are observed, e.g., cluster instability and self-organization [34, 70, 75, 81, 85],
deviation from the Maxwell-Boltzmann velocity distribution with constant and
velocity-dependent coefficient of restitution [12–14,114], phase transitions [30,94]
and the formation of vortices [68, 95].
All of the collective phenomena in molecular and granular systems are driven by
particle-particle forces of different range. One has to understand the nature of
these forces in order to go one step further and investigate the resulting phenom-
ena. In the following, we discuss the fundamentals of classical mechanics and see
how forces are regarded nowadays in natural sciences.

1.1 Forces in General

Forces have attracted our attention for centuries via the response of materials
or objects that are exposed to them. Since the seventeenth century the nature
of forces has been investigated scientifically (I. Newton, 1687 [91]; H. Cavendish,
1798). Newton distinguished between cause and effect of a force action. Every
force of any origin that is imposed on a freely moving object will have influence
on this object by accelerating it. The response of the object gives information
about the magnitude and direction of the acting force.
Effects of forces can be observed in our daily life and the underlying forces can
have various origins: a car that drives a curve experiences the centripetal force
which is directed towards the center of the curve (and is a consequence of the static
friction force (C.A. de Coulomb, 1781 [23]) between the tires and the ground) and
holds the car on its path.
A dropping stone hits the ground and experiences repulsion otherwise it would
penetrate. On the other hand, wind pushes a catboat in forward direction
by blowing into the sails. In both cases, repulsion forces due to a quantum-
mechanical exclusion principle (W.E. Pauli, 1924) are responsible for the mo-
mentum transfer between colliding molecules of the stone and the ground and
between those of the air and the sails.
Gravitational forces towards the center of the earth pull the stone towards the
ground and likewise prevent us from hovering into space and keep us on the
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Figure 1.1: All naturally occurring forces can be reduced to the four fundamental
forces in physics.

ground. The same force makes the planets orbiting around the sun and allows
for such huge cosmological structures like galaxies and clusters of galaxies. The
range of the gravitational force is infinite.
Ferrimagnetic materials with permanent magnetic moments like the small mag-
nets that pin shopping lists onto our refrigerators’ doors are attracted by materials
that contain iron via “magnetic” forces. On the other hand, electrically charged
objects experience forces when exposed to electric (C.A. de Coulomb, 1785 [24])
and magnetic fields (J.C. Maxwell, 1864; H.A. Lorentz, 1895). These electromag-
netic forces are responsible for, e.g., the occurrence of northern lights in polar
regions of the earth and are technically used, e.g., in eddy current-retarders in
modern trains for deceleration. Like gravitational forces, electromagnetic forces
are of infinite range. In praxis, however, electromagnetic foces will never be of
infinite range because of shielding. This leaves the gravitational force as the only
force of true infinite range.
Moreover, we perceive the power of chemical binding forces if we break solid ma-
terials apart or if we ignite chemical explosives like fireworks New Year’s Eve.
Chemical binding forces are much weaker than the nuclear binding forces which
make the atomic nuclei stable. The nuclear force is used and controlled by to-
day’s nuclear power plants and is also responsible for the energy production in
the centres of stars like the sun and appears as the most powerful force in nature.
In contrast to the gravitational and electromagnetic force, it is very short ranged
(H. Yukawa, 1935).
So far, we have spoken about a huge variety of forces which seem to be completely
different. But they can indeed be reduced to some few fundamental forces2.
Nowadays, theoretical physicists know four fundamental forces in nature (see
Fig. 1.1) which are completely different in origin, range and strength. The gravi-
tational force is the weakest fundamental force in nature. Only because it cannot
be screened it appears to us to be strong in everyday life. At very short dis-
tances, i.e., in case of molecular bonds between atoms, the electromagnetic forces

2An introduction to elementary particle physics and to the fundamental forces can be found
under http://www.cern.de.
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name van-der-Waals attractive contribution range

Keesom force permanent dipole – permanent dipole −p2
i p

2
j/(kTr7)

Debye force permanent dipole – induced dipole −p2
i αj/r

7

London force temporary dipole – temporary dipole −αiαjIiIj/
(
(Ii + Ij)r

7
)

Table 1.1: p is the permanent dipole moment, α the electronic polarizability and
I the ionization (excitation) potential of an electronically polarizable
molecule. k, T and r denote the Boltzmann constant, temperature of
the system and the separation length between both molecules. The
negative sign indicates the attractive nature of these forces – as con-
vention, repulsive forces are positive.

exceed the gravitational forces by many orders of magnitude. Thus, concerning
the breaking up and rearranging of chemical bonds during chemical reactions,
the gravitational force can be neglected.
Chemical binding forces and all mechanical (repulsive) contact forces seem to be
very different in nature but fundamentally they belong to the category of elec-
tromagnetic forces. Nuclear forces are the strongest forces and act only over dis-
tances comparable with the separation length of the nucleons, thus much shorter
than the size of an atomic nucleus. On the other hand, the weak force is respon-
sible for the β-decay of the neutron, with a range much shorter than that of the
strong force.
Disregarding gravity as well as weak and strong forces, in the following we will
focus on the category of electromagnetic forces which can affect the behavior of
matter and its various forms of appearance on any length scale, before we turn
to granular forces in subsection 1.3.

1.2 Intermolecular Forces

Intermolecular forces are electromagnetic or – more precisely – electrostatic forces,
which determine a variety of phenomena such as the behavior of solids and fluids.
The most famous electrostatic force is the conservative Coulomb force, which acts
between electrically charged particles as 1/rs, where r is the distance between
the two particles and s is a power that describes range and magnitude of the
potential. The strongest possible forces with s = 2, however, only act between
charged particles that are point particles (e.g., in ionic crystals) or appear as
point particles from far away. In fluids, such as real gases or aqueous solutions,
generally s > 2. Commonly, the value of s depends on both the spatial charge
distribution within the molecules involved in the interaction process and their po-
larizability. So, the interaction between permanent and induced dipole moments
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in molecules are the origin of the so-called van-der-Waals-forces (vdW) and the
range is typically s = 7. The corresponding equation of state for imperfect gases
(J.D. van der Waals, 1873) takes these into account, causing differences with the
perfect gas law. An application of the equation of state to biological systems can
be found, e.g., in Ref. [129]. In the following we will discuss the origin of these
forces and their s-values in more detail.
The interaction force between two polar molecules (with permanent dipoles pi

and pj) is called the Keesom-force (W.H. Keesom, 1921) and depends on the
strength of the dipoles and on the thermal energy kT in the system. At low
temperatures, the ability of molecules to orient themselves relative to each other
such that they experience attraction is increased. For high temperatures, this
ability is limited because the strong random movement of the molcules makes an
ordered orientation less likely.
Attraction forces between polar and non-polar molecules are different in power
but of the same range as the Keesom-forces. A molecule with a permanent dipole
moment, pi, can induce a dipole moment in a non-polar particle with polarizabil-
ity αj by displacing its spatial electronic distribution from the positively charged
nucleus. This results in an attractive interaction force, referred to as the Debye-
force (P.J.W. Debye, 1912) between permanent and induced dipole moments.
This force depends on the permanent dipole moment pi of the first and the elec-
tronic polarizability αj of the second molecule.
The third possibility of having attractive interactions with range 1/r7 stems from
the interaction between two temporary dipole moments, i.e., from the interac-
tion between two similar non-polar molecules, each with polarizability α. These
forces, e.g., explain the condensation of non-polar gases to liquids such as liq-
uid helium or liquid benzene and are stronger [58] than the forces mentioned
above. Quantum-mechanically, the spatial electron charge distribution around
the molecule changes rapidly due to the moving electrons and leads to a tem-
porary dipole moment. This induces an instantaneous dipole moment within a
nearby non-polar molecule. This leads to a mildly attractive interaction between
both molecules. It is obvious that the size of the electron cloud influences the
interaction strength and the larger the molecules the stronger is their polarizabil-
ity and the stronger the attraction. Besides this, also the ionization potential, I,
affects the attraction strength. These forces are called London dispersion3 forces
(F.W. London, 1927). Further investigation of the London dispersion forces was
described in Refs. [79, 80].
According to Ref. [32], all these types of forces are combined together to a net
vdW-force that corresponds to a 1/r7-term. The interaction force between such

3London chose the term “dispersion” because the polarizability and, thus, the interaction force
depends on many excitation frequencies (ionization potentials) of the molecule wherein
a temporary dipole is induced. If the local oscillating electrical field from the inducing
temporary dipole provides these frequencies (primarily located in the near infrared, visible
and ultraviolet part of the spectrum) the polarizability will increase strongly.
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separation length of two particles, each with particle radius a, at force
equilibrium.

molecules over the whole r-range is expressed by the Lennard-Jones-force (J.E.
Lennard-Jones, 1931 [61, 65]). This force contains the attractive vdW-term for
large distances, 1/r7, (see Tab. 1.1) and, additionally, the strong repulsive term
for short distances, 1/r13, that takes the quantum-mechanical exclusion princi-
ple into account. The Lennard-Jones-force (“LJ”) is also displayed in Fig. 1.2.
With approximately the same global force minimum, the LJ force approaches
zero much faster than the Coulomb force with increasing r. This illustrates the
different range of different forces we deal with. The very long-range of Coulomb
forces are a challenge for numerical simulations as it will be shown in section 3.
The vdW-forces are a small part of the huge variety of electrostatic forces that
contribute to the common category of attractive cohesive and adhesive4 forces.
Other attractive electrostatic forces act via hydrogen bonds [58,60] which are usu-
ally stronger than a typical vdW-bond and are, e.g., responsible for the unusual
behavior of water to have a lower density in its solid state than in its liquid state.
More examples are metallic bonds in metals and the covalent atomic bonds which
hold together the atoms within all molecules. On the microscopic level, both
cohesive and adhesive forces are of the same origin, i.e., they are electrostatic
intermolecular forces such as vdW-forces. Adhesive forces act between molecules

4from Latin: co + haerere - to cohere, to cleave, to stick together; ad + haerere - to adhere,
to stick, to be attached
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of different surfaces or phases (e.g., varnish sticks on the car’s surface or the
glue holds two pieces of paper together) whereas cohesive forces occur between
molecules of the same material. The interplay of both determines the wetting
behavior of surfaces (see Lotus effect which denotes a very weak wettability [17])
and the capillary forces in porous media. Cohesion alone, e.g., can explain the
surface tension of liquid surfaces.

1.3 Intergranular Forces

Analogous to the elastic exclusion forces, which are common for atoms in solids,
liquids and gases, as described above, colliding macroscopic particles, such as
grains, exert repulsive forces and – in addition – inelastic or dissipative forces [25,
98]. These forces reduce the kinetic energy of both particles from its pre-collisional
value by a factor which is in theory related to the coefficient of restitution, that
describes the material property. Energy loss is the result of the conversion of
kinetic energy into internal degrees of freedom of the grains, i.e., into heating
and plastic deformation, taking place at contact, see section 1.3.1. In contrast,
long-range forces are typically conservative – either attractive or repulsive, see
section 1.3.2.

1.3.1 Contact Forces

Contact interactions between macroscopic particles are understood as pairwise
mechanical forces, neglecting electromagnetic and gravitational (long-range) forces.
In the context of the fundamental forces discussed above, mechanical contact and
friction forces (atomic friction, G.A. Tomlinson, 1929 [123]) are grouped into the
category of electromagnetic interactions, since they are due to the electromag-
netic forces acting between the atoms of the outermost atomic layers of two bodies
in contact. This microscopic point of view, however, is not helpful to describe
intergranular forces between macroscopic particles as shown in the following.
The assumption of small deformation, no fragmentation, no significant heating of
the particles and the preservation of their spherical shape after many collisions
(which is not necessarily the case, see Ref. [15]) leads to simple models for treat-
ing mechanical interactions between macroscopic particles, both theoretically and
numerically. Some of these viscoelastic5 models are introduced now.
The complicated movement of both particles in their centre-of-mass system is

5Viscoelasticity means that during the collision particles dissipate kinetic energy (viscous
behavior) and after the collision they recover their spherical shape (elastic behavior). The
term “elastic” here is not to be confused with the case of elastic simulations in chapter 4
where the coefficient of restitution equals unity.
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spinning (torsion) friction
dissipation due to

normal deformation

dissipation due to

rolling friction

dissipation due to
tangential gliding /

collision plane

t
n

Figure 1.3: Geometry of collision of two spherical particles of identical radius.
The collision plane is perpendicular to the center-to-center vector.
Sliding, rolling and torsion “friction” is not applied in the simulation
of our particle systems in this thesis.

typically simplified by splitting motion into normal n and tangential t-direction
relative to their collision plane (Fig. 1.3). This leads to the consideration of the
coefficients of normal and tangential restitution. Normal dissipation can result
from plastic deformation, and tangential dissipation from Coulomb friction be-
tween the particles’ rough surfaces.
Two models which represent viscoelastic interactions in normal direction are
known as the linear spring-dashpot (LSD) and the non-linear Hertz-model with
various viscous forces. In the former the force varies linearly with the “defor-
mation” in normal direction and in the latter the force behaves non-linearly
[13, 50, 69, 98]. Both experiments [11] and theory [14] have shown that the resti-
tution coefficient depends on the normal relative impact velocity, i.e., it was found
that it decays with increasing impact velocity. In particular, it is shown [101] that
a constant coefficient is indeed inconsistent with the theory of dissipative bodies.
An analytical closed form for the velocity dependent normal coefficient of restitu-
tion which is based on the well-known Hertz-law can be found in Refs. [13, 114].
Many analytical results in continuum mechanics and kinetic theory of granular
systems simplify drastically if we assume a constant coefficient of normal resti-
tution. So, many numerical experiments with a constant coefficient using the
LSD and Hertz model were performed [34,76,82] in order to justify the simplified
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continuum results6. A more realistic model for normal contact forces using the
LSD and allowing for plastic deformation of the particles is proposed in Ref. [128]
and discussed in Refs. [71–74]7. In the latter articles, the model also takes into
account attractive adhesion forces in normal direction for very close particle en-
counters into account. The loading (particle penetration) and unloading process
(particle releasing) corresponds to a piece-wise linear, hysteretic, adhesive force
model in normal direction.
Tangential contact forces act in addition to the normal contact forces if both
particles have rough surfaces, see Fig. 1.3. We do not discuss in details of friction
forces, instead refer to literature dealing with rough particles and their rotation.
The original formulation of Coulomb friction can be found in Refs. [23, 25] and
for the tangential friction in simulations, we refer to Refs. [21,25,69,73,109]. Due
to the low density of granular gases, the relative motion of the particles and the
mean free path (as compared to the particle radius) are high enough in order to
expect mainly binary collisions. Since tangential forces are less important in the
dilute limit than in the case of dense gases, we use in this thesis only normal
dissipation forces by means of the simplest available model, the LSD.

1.3.2 Long-Range Forces

In contrast to tangential forces, in dry dilute granular systems intergranular long-
range forces are very important and act in addition to the mechanical short range
forces described in the preceding subsection, even when both particles are not in
physical contact anymore. In this sense, all the intermolecular forces briefly dis-
cussed in section 1.2 are denoted as long-range forces. Intergranular long-range
forces are also electromagnetic in nature [8, 22], i.e., they obey the laws of both
electrostatic and magnetic interactions. In the following, we focus on electrostat-
ically interacting granular materials only because the occurrence of electrically
neutral granular media in nature is the exception rather than the rule due to
the fact that collisional electrification (charging) is widely observed. Note that
gravitational long-range forces differ from s = 2 electrostatic forces in the sign
and are applied especially in astrophysics.
Electrostatically charged granular media can be found in many technical processes
in industry, e.g., granular pipe flow [131], electro-sorting in waste disposal process-
ing [92], electrophotography in print processes [20, 53], electrostatical synthetics
coating [63] and finally electrospraying of pesticides in greenhouses [2, 33, 88].
Electrostatically charged macroscopic solid particles can be obtained by procur-

6For the sake of simplicity, in this thesis we perform simulations with constant coefficient of
restitution only.

7In this model, the particle shape remains physically conserved but the repulsive force stops
acting before both particles detach and leads to the impression that the spheres have
plastically deformed.
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ring mechanical contacts between them [67, 90] under dry conditions. Triboelec-
trification8 is mostly applied but its theoretical fundamentals are poorly under-
stood. The electrification (charging) of materials by contact depends, of course,
strongly on the material properties, whether we deal with conductors, insulators
or semi-conductors. The reason for the strong electrification ability of insula-
tors compared with conductors can be explained by their weak conductivity for
electrical charges. In case of insulators, the induced charges cannot flow back
that easily from the insulator’s surface as compared to a conductor. That is why
one can induce charges on an insulator more and more by rubbing (repeatedly
contacting) whereas for conductors rubbing will not lead to higher electrostatic
charge than a single contact would. Finally, the intensity of the charge transfer
depends on the work functions of the materials, their conductivity and the geo-
metrical arrangement of the contact surfaces. For deeper understanding of these
material properties we refer to textbooks on solid state physics such as Ref. [62].
In the following, however, we do not consider the process how granular materials
are charged, i.e., the charge is supposed to be an inherent and constant property
of the particles.

1.4 Organization of the Thesis

In this work we deal with both the numerical and theoretical investigation of long-
range potentials in discrete many-body systems. One aim is the development of a
new algorithm for a Molecular Dynamics type of method. This algorithm should
be able to handle long-range interactions between the particles as accurate and
efficient as possible in order to compete with the traditional algorithms available
on the scientific “market”. The presented algorithm is based on the linked cell
neighborhood search, as proposed in Ref. [1], and hierarchically combines linked
cells together to superior cells. A multipole expansion of the charge (mass) dis-
tribution in the superior cells forms pseudo particles that act on the particle of
interest.
Furthermore, we will make an effort to extend the theory on short range forces
developed in Ref. [43] (this theory only takes into account mechanical collisions
between the particles), for long-range forces. In Ref. [111] a theory for 1/r re-
pulsive long-range potentials has already been derived from a phenomenological
point of view but as far as we know, a more rigorous theory on both repulsive

8from Greek: tribein - rubbing. There are triboelectric series of materials obtained by contact-
ing synthetics with each other and measuring the polarity after the electrostatic induction
process. An arbitrary material of the series will experience negative charging by contacting
a material listed above and positive charging by being in contact with a material listed
below. The charging effect is stronger the farther both materials are listed from each other.
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and attractive long-range forces is lacking. The third part of the thesis describes
the application of the theory to the results obtained through the simulation of
homogeneous particle systems and the application of the hierarchical linked cell
numerical method to ring shaped particle systems.

The organization of the thesis is as follows:

Chapter 2 considers the implementation of the hierarchical linked cell algorithm.
By means of examples of particle constellations far away from a test particle, we
will conclude in which way it is most efficient to carry out the multipole expan-
sion. This gives us information about the construction of the hierarchical linked
cell structure.
Chapter 3 contains an overview of the conventional algorithms for 1/r long-range
potentials used in many fields of research such as in astrophysics, biophysics or
medical sciences. We explain their functionality, advantages and disadvantages
and finally introduce the hierarchical linked cell algorithm as implemented.
In Chapter 4 we will consider the time evolution of rather small dilute dissipa-
tive particle systems in presence of both repulsive and attractive 1/r long-range
interaction potentials. We present a theory for predicting the time evolution of
these systems, assuming the systems to be homogeneous. The results of the nu-
merical simulations are compared with the theoretical results. The former results
are obtained by the straightforward but highly time-consuming method of direct
summation that generates most accurate results. Subsequently, the hierarchical
linked cell algorithm will be benchmarked and compared with the direct summa-
tion method.
Finally, in Chapter 5, the hierarchical linked cell algorithm is applied to the large-
scale astrophysical example of a ring-shaped particle system around a central
mass involving also the 1/r self-gravity potential of the ring particles. Ring-
shaped particle systems orbiting around central objects such as planets or stars
represent annular flows of granules with different orbiting velocities, depending
on the distance from the central object. Here, we focus on the macroscopic kine-
matic viscosity parameter of a dynamically broadening ring system composed of
many particles. How the interplay between dissipative collisions and long-range
attractive forces will affect the viscous behavior of such dynamical annular flows,
will be illustrated by a few examples.
After summary and concluding remarks in Chapters 6 and 7, the appendices pro-
vide the basic mathematical framework needed to derive the theoretical results
used.
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2 Long-Range Forces

In this chapter, long-range forces are introduced for particle pairs and then dis-
cussed, especially for particles, which can be grouped to so-called distant pseudo
particles. A multipole expansion of the masses (charges) is discussed by means of
simple particle test constellations. Finally, we introduce the physics of a simple
two particle collision in the presence of a mutual long-range potential.

2.1 Long-Range Forces in General

Two particle long-range potentials have the general form:

φij(rij) = −kcicj
1

rs
ij

, (2.1)

where s ≥ 1. Main subject of this thesis is long-range interactions with s = 1.
This corresponds to the (most challenging) longest possible range occurring in
nature and appears between charge and mass monopoles. Other naturally occur-
ring examples are molecule interactions with s = 3 and can be found between
dipole molecules that interact with a permanent dipole moment. Moreover, there
are also dipoles that are induced by other dipoles and the interaction law then
corresponds to s = 6. This interaction is also referred to as the mildly attractive
van der Waals–law.
In Eq. (2.1), particles i and j influence each other over a distance rij = |ri − rj |,
where rij is directed from particle j towards particle i, with the resulting force

F i = −∇φij . (2.2)

Therefore, F ij is “conservative”, because ∇×F ij = ∇×∇φij = 0. This means,
that the work done for moving a particle between two points is independent of
the path it is moved along but depends on its starting and ending points only1.
A particle j that starts travelling from infinity, r

(0)
ij = +∞, and approaches a

particle i up to the new distance r
(1)
ij has done some work against the potential,

which corresponds to a potential difference φij(r
(1)
ij )−φij(r

(0)
ij ). Defining that the

1In contrast, dissipative forces do depend on the length of the path, e.g., frictional forces
accumulate more work the longer the path along which they act.
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potential at infinite distances vanishes, i.e., φij(r
(0)
ij = +∞) = 0, the potential

difference leads us then to Eq. (2.1). Inserting Eq. (2.1) in Eq. (2.2) gives the
long-range force acting on particle i

F i(rij) = −skcicj
rij

rs+2
ij

. (2.3)

All vectors with two indices in this thesis will be directed to the particle indicated
by the first index, so that the action=reaction-rule, i.e., F ij = −F ji and thus
momentum conservation is guaranteed. k is a constant that distinguishes the
following two cases.

2.1.1 Gravitational Forces

For the force in Eq. (2.3) the particle quantities ci and cj are important. In
the case of gravitation (s = 1), we deal with masses, so cicj = mimj > 0.
Furthermore, the constant k has to be specified: according to our convention,
k = G = 6.67 · 10−11 m3s−2kg−1 > 0 leads to the fact that masses attract each
other gravitationally. G denotes the gravitational constant and was originally
experimentally found and introduced in Ref. [91]. Thus, Eq. (2.3) takes the
known form

F i(rij) = −G
mimj

r3
ij

rij (2.4)

and is called the Newton law; it describes situations where masses influence each
other. If one of the mass, say mi, is much smaller than mj , mj is assumed to be
immobile and the force acting on mi is F i = −mig. Here is g = Gmjrij/r

3
ij, the

gravitational acceleration towards the center of the mass mj .

2.1.2 Coulomb Forces

In Electrodynamics, the charges of the particles are the relevant quantity, i.e.,
cicj = qiqj. Equally charged particles, qiqj > 0, repel each other while unequally
charged particles, qiqj < 0, attract each other. It was experimentally shown that
k = −1/(4πε0) = −8.99 · 109 m3s−2kg(As)−2 < 0. Thus, Eq. (2.3) takes the form

F i(rij) =
1

4πǫ0

qiqj

r3
ij

rij (2.5)

and is called the Coulomb law in honour of its discoverer, see Ref. [24]. ε0 denotes
the permittivity in vacuum.
Both the Newton and the Coulomb laws are fundamental natural laws in physics
describing completely different natural phenomena while differing mathematically
in the sign of k only. By our convention, attractive potentials (k > 0), Eq. (2.1),
are always negative, repulsive potentials (k < 0) are positive.
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2.2 Close-by Single Particles

As we will see in section 3.6.2, close-by particles are defined to be inside the inner
cut-off sphere around the particle of interest (poi) and contribute separately to
the total force that acts on the poi.
The collision dynamics of two approaching (single) particles i and j with charges
or masses ci 6= cj, reduced mass, mred = mimj/(mi + mj), and radii ai 6= aj can
fully be described in a plane so that polar coordinates can be used. The energy
conservation law reads then

1

2
mred

(

v2
n + v2

ϕ

)

− kcicj

rij

=
1

2
mred

(

v′2
n + v′2

ϕ

)

− kcicj

r′ij
. (2.6)

The unprimed quantities are those a long time before the collision (if both parti-
cles are infinitely far away from each other) and the primed quantities are those at
the time when the particles collide. Then, it is rij → ∞, vϕ ≈ 0 and r′ij = ai +aj ,
v′

n = 0, v′
ϕ = 0. We obtain for the normal relative velocity

vn,cr =

(

2kcicj

mred(ai + aj)

)1/2

, (2.7)

which we can consider as a critical normal relative velocity. For the case of two
particles with a repulsive potential, the velocity barrier, vn,cr = vn,b, is the lower
limit for the particles’ relative approach velocity in order just to have a collision.
Inversely, for the case of two particles with an attractive potential, we have the
escape velocity, vv,cr = vn,e, which is the upper limit for the particles’ relative
separation velocity in order just to collide. Both conditions make only sense
if the condition for the maximum impact parameter, bmax, is fulfilled as well.
Two particles without long-range interactions will collide, irrespective how large
their approaching velocity, vn, is as long as their impact parameter, b, is below
the maximum impact parameter bmax = ai + aj , see Fig. 2.1 (a). The potential
dependent maximum impact parameter, derived from the conservation laws of
energy and angular momentum [51,99], reads

b

ai + aj

≤ bmax

ai + aj

=

(

1 +
kcicj/(ai + aj)

1
2
mredv2

ij

)1/2

=

(

1 −
E ′

pot

Ekin

)1/2

. (2.8)

In presence of long-range repulsive interactions, the potential energy at contact,
E ′

pot, equals the potential barrier, Eb, two approaching repulsive particles have
to overcome in order to collide. The impact parameter will be reduced, see Fig.
2.1 (b). In presence of attractive interactions, E ′

pot = Ee < 0, it will be extended,
see Fig. 2.1 (c), because the particles attract each other and the probability for a
collision is increased. Ee denotes the escape energy barrier, two particles have to
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vφ
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a

(reduced)
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Figure 2.1: The initial impact parameter, b, has to be less than the maximum
allowable impact parameter, bmax, for which a collision just can occur.
For repulsive particles, bmax is reduced (b), for attractive particles,
bmax is extended (c) compared with the case without long-range forces
(a). bmax is defined by Eq. (2.8).

overcome in order not to collide. In case of attractive particles (long-range forces
are gravitational forces due to the presence of masses), we have for mono-disperse
particle systems (mi = mj = m and ai = aj = a)

k > 0 : vn,e =

(

2|k|m
a

)1/2

and
bmax

2a
=

(

1 +
2km

av2
ij

)1/2

. (2.9)

In case of repulsive forces (long-range forces are electrostatical due to homoge-
neously charged particles), we have for mono-disperse and mono-charged particle
systems (qi = qj = q)

k < 0 : vn,b =

(

2|k|q2

ma

)1/2

and
bmax

2a
=

(

1 +
2kq2

mav2
ij

)1/2

. (2.10)

In this thesis, we use the following notations: the energy barrier for repulsive
particles is denoted by Eb = 1

4
mv2

n,b = |kcicj |/(2a) and the escape energy for

attractive particles is denoted by Ee = 1
4
mv2

n,e = |kcicj|/(2a). Note, that Eb and



Long-Range Forces 21

Ee denote the same potential energy of both particles at contact, rij = 2a. In
the numerical simulations in chapter 4, the 1/r-long range potentials are either
fully attractive or repulsive. For convenience, we use in both cases the same
nomenclature as for attractive masses. In particular, in our numerical simulations
we use Eq. (2.9) and set

k = −ceG , where ce < 0

for attractive forces, and use Eq. (2.10) and set

k = −cbG , where cb > 0

for repulsive forces. A very important quantity which gives information about
when a charged many-body system is dominated by its Coulomb forces or by
its thermal energy is the coupling parameter and represents the ratio of the
two-particle Coulomb potential and the system’s actual thermal kinetic energy,
Eb/mTg(t) and Ee/mTg(t), respectively. m denotes the mass of the particles in a
mono-disperse system and Tg(t) the actual granular temperature, we will intro-
duce later in chapter 4. High ratios describe a gas where the long-range forces
are prominent whereas low ratios represent gases which are dominated by kinetic
energy due to random motion of the particles and where the coupling of long-
range forces to the system is rather weak. In the thesis, the coupling parameter
or its reciprocal value is referred to as the order parameter.

2.3 Distant Pseudo Particles

Our model system has N particles. If we consider N − 1 particles distributed
around a selected poi i, all particles will contribute separately to the total force
on i and we can write the total long-range interaction laws as

φij

(

{rij}
)

= −kci

N−1∑

j

cj

rij
, and

F i

(

{rij}
)

= −kci

N−1∑

j

cj
rij

r3
ij

, (2.11)

where {rij} is the set of N − 1 distances. Let us consider now a subset of nα

particles such that all the distances, rjα, between the particles j within this
ensemble α and an arbitrary point P α close to the ensemble are much smaller
than the distance, riα, between particle i and P α, see Fig. 2.2 (a).
The main idea here is grouping many particles together to a pseudo particle α,
where only its distance to the poi has to be computed, but not anymore the
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Figure 2.2: A typical situation in a system of discrete particles. O is the origin
of the cartesian coordinate system, P α is a point close (or inside) the
particle ensemble α (dotted circle) and Rα denotes the geometrical
center of α. As a reference point with distance riα from i we can
either use P α 6= Rα (a) or P α = Rα (b).

distances between the poi and all ensemble particles separately.
The inverse distance 1/rij = 1/|riα − rjα| (for all j ∈ α) in Eq. (2.11) can
be expanded in a Taylor series which includes force contributions with different
range, i.e., different powers of 1/riα

φiα = φ
(M)
iα + φ

(D)
iα + φ

(Q)
iα + φ

(O)
iα + ...

F iα = F
(M)
iα + F

(D)
iα + F

(Q)
iα + F

(O)
iα + ... (2.12)

as found in many textbooks, e.g., Refs. [59, 108]. Generally, the power series
(2.12) are called “multipole expansions” of the long-range potential and force,
respectively, and their terms are referred to as monopole (M), dipole (D), qua-
drupole (Q), octupole (O) terms, etc. For convenience and for our purpose, one
can shift P α into the geometrical center of α, Fig. 2.2 (b), in order to simplify
some of the equations below. Then, riα = |ri−Rα|, where the geometrical center
of α is defined by

Rα =
1

∑nα

j |cj |

nα∑

j

|cj |rj , (2.13)

which is independent of the signs of the {cj}.
For a better illustration of the individual contributions from Eq. (2.12) at a
particle of interest, in Fig. 2.3 different cases of a charge distribution “far” away
from the poi are shown and will be discussed in the following. Configurations
with equally charged particles represent spatially dispersed monopoles, cases (1)
and (4), whereas those with unequally charged particles are spatially dispersed
dipoles or multi-poles, cases (2), (3), and (5), where the centers of charge of the
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positively and negatively charged particles are separated from each other. For
these examples, we place P α both at the center of charge, Rα, and at the position
of a member of α (shaded particle in Fig. 2.3), in order to study the influence
of the position of P α on the force computations as well. The force multipole
computation of Eq. (2.12) reads

F
(M)
iα = − kci

riα

r3
iα

nα∑

j

cj ,

F
(D)
iα = − kci

{

3riα(riα · pα)

r5
iα

− pα

r3
iα

}

= − kci
3riα

r5
iα

(

xiα

nα∑

j

cjxjα + yiα

nα∑

j

cjyjα + ziα

nα∑

j

cjzjα

)

+ kci
1

r3
iα

nα∑

j

cjrjα ,

F
(Q)
iα = − kci

{

15riα{riα · (Qα · riα)}
2r7

iα

− 3Qα · riα

r5
iα

− 3riαTr{Qα}
2r5

iα

}

= − kci
15riα

2r7
iα

(

x2
iα

nα∑

j

cjx
2
jα + y2

iα

nα∑

j

cjy
2
jα + z2

iα

nα∑

j

cjz
2
jα

+2xiαyiα

nα∑

j

cjxjαyjα + 2xiαziα

nα∑

j

cjxjαzjα

+2yiαziα

nα∑

j

cjyjαzjα

)

+ kci
3

r5
iα

(

xiα

nα∑

j

cjxjαrjα + yiα

nα∑

j

cjyjαrjα + ziα

nα∑

j

cjzjαrjα

)

+ kci
3riα

2r5
iα

(
nα∑

j

cjx
2
jα +

nα∑

j

cjy
2
jα +

nα∑

j

cjz
2
jα

)

, (2.14)

and contains the dipole moment, pα, and the quadrupole moments of α that are
combined in the quadrupole tensor, Qα. Eq. (2.14) is derived in appendix B in
detail. For the computation we do not use octupole and higher order terms. The
dipole moment is a vector sum and reads

pα :=
nα∑

j

cjrjα .
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Figure 2.3: Different 2D charge configurations on the left represent different par-
ticle ensembles α far away from the particle of interest on the right.
Table 2.1 shows the corresponding force contributions to the total
force acting on the poi . The shaded particles give P α (case B) while
the black dot indicates Rα (case A).

It depends on the charge-weighted separation length of the centers of negative
and positive charges. As soon as we deal with differently charged particles within
α, we have to take care of non-vanishing dipole contributions. If the separation
length is zero pα vanishes as well. According to our convention, the vector of the
dipole moment is always directed towards the positive charges. The next higher
order term is the quadrupole contribution of α which is represented by a set of
elementary sums

{qα
ab} =

nα∑

j

cjajαbjα ,

where ajα, bjα ∈ (xjα, yjα, zjα). There are nine possible combinations of ajα

and bjα which are used in literature to be combined to the symmetric quadru-
pole tensor Qα of rank 2 with six independent entries {qα

ab}. The expression
Tr{Qα} = qα

xx + qα
yy + qα

zz denotes the trace of the tensor Qα.

Examples (Special Cases)

For the sake of simplicity, we deal with |ci| = |cj | = 1 and k = −1 for computing
the different force contributions in 2D where all particles are arranged in a plane,
see Fig. 2.3. In table 2.1 the results are compared to the force, F ij, obtained
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F i (×10−3) F iα (×10−3) Error F
(M)
iα (×10−3) F

(D)
iα (×10−3) F

(Q)
iα (×10−3)

case A: P α(x, y) is situated in the center of charges of α, k = −1, |ci| = |cj| = 1, nα = 2, 3
(1) (23.89, 0) (23.82, 0) 0.3 % (22.16, 0) (0, 0) (1.657, 0)

(2) (7.361, 0) (6.998, 0) 4.9 % (0, 0) (6.998, 0) (0(∗), 0)
(3) (17.36, 0) (16.99, 0) 2.1 % (10.70, 0) (5.904, 0) (0.382, 0)
(4) (26.44, 0.498) (26.43, 0.490) 1.6 % (26.36, 0.412) (0, 0) (0.072, 0.078)
(5) (11.66, 0) (11.66, 0) 0.0 % (9.365, 0) (2.417, 0) (-0.124, 0)

case B: P α(x, y) is situated in the center of the shaded particle (within α), k = −1, |ci| = |cj | = 1, nα = 2, 3
(1) (23.89, 0) (26.12, 0) 9.3 % (31.25, 0) (-11.72, 0) (6.592, 0)
(2) (7.361, 0) (5.127, 0) 30.3 % (0, 0) (11.72, 0) (-6.592, 0)
(3) (17.36, 0) (15.87, 0) 8.6 % (15.63, 0) (3.906, 0) (-3.662, 0)
(4) (26.44, 0.498) (26.45, 0.539) 8.2 % (29.89, 1.494) (-3.821, -1.287) (0.386, 0.332)
(5) (11.66, 0) (11.65, -0.041) - (9.962, 0.498) (2.060, -0.345) (-0.377, -0.194)

(∗) quadrupole force contribution vanishes because of qα
xx = 0, according to Eq. (2.14)

Table 2.1: Forces calculated for the charge configurations displayed in Fig. 2.3, where P α coincides with Rα (case A)
and where P α is shifted to the center of the shaded particle (case B). Column 2 shows the results of direct
summation, Eq. (2.11), column 3 the results of the multipole expansion, Eq. (2.14), and columns 5 to 7 the
results of the monopole, dipole and quadrupole force terms separately. Column 4 gives the percentage of
difference between column 2 and 3.
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by direct summation, see Eq. (2.11). Let us pick out the one-dimensional case
(3) and follow the computation of the multipole contribution to the force: the
center of charge has the same y-component (y = 3) as the particles j. That is
why all elementary sums vanish that include y-components. According to Fig.
2.3, assume

ci = +1 , ri =

(
1
3

)

cj=1 = −1, rj=1 =

(
−10
3

)

cj=2 = +1, rj=2 =

(
−7
3

)

cj=3 = +1, rj=3 =

(
−9
3

)

,

where the length is measured in units of L. Thus, Rα = (−8.67, 3) and riα =
ri − Rα = (9.67, 0). Moreover, the vectors r(j=1)α = (−1.33, 0), r(j=2)α =
(1.67, 0) and r(j=3)α = (−0.33, 0) are directed to the particles j and contain the
information of their spatial distribution around Rα. The dipole and quadrupole
moments of this charge configuration are

pα =

(
pα

x

pα
y

)

=

(
2.67
0

)

and Qα =

(
qα
xx qα

xy

qα
xy qα

yy

)

=

(
1.1289 0

0 0

)

.

The force contributions up to the quadrupole term for case (A3) are

F
(M)
iα = − kci

riα

r3
iα

nα∑

j

cj ≈ (10.7 × 10−3, 0) ,

F
(D)
iα = − kci

3riα

r5
iα

xiα

nα∑

j

cjxjα + kci
1

r3
iα

nα∑

j

cjrjα ≈ (5.9 × 10−3, 0) ,

F
(Q)
iα = − kci

15riα

2r7
iα

x2
iα

nα∑

j

cjx
2
jα + kci

3

r5
iα

xiα

nα∑

j

cjxjαrjα + kci
3riα

2r5
iα

nα∑

j

cjx
2
jα

≈ (0.38 × 10−3, 0) .

The sum of these contributions is F iα ≈ (16.99×10−3, 0) as we can read off from
the table. Some general rules regarding a multipole expansion can be concluded
from the table:

(i) If the net-charge is zero,
∑nα

j cj = 0, then the monopole term vanishes,

F
(M)
iα = 0, see cases (A2) and (B2)

(ii) If all particles have the same sign and magnitude of the charges, the dipole

term vanishes, pα = F
(D)
iα = 0, provided P α = Rα, see cases (A1) and (A4)

(iii) If Rα lies in a plane with all particles j (all cases except (A4), (B4) and
(B5)) the out-of-plane components in the elementary sums vanish
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Figure 2.4: (Left) The error, e, shows the difference of the multipole contribution
from the PP method and is plotted against the distance between the
poi and the center of charge (mass) of the particle configuration (4)
of Fig. 2.3. (Right) Log-log plot of the force, computed by direct
summation (solid circles), by the monopole contribution only (open
circles) and by the quadrupole contribution (triangles).

If the total charge vanishes,
∑nα

j cj = 0, the monopole contribution does as well

(i). A typical example is the so-called ion-(permanent) dipole interaction2 which
is represented by the dominating dipole term in Eq. (2.14), i.e., force indeed goes
with ∝ 1/r3

iα because pα in the numerator remains constant. This case corre-
sponds to s = 2 in Eqs. (2.1) and (2.3).
Furthermore (ii), mono-charged particle distributions (all particles are either
negatively or positively charged) will lead to a vanishing dipole contribution
if P α is in the center of charge. Because then

∑
cjrjα =

∑
cj(rj − Rα) =

∑
cjrj −

∑
cj(

1
P |cj |

∑
|cj|rj) = 0 (the sums consider all nα particles in the

pseudo particle α).
According to case (iii), the out-of-plane components of the dipole and quadrupole
terms vanish if also the position of the poi is located within this plane.
Case (4) in Fig. 2.3 corresponds to the systems we simulate in chapter 4: all par-
ticles have the same cj , are either repelling or attracting each other with the same
mutual long-range force. For increasing distance between the poi and the pseudo
particle, we expect the error of the multipole force contribution decreasing. In
the left panel of Fig. 2.4, corresponding to the case (4), we have plotted the rela-
tive error, e =

∣
∣|F ij| − |F iα|

∣
∣/|F ij |, against the distance ratio, riα/〈rjα〉. For the

case that the quadrupole force contribution is included in the force calculation,

2In literature [58], the potential of a spatially fixed permanent molecular dipole of two unequal
charges q1 = q2 = qj with separation length l at the position of a point charge i obtained by
direct summation is φij = −kqiqj lcos(θ)/r2

iα = −kqiqjlriα/r3
iα = −kqip

αriα/r3
iα. This

corresponds (case (A2) in table 2.1) to the dipole contribution, φ
(D)
iα , of the multipole

expansion in Appendix B. Here, it is φ
(D)
iα 6= 0 and φ

(M)
iα = φ

(Q)
iα = φ

(O)
iα = ... = 0 because

we have no charges with equal sign. θ is the angle between the vectors l and riα.
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e drops stronger than for the case when it is excluded. As expected, multipoles
including quadrupoles show a smaller error than if we neglect the quadrupole
contribution. For small distances, e is large in both cases which results in a sig-
nificant deviation of the force calculation from the direct summation method, see
the inset of the right panel of Fig. 2.4. This is to be expected because at small
distances the condition for the multipole expansion, riα ≫ rjα, is not fulfilled
anymore. For the case riα ≫ 〈rjα〉, the monopole contribution is sufficient for
the force calculation because e is in both cases small enough in order to represent
the correct force. Note, that the case riα ≫ 〈rjα〉 also represents the possibility
of a small spatially dispersed multipole at moderate distances riα.

2.4 Summary

In this section we discussed long-range potentials and forces in general. We
focussed on the longest ranged 1/r potential in nature, like the attractive gravi-
tational force between large-scale mass points and the electrostatic forces between
small-scale Coulomb charges. The computation of these forces can be carried out
either by pair-wise summation or, alternatively, by a multipole expansion of the
mass (charge) distribution.
The former one we approached with a detailed discussion of a two-particle col-
lision in presence of long-range forces: for repulsive potentials, the relative ap-
proaching velocity of two particles has to exceed a minimum value, vn,b, in order
to overcome the repulsive barrier at contact. For attractive potentials, the rela-
tive separation velocity of two particles has to be smaller than a maximum critical
value, vn,e, in order to move back and to collide:

E−E

no collision collisioncollisionno collision

attractive regime repulsive regime

0 0E E
be

kinkin
(approach)(separation)

In the case of a multipole expansion, particles are grouped together and act as a
huge pseudo particle on a single particle far away. This can be done if riα ≫ rjα,
where riα denotes the distance of a particle i from a point close to the pseudo
particle α, and rjα are the distances of the particles inside the pseudo particle
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to the same point. As long as this condition is satisfied, the error in the com-
putation of the force exerted by a pseudo particle on a particle of interest (and
vice versa) is small. Therefore, an error estimation was carried out for some test
pseudo particles with different riα and rjα. For large distance ratios, riα/ 〈rjα〉,
(where 〈rjα〉 is the mean distance of the particles j from their center of mass) the
error becomes smaller and also the influence of the quadrupole contribution in
comparison to the monopole contribution becomes much less prominent. In this
case, the charge (mass) distribution will act on the poi as a monopole. For small
distances, both the rjα and the error become important. Furthermore, in case
of mono-charged particles it is sufficient to compute the monopole and quadru-
pole terms only if we set the point close to the pseudo particle into the center of
charge (mass) of the pseudo particle. Then the dipole contributions vanish and
the implementation will be less complex.
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3 Computer Simulation

In this thesis we strictly divide forces into “short” and “long” range interactions
because in computer simulations a “mechanical contact” is well-defined as we
will see in Sec. 3.1.1. In this sense, short-range forces are active if a mechanical
contact occurs. On the other hand, long-range forces are always active, even
when there is no mechanical contact. To summarize, we define a force between
two particles to be long-ranged if it is also active if there is no physical contact
of the particles. Accordingly, we define a force to be short-ranged if it is only
active during the duration of the mechanical contact.
Generally, due to the fact that most forces are defined by the distance between
two particles, we have to compute the distances between all particles and all
others. This turns out to be highly inefficient regarding the computational time
spent in computer simulations. For short-range forces, a way to speed up the
computation is to select only those particles which are close to the particle of
interest (poi). These particles will obviously represent the near neighborhood
around the poi and all other particles can be neglected. A problem arises if we
want to compute permanently acting (long-range) forces between the poi and
those particles which are outside of this near neighborhood. Then, we have to
consider all other particles regardless of their distances to the poi.
A way out of this dilemma will be shown in the following sections (from section
3.3 on) which present a review of the common modeling techniques for long-
range forces that reduce the number of distance computations without loosing
too much accuracy. There are different ways to reduce the number of distance
computations, which will be the main distinguishing feature of these techniques.
Finally in section 3.6, we will introduce a new algorithm for long-range forces,
the so-called Hierarchical Linked Cell algorithm, which is – on the technical and
algorithmical side – the heart of this thesis. However, we start with describing in
more detail the particle-particle method (see section 3.2), that will be bypassed
by these techniques. Next, however, we will introduce to the Molecular Dynamics
(MD) simulation method, in which all of these techniques can be implemented.

3.1 Molecular Dynamics

The force acting on a particle of interest is the most important quantity to be
computed in a Molecular Dynamics (MD) environment as we will illustrate in the
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following. MD simulations were originally designed for the simulation of the mo-
tion of molecules as an approach for the understanding of N -body systems. The
simulation provides the advantage to make any physical quantity “measurable”
at any time such as the kinetic energy or potential energy or even the number of
collisions per time unit. Such “measurements” can indeed hardly be performed
in real experiments where the experimentalist is limited to the extraction of a
few quantities only. Especially the way how MD works, i.e., the complete knowl-
edge of the trajectory of any particle at any time, provides the knowledge of the
dynamical situation of a certain particle in the system which is not possible at
all for a real experiment that deals with a number of discrete molecules of the
order of Avogadro’s number.
In MD simulations, the position and velocity vector of each particle, ri(t) and
vi(t), is calculated. With the additional knowledge of the particle mass, mi =
(4/3)πρa3

i , and radius, ai, we are able to solve Newton ’s equations of motion for
each particle i [1, 21, 44, 54], i.e.,

d2ri(t)

dt2
=

F i(t)

m
. (3.1)

Note, that in the simulations throughout this thesis we deal with mono-disperse
particles of the same species (mi = m, ai = a). ρ is the material density of a
particle and F i(t) denotes all forces acting on particle i at time t > 0.
In MD simulations, t is discretized in narrow time windows (time steps), de-
noted by ∆t which is taken constant here, and equation (3.1) will be integrated
numerically by different solvers [1, 102, 105]. In our MD code we use Verlet’s
algorithm [127] which is derived from a Taylor series of the position vector, ri,
up to the second order. The resulting algorithm that integrates the equation of
motion for particle i reads

ri(t + ∆t) = 2ri(t) − ri(t − ∆t) +
d2ri(t)

dt2
∆t2 , (3.2)

where we use Eq. (3.1) for the second time derivative of ri. Simultaneously, we
also compute the actual velocity of the particle,

dri(t)

dt
=

1

2∆t

(

ri(t + ∆t) − ri(t − ∆t)
)

, (3.3)

which we use for the computation of the total kinetic energy of the system. t
denotes the current time, t + ∆t is denoted by the time of the next and t − ∆t
the time of the previous time step. Advanced algorithms for solving Newton’s
equation of motion, e.g., solving the problem with means of multiple time steps,
are presented in [41]. As we can see from Eq. (3.2), the knowledge of the position
of particle i during the previous time step, of its current position and of the
total currently acting forces on i is necessary for computing the position at the
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new time. Knowing the new position, it is also possible to compute the current
velocity of particle i, see Eq. (3.3).
In the following, we will discuss the forces that can act on the particles and we
define to be short-range forces.

3.1.1 Contact Forces

Contact potentials between a particle i and a particle j are only active if the con-
dition for contact is fulfilled. How do we define a “mechanical” contact between
two particles in our computer simulation? While carrying out Eq. (3.1) in each
time step, it can happen that the distance between the two particles is smaller
than 2a. I.e., we will detect a contact when the inequality

δ(t) = 2a − rij(t) · nij(t) > 0 (3.4)

for mono-disperse particles is fulfilled. Here, rij = ri − rj is the distance vector
and nij = (ri−rj)/|ri−rj | is the unit vector, which are directed towards i. If the
inequality is fulfilled, the (positive) penetration depth (overlap), δ, is then related
to a repulsive interaction force between two granules which depends linearly on
δ. The model we use in our simulations corresponds to Hooke’s law and reads

F coll
i (t) = kδ(t)nij(t) (3.5)

in case of two particles in mechanical contact. k works as the spring constant
and is proportional to the particle’s material’s modulus of elasticity. Note, that
nij is perpendicular to the collision plane (see Fig. 1.3). The spring potential of
Eq. (3.5) is (1/2)kδ(t)2 and the dynamics of the overlap corresponds to a spring
like behavior. More details on this spring model describing a mechanical contact
can be found in the next subsection and in [69, 109].
Real contact forces between macroscopic particles are not only composed of re-
pulsive forces normal to the collision plane but also of forces tangential to the
collision plane, such as friction forces. So, they have to be added to Eq. (3.5) in
order to complete the collision force. In our simulations of dilute granular media
we focus on in chapter 4, collisions do play a minor role because they do not occur
very frequently as compared to the case of dense granular systems. So, we will
not consider tangential forces throughout the whole thesis, neither do we consider
the dynamics such as rotation of the particles that result from tangential forces.

3.1.2 Dissipative Forces

Similar to the repulsive contact forces, also dissipative contact forces only occur
when two particles collide mechanically. Dissipative forces between granules make
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the dynamical behavior of granular gases different from that of molecular gases.
Dissipative forces will extend the spring model in section 3.1.1 by the term

F diss
i (t) = −γ

[
vij(t) · nij(t)

]
nij(t)

= γ
dδ(t)

dt
nij (3.6)

and diminish the repulsive forces. vij(t) = vi(t) − vj(t) denotes the relative
velocity between both particles i and j. γ is a proportionality coefficient that
is of empirical origin and has to be chosen such that the desired dissipation is
obtained. With this dissipative force term and the spring term of Eq. (3.5),
the dynamics of the overlap, δ, behaves like a damped oscillation that can be
described by

d2δ(t)

dt2
+ 2µ

dδ(t)

dt
+ ω2

0δ(t) = 0 . (3.7)

with eigen frequency, ω0 =
√

2k/m, of the undamped oscillator and a viscous

term, µ = γ/m. Hence, the damped frequency is ω =
√

ω2
0 − µ2 and the contact

duration reads
tc =

π

ω
, (3.8)

which is half of the total time period of the (damped) oscillation. As soon as
the particles dissipate kinetic energy during their collision, the oscillation will be
damped and the solutions of Eq. (3.7) read

δ(t) =
δ̇(0)

ω
exp(−µt) sin(ωt)

δ̇(t) =
δ̇(0)

ω
exp(−µt)

[
− µ sin(ωt) + ω cos(ωt)

]
. (3.9)

δ̇(0) denotes the relative velocity of both particles at the beginning of the contact.
The collision model described by the ordinary differential equation Eq. (3.7) is
in literature referred to as the linear spring-dashpot model [69, 109]. For real
particles, the dissipated kinetic energy will be transformed into deformation and
heat within the colliding particles. In our simulations we do not allow for (elastic
or plastic) deformation and possible fragmentation and simply remove dissipated
kinetic energy from the system.
In simulations, large vij and γ can make the total contact force negative such
that attractive short-range forces do occur. To avoid this unphysical situation,
we therefore set in our MD code

F i(t) =

{[
kδ(t) − γ

(
vij(t) · nij(t)

)]
nij(t), for |F coll

i (t)| > |F diss
i (t)|

0, for |F coll
i (t)| < |F diss

i (t)|
. (3.10)

One can quantify the dissipative character of a particle-particle collision by means
of the so-called coefficient of restitution, r. It is defined as the ratio of the post (at
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time t = tc) and the pre-collisional (at time t = 0) velocities in normal direction
between two particles:

r = −
v

(n)
ij (tc)

v
(n)
ij (0)

= − δ̇(tc)

δ̇(0)

(3.9)
= exp

(

− πµ

ω

)

∈ [0, 1] , (3.11)

where r approaches zero when the collision is highly inelastic and equals unity
when the collision is completely elastic. Note, that v

(n)
ij (0) = −v

(n)
ij (tc). So, a sim-

ulation with r = 1 is referred to as an “elastic” simulation and does not lose any
kinetic energy during its time evolution. Elastic N -body systems correspond to
molecular gases, i.e., in particular, they exhibit a Maxwell-Boltzmann-distribution
of the particles’ velocities.
In the following, we will focus on the way how forces between molecules can be
treated in computer simulations, that are much farther ranging than contact and
dissipative forces.

3.2 Particle-Particle Methods (PP)

PP methods most straightforwardly calculate long-range forces. Actually, they
perform a pair-wise (or direct) summation of all N particles in the system in
order to obtain the forces from all other particles acting on the poi. For this,
two loops have to be performed. The result will be N(N − 1)/2 ∝ N2 force
calculations. For large N , this is an extraordinary large effort, the CPU (central
processor unit) has to spend in order to do all necessary calculations: i.e., we
have for the particle-particle method

tCPU ∝ O(N2) .

Many algorithms that compute long-range forces still use the PP method, but
only for a subset M ≪ N . This subset of particles represents the near neighbor-
hood of the poi and is chosen such that the time expense will be O(MN), for more
details see section 3.6.1. The rest of the particles will commonly be treated by
tree or grid-based algorithms (see next sections) which reduce the computational
complexity significantly. The PP method – even though prohibitively expensive
for large N – will be used to provide reference data for small N , to which the
new algorithm will be compared to.

3.3 Tree-Based Algorithms

Tree-based algorithms generally subdivide the simulation volume into hierarchi-
cally structured spatial regions wherein groups of particles are considered as
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Figure 3.1: A quad tree in 2D with 10 particles. (Left) The simulation volume
(root node) is split up into daughter nodes. The higher the particle
density the higher is the cell density. (Right) The quad tree, according
to Barnes and Hut [6], with its root node, daughter (parent) and leaf
nodes. The thick solid lines from root to, e.g., leaf node number 9
make up a twig in the tree.

pseudo particles in order to reduce the number of distance calculations. A hierar-
chical structure of regions in space can show self-similarity over some hierarchical
levels, i.e., large spatial regions (large pseudo particles) are made up of a certain
number of smaller spatial regions (smaller pseudo particles) of the same geome-
try. In the following we will describe the two most common and efficient methods
for long-range forces which are in a way based on a hierarchical (tree-like) split
up of the simulation volume.

3.3.1 Barnes-Hut

A very common tree algorithm is the Barnes-Hut algorithm, as it was first de-
scribed in [6] and successfully used in [4], and a multi pole expansion of the
particles’ masses (charges). The Barnes-Hut method finally assigns in 3D each
particle one cubic cell, i.e., in regions where the particle density is high, the cell
density will be high as well and the cells’ sizes are small.
Practically, in a first step, a cubic “root node” is generated enclosing all parti-
cles. Then, the first particle is taken and sorted into the root node. As soon as
a second particle is sorted in, the root node will be split up into eight equally
sized “daughter nodes”. Then, the next particle will be inserted in one of the
daughter nodes and it will be asked whether this daughter node now contains
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more particles. If so, the daughter node will be divided into eight equally sized
daughter nodes in turn and it now has become a “parent node”. If not, the
daughter node will not be divided into eight sub cells. This procedure goes on
until the last particle has been sorted in. Daughter nodes can thus be parent
nodes (for the next lower hierarchy level) at the same time. After inserting all
particles there could be cells left that contain only one particle and so are called
“leaf nodes”. They represent the ends of their twigs. Nodes without any particle
are not considered in the tree. This structure is called an octtree (a quadtree in
2D and a binary tree in 1D) or Barnes-Hut tree. A 2D example is displayed in
Fig. 3.1.
After all particles are inserted, the Barnes-Hut tree can be used to compute the
total mass (charge) and the centre of mass (charge) for all nodes in the tree in-
cluding leaf and daughter (parent) nodes. This is done by beginning with the
leafs and ending with the root node. The single particles within the leaf nodes
contribute to the total mass (charge) of their parent nodes. Traversing the tree
now in the opposite direction, as it was done while constructing the tree, has the
advantage in using the already available information of the daughter nodes for
obtaining information for their parent nodes.
Given this, the tree code comes to the most crucial part: how to reduce the
number of operations for the calculations of the long-range force that acts on
each particle. For each particle residing in a parent node of a certain level, the
tree code looks for neighboring parent nodes of the same level and calculates the
ratios

Θnode =
r

Lnode
, (3.12)

where r is the distance from the poi to the center of mass (charge) of the neigh-
boring parent node currently being investigated. Lnode denotes a measure for
the size of the parent node which could be the space diagonal of the cubic node.
Thus, each parent node will have its own Θnode and be compared to a pre-defined
Θcr-parameter. If Θnode > Θcr the parent node will be far enough away from the
poi in order to combine all particles in it as a pseudo particle that interacts with
the poi . If Θnode < Θcr the parent node will be too close to use it as a pseudo
particle and so its eight daughter nodes will be considered for calculating Eq.
(3.12) and it has to be decided again whether they are far or close. As long as
Θnode < Θcr, this procedure will be repeated for this parent node until we have a
leaf and finally the force of this single particle will act on the poi directly. The
Θ-criterion is obviously used for reducing the number of distance calculations for
the poi and has a similar meaning as the ratio riα/ 〈rjα〉 we used for the error es-
timation for the multipole expansion in Fig. 2.4. This procedure is done for each
particle for all nodes of the same level except for those nodes of the same twig
where the poi belongs to: in Fig. 3.1 (right) for the particle in leaf node 9, node
3 is not allowed to be considered, but the nodes 8, 14 and 15 are because they
belong to different twigs. If node 3 would be considered for the force calculation
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as well the particle in node 9 would face itself because node 3 contains already
information about the particle in node 9.
The choice of the parameter Θcr determines how strong the tree code is used as a
direct summation code. The larger Θcr the farther the nodes must be in order to
be used as pseudo particles. Due to the limitations of the simulation volume, the
criterion for considering pseudo particles cannot be fulfilled anymore for arbitrary
large Θcr and so, too large Θcr makes the tree code operating as a N2 method.
Now we can think about the real computation of the forces on the poi. They are
generally split up into three contributions:

• single particles that just collide or are about to collide with the poi within
the next time steps will act on the poi via short-range (contact) forces; this
collision administration can be done together with the treatment of nearby
particles in the above context

• the long-range force contribution of nearby particles is a superposition of
contributions by single particles; the distances between the poi and these
particles are used

• the long-range force contribution of faraway pseudo particles can be com-
puted using a multipole expansion of the masses (charges) of all particles
within the nodes (see appendix B).

The total computational time for constructing a Barnes-Hut octtree is governed
by the time cost for subdividing the root cell into daughter cells until in every
daughter cell there is exactly one particle, and is of O

(
N logN

)
[96]. The time

for calculating the force on one particle due to all pseudo particles determined
by the criterion (3.12) is of O

(
logN

)
[49] and, for N particles, we have again

O
(
N logN

)
. Altogether, for a Barnes-Hut tree, we therefore obtain a computa-

tional complexity of
tCPU ∝ O

(
N logN

)
.

Remarkably, a Barnes-Hut tree shows this time expense even if it deals with a
highly inhomogeneous problem. Because in regions with high particle densities
the octtree exhibits a finer structure with more twigs and leafs than in low-density
regions.

3.3.2 The Fast Multipole Method (FMM)

In common with the Barnes-Hut algorithm, the FMM subdivides the d dimen-
sional simulation volume hierarchically into parent and daughter cells. The num-
ber of the smallest cells will roughly be of the order of the total number of
particles, i.e., N ∝ (2d)R cells. R is the maximum refinement level corresponding
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r = 3

r = 2

r = 1

r = 0 root

Figure 3.2: (left) The refinement levels r of a 2D simulation volume. The high-
est refinement level r = 3 contains 64 multipole expansions about
their geometrical centres which make up hierarchically the multipole
expansions of the lower levels r = 2, 1, 0 according to a tree (right).
Every vertical line in the tree corresponds to one multipole expansion.

to the highest hierarchy of the tree with the finest cells. Furthermore, the FMM
tree does show a homogeneous distribution of cells all over the simulation volume.
This means, we only have in average one particle per cell. In Fig. 3.2, d = 2,
R = 3, and r is the refinement level.
In contrast to the Barnes-Hut method, we start to calculate the multipole ex-
pansions for each cell at the highest refinement level R to the geometrical center
of the cell and not to the center of mass (charge) of the particles within the cell.
The same is performed for the next lower refinement level R − 1 by shifting the
already in R obtained multipole expansions from the daughter cells to the centre
of their parent cells in R − 1 (multipole-to-multipole transformations). This is
done successively for all refinement levels until we reach r = 0 and finally obtain
one multipole expansion relative to the centre of the parent root cell. After this
descending in the tree we ascend in turn and will distinguish between near neigh-
bor cells (near field contribution) and so-called “well-separated” cells (far field
contribution). Well-separated cells do not share any face, edge or point with our
cell of interest. Their multipole expansions contribute via a local Taylor series
expansion to the cell of interest (multipole-to-local transformations). Then, the
local expansion of the cell of interest will be decomposed to its daughter cells by
shifting (local-to-local transformations). So, all these daughter cells of level, e.g.,
r = 3, “feel” later only the influence of cells in r = 2 which are well-separated
from their parent cells. But they do not feel the influence of some well-separated
daughter cells in the same level. These “missing” well-seperated daughter cells
will later contribute separately via a local-to-local transformation to the daughter
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cell of interest. Due to the fact that there are no well-separated cells at refinement
levels r < 2, see Fig. 3.2, we start ascending the tree from r = 2 and perform all
these transformations for all cells in all refinement levels up to r = R. Finally, at
r = R, the local expansions from the cells to the individual particle locations in-
side the cells have to be performed and from this the potentials and forces acting
on the particles can be computed. Additionally, at highest refinement level R,
the near field contributions come from direct summation between the poi inside a
daughter cell and single particles within the neighboring cells and the same cell.
The FMM was first introduced by [39, 40] wherein the authors make use of the
concept of grouping particles together to pseudo particles via multipole expan-
sions and of the concept of a hierarchical construction of cells, according to Barnes
and Hut. Here, the total complexity of the FMM is reported to be

tCPU ∝ O(N) ,

if the number of cells at r = R is really similar to the number of particles. This
would not be true for inhomogeneous systems and, thus, the high efficiency of
the FMM method only leads to an advantage for homogeneous systems. The
computational complexity depends also on the number of refinement levels R
and on the accuracy of the multipole expansions performed in each cell of each
hierarchy [113]. If we keep R small then there are more particles in a cell on
average and the FMM acts more as a direct summation method. On the other
hand, a small maximum refinement level reduces strongly the number of multipole
expansions to be performed. A comparison between the time expense of the FMM
and Barnes-Hut trees and direct summations in 2D and 3D is given in [96]. Note,
that in 2D the multipole and local Taylor series expansions and their up and
downward passing through the tree are performed completely different from the
3D case. The computation of the potential is in 2D proportional to log|rij| which
requires the calculation of the multipole expansions and their transformations by
means of the complex plane [40,96] and in 3D it is proportional to 1/|rij | where
they can be computed by means of spherical harmonics [38, 96,113].

Due to their strong capability to handle inhomogeneous many-body systems,
hierarchical tree codes were first developed in the context of astrophysics where
the gravitational problems require a treatment of high density gradients and
complicated structures such as the evolution of galaxies and colliding galaxies,
see [5] and references therein. In contrast, grid-based methods (see next Section
3.4) require a more or less homogeneous distribution of particles in order to run
highly efficient because in many cases there is only a homogeneous distribution
of grid nodes available. Another problem in astrophysics, where tree codes are
used is the evolution of globular star clusters [55], which are very old and nearly
spherical star systems in dynamical equilibrium orbiting around the nuclei of
galaxies.
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3.4 Grid-Based Algorithms

In addition to the discretization of time which most particle simulation techniques
have in common, grid-based algorithms also discretize space in order to obtain
far field contributions at the poi. The near-field contribution can additionally be
provided by direct particle-particle summation within a properly defined neigh-
borhood around the poi. For the far field contribution, space is divided into a
homogeneous distribution of nodes which contain the spatial information about
nearby particles. The way of computing the field at the grid points which acts at
the poi reduces the time expense significantly and is the distinguishing feature of
the two grid-based methods described in the following.

3.4.1 Particle-Mesh (PM)

The PM method allows for computing the far-field force contribution also in a
much faster way than direct summation methods. It makes use of a spatial grid
on which, e.g., Poisson’s equation ∇

2φ(r) = ̺(r), is solved by means of the Fast
Fourier Transform. In Fig. 3.3, we sketch how to consider the far-field contribu-
tion.
Given a set of particles (a), we introduce an appropriate grid (b) to the sim-
ulation volume and assign the particles’ charges (masses) to the grid nodes by
certain interpolation methods such as the “nearest grid point” or “cloud in cell”
(CIC) method. The latter is most popular [52] for such kind of problems. In
d dimensions the CIC method interpolates the charge (mass) of one particle to
the 2d nearest grid nodes. This is done by smearing out the particle’s charge
(mass) to a cloud with the same volume and shape of a cell. This cloud (with
its centre at the particle’s position) then overlaps with the cells around our 2d

grid nodes differently, corresponding to the distances between the particle and
its nearest grid nodes. From this, e.g., the farthest grid node will belong to the
smallest charge (mass) fraction of the cloud. This gives a suitable distribution of
the particle’s charge (mass) to each of the nodes. The fraction will then be added
to the node. This assignment has to be done for all particles and finally gives us
the total charge (mass) density, ̺(r), via a difference equation which represents
the discretized Poisson equation with grid spacing (∆x, ∆y, ∆z),

φi+1,j,k − 2φi,j,k + φi−1,j,k

(∆x)2

+
φi,j+1,k − 2φi,j,k + φi,j−1,k

(∆y)2

+
φi,j,k+1 − 2φi,j,k + φi,j,k−1

(∆z)2
= ̺(r) , (3.13)
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defined now on the grid nodes and not anymore at the particles’ locations. The
field, φi,j,k, corresponds to the potential at the grid points denoted by the triple
{i, j, k}.
In order to solve Poisson equation without integration (which would result in
a too high computational complexity), PM uses means of Fourier series (“dis-
crete Fourier transforms”, DFT). To be more precise, PM uses the Fast Fourier
Transforms (FFT) to solve because DFT scales with O(N2) while FFT is faster
in doing the transformations. Let us briefly describe how DFT works to solve
the difference equation (3.13) at the grid nodes (c) because FFT method is quite
similar.
The solution of Poisson’s difference equation consists of transforming the left and
the right-hand side of Eq. (3.13) into a Fourier series and of considering the num-
ber of nodes Nn as the number of samples taken for the Fourier transformation.
E.g., in x-direction we then have x = 2πnx/Nn,x and nx = 1...Nn,x samples. For
an arbitrary quantity q(x, y, z) = q(r) the Fourier transform is generally written
as

q(r)
DFT→ q̃(K) =

1

N

Nn,x−1
∑

nx=0

Nn,y−1
∑

ny=0

Nn,z−1
∑

nz=0

q(r)exp(−iK · r)

q(r + ∆r)
DFT→ q̃(K + ∆K) =

1

N

Nn,x−1
∑

nx=0

Nn,y−1
∑

ny=0

Nn,z−1
∑

nz=0

q(r)exp
(
− iK · (r + ∆r)

)
.

q(r) represents the quantities ̺(r) and φi,j,k = φ(r) in the space domain which
is transformed to q̃(K) that represents the quantities ˜̺(K) and φ̃(K) in the
wave number domain. K denotes the vector of the wave number. Carrying out
these transformations, one obtains for Poisson’s integral equation a simple alge-
braic equation in the wave number domain, (iK)2φ̃(K) = ˜̺(K). This is the
key issue that makes PM with FFT faster than O(N2). From this equation we
obtain the potential in the wave number domain which can be transformed back
to the potential in the space domain we are actually interested in. This backward
transformation is the inverse Fourier transform and represents a single step such
as the forward transformation. Once having obtained the potential at the grid
nodes, we solve the electrical (gravitational) field, according to E = −∇φ and
g = −∇φ, respectively. In order to interpolate back the potential values to the
particles’ locations (d) we can also use the CIC method as we used for assigning
the particles’ charges (masses) to the mesh nodes. After doing this, the forces
acting on a particle i are to be computed via F = qiE and F = mig, respectively.
After considering the other forces as well (e.g., near-field contribution, volume
force), the particles can now finally be moved by integration of the equations of
motion.
FFT was used in [19], amongst others, and is based on the splitting of the num-
ber of samples (grid nodes) into two partial Fourier series with an odd and an
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(a) (b)

(c)(d)

Figure 3.3: A 2D scheme to compute the far-field forces acting on a single particle
according to PM: (a) simulation volume with particles. (b) discretize
the space by construction of a grid with cells. Grid nodes are repre-
sented by the cell centres (crosses). Assign particles’ charges (masses)
to the grid nodes. (c) solve Poisson’s equation on the grid nodes and
get the potential field there. (d) interpolate the field to the original
locations of the particles and compute the resulting force acting on
them.

even number of samples. Its improvement in time expense is based on avoiding
the multiple computation of cancelling terms, which have to be computed by
DFT. The PM method was proposed by [26] and applied to various astrophysical
problems. Together with FFT it reduces the computational complexity to

tCPU ∝ O
(
NnlogNn

)
.

Note, that in many applications of the particle mesh method the number of grid
nodes is proportional to the number of particles, i.e., Nn ∝ N . A comparison
between tree methods and particle mesh methods (including FFT) concerning
computational expense and accuracy was presented in [64]. It was found that
generally PM methods are not very efficient for inhomogeneous particle systems
because in most simulations the spatial nodes are homogeneously distributed.
For inhomogeneous problems, tree codes are more advantageous.
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3.4.2 Multigrid Techniques

Multigrid techniques make use of several spatial grids (at least two) with different
mesh sizes that cover the simulation volume [125]. They are highly efficient in
solving elliptical (e.g., Laplace, Poisson) and parabolic (e.g., Diffusion) partial
differential equations by approximating the real solution successively. A brief
introduction to these techniques is given in [133].
The grid nodes that cover the simulation volume are considered as the space
points where the solution of the partial differential equation is iteratively deter-
mined. The problem can be represented by a system of linear algebraic equations,
i.e., by a matrix equation, for which the error of the solution vector is an expan-
sion into a Fourier series. The error will be smoothed by each iteration, differently
strong on grids with different mesh sizes. The idea of the multigrid technique
is to reduce the number of iterations and, thus, to speed up the algorithm by
introducing coarser grids because larger wave-length error components can be
smoothed there faster than on grids with smaller mesh size.
The following scheme sketches the multigrid procedure, using two grids of mesh
size h and 2h, respectively:

(A) convert the PDE into a discrete difference equation on a fine grid with mesh size h

↓
(B) guess an initial solution for the resulting system of linear equations and smooth it

↓
(C) compute the residual on the fine grid

↓
(D) compute the residual on the coarse grid (restriction) with mesh size 2h

↓
(E) solve residual equation on the coarse grid and get the correction

↓
(F) interpolate the correction to the fine grid (prolongation) and smooth it

↓
(G) add the coarse grid correction to the fine grid solution and repeat if necessary

Generally, (A) by discretizing Poisson’s equation ∇
2φ(r) = ̺(r) on a grid with

mesh size h we obtain a difference equation as in the case of PM, see Eq. (3.13),
where the spacing on a three dimensional cubic grid now is h = ∆x = ∆y = ∆z
and the triple {i, j, k} denotes the node of interest on the grid. Each node delivers
one difference equation resulting in a system of Nn (number of nodes) linear
equations, represented by Aφ = ̺, with A a matrix with elements {ap,q}, where
p, q = 1, ..., Nn, and ̺ the values of the source term at each node. Here, the
coefficients φi,j,k are combined into a vector, φ, with Nn elements {φp}. The
number of coefficients of each equation depends on how many neighboring nodes
around the φp(x, y, z) we take into account for the discretization.

Now, (B) we have to guess an initial solution vector, φ(m=0), and solve for all the
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nodes of interest in the current iteration step m

φ(m+1)
p =

1

ap,p

(

̺p −
p−1
∑

q=1

ap,qφ
(m+1)
q −

n∑

q=p+1

ap,qφ
(m)
q

)

,

where m + 1 is the next iteration. The solution is computed not only by the
values φ

(m)
p in the current iteration step but also by those φ

(m+1)
p computed up to

q = p−1 in the new iteration step. This iterative procedure is called Gauss-Seidel
and is stopped if the error, |φ(m+1)

p − φ
(m)
p |, is smaller than a pre-defined limit.

This finally provides us the smoothed solution {φ̃p}. The procedure smoothes
the high frequency modes of the error on a grid with spacing h more efficient
than the low frequency modes.
The difference between the exact but unknown solution and the obtained smoothed
solution, ζ = φ− φ̃ (i.e., the correction), has to be put into the matrix equation
Aζ = ̺ −Aφ̃ = r and is to be solved (C). r is the residual and considered now
as the new source term.
The residual has now (D) to be interpolated on the coarser grid with mesh size
2h (Restriction) and (E) solved there in order to smooth the solution (i.e., the
lower frequency components of the solution on the finer mesh). The point why
to introduce a second but coarser grid is that error modes with low frequency
on the fine grid will be those with high frequency on the coarse grid: they can
be smoothed on the fine grid with mesh size h slower than on the coarse grid.
Introducing coarser grids for smoothing low frequency error modes makes the
multigrid procedure so fast. If there are still lower frequency modes, we have to
introduce another grid with mesh size > 2h in order to reduce them there again
more efficiently, etc. The restriction operator maps the residual r on the fine grid
to the coarse grid. By using an optimal multigrid procedure, a computational
time expense of tCPU ∝ O(Nn) can be achieved, where Nn is the number of grid
nodes (i.e., the number of unknowns in the difference equation).
After smoothing the correction ζ on the coarse grid (F) we have to interpolate it
back to the next finer grid – again using an operator (Prolongation) – and smooth
the prolongated ζ there by some iterations (again with Gauss-Seidel). This has
to be done for each prolongation step.
Attaining finally again the correction on the finest grid by this procedure (G),

we have to add the correction to the initial guess, φ̃
new

= φ̃ + ζ, and smooth it
again thereafter. If necessary, use the new solution and start at (C). The steps
(A) to (G) are referred to as the V -cycle of a Multigrid procedure, see Fig. 3.4.
Finally, the number of iterations on the finest grid done for smoothing the so-
lution error is mainly responsible for the time spent by the multigrid algorithm.
So, an optimal multigrid algorithm will not spend significantly more time in find-
ing solutions on the nodes than it will thereafter do for the computation of the
forces on all N particles. Thus, the computational complexity will mainly depend
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Figure 3.4: V -circle of a 4-grid procedure. “G” denotes the starting point of
the multigrid procedure. Descending “\” and ascending lines “/”
correspond to restriction and prolongation operations, respectively,
each with subsequent smoothing “S”. An exact solution is computed
on the coarsest grid, “E”. “A” means that after descending back to
the finest grid we have to add the correction to the fine-grid solution.

linearly on the number of particles

tCPU ∝ O(N) . (3.14)

For molecular simulations, the long-range forces acting on a poi will be also split
up into the far-field contribution (done by multigrid techniques) and the near-
field contribution (done by the PP methods). The use of a multigrid technique
in combination with discrete particle systems is described in [122].

3.5 Hybrid Algorithms

Combining some of the above algorithms together can lead to optimum reduction
of the CPU time for performing the long-range forces between all N particles. For
special physical, astrophysical or biophysical problems very often PP methods are
combined with either tree or grid-based algorithms in order to treat the forces in
the near neighborhood of a particle accurately. The far-field contributions can
then be obtained by tree, PM or multigrid without loosing too much accuracy.
As an example, the combination of PP and PM is quite common and referred to
as the PPPM (or P3M) algorithm.
Other hybrid algorithms even combine tree codes with particle mesh codes in
order to obtain TreePM algorithms [3, 132, 134] and can also use adaptive time
steps [9]. This can be done for cosmological simulations for which the neighbor-
hood of one particle is not treated by PP but by a (modified) tree that takes
the strong clustering of particles due to gravitational instabilities into account.
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In addition, for larger distances, for which weaker density gradients occur, the
PM method is applied. Using a modified TreePM, a spectacular simulation was
performed in 2004, the so-called “Millennium Simulation” [120], which dealt with
about 21603 = 10.0776 billion discrete particles in order to simulate the evolution
of the universe from very early time, i.e., z = 127 1, to the present. The particles
simulated do not represent the visible amount of matter in the universe but rep-
resent the cold dark matter (CDM) which is thought to have strongest influence
on the structural evolution of the universe. Nowadays, one assumes that 80 % of
total mass in the universe consists of dark matter whereas the rest we can observe
by our eyes and optical telescopes.

3.6 The Hierarchical Linked Cell Method (HLC)

In this section we will introduce a new algorithm that uses the pseudo particle
concept described in section 2.3. However, the discrimination between pseudo-
particles and nearby single particles proceeds differently since we use the linked
cell neighborhood search (see next section 3.6.1) in a hierarchical structure. The
combination of both the hierarchical linked cell structure and the pseudo-particle
concept for treating long-range forces is new to the best of our knowledge and is
expected to present a technique that is competitive to the ones discussed in the
preceding sections.

3.6.1 The Linked Cell Neighborhood

In extended particle systems not every particle has to be checked for collision with
all other particles. If neighboring particles are too far from our particle of interest
(in the following denoted again as the poi) it will be redundant to check them for
contact with the poi because they will anyway not collide during the following
time steps. That is why we define a close neighborhood with neighboring particles
which are checked for collision only because these particles will most probably
collide with the poi during one of the following time steps. Defining an average
number M of neighboring particles within such a neighborhood, we will deal with
a number of operations which is less expensive than O(N2), namely O(NM) or

tCPU ∝ O(N) (3.15)

1The redshift, z, is a measure for cosmological distances. The farther galaxies are away from
earth the faster they will move away from us. Due to the Doppler effect, their spectral lines
will be shifted to longer (redder) wave lengths than it would be for closer galaxies. If z takes
large values the galaxy will be very distant and we will observe it as it was in the very past.
z = 127 corresponds to a distance of about 14 billion light years (close to the “birth” of the
universe) but was never observed in galaxies’ spectra.
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Figure 3.5: (a) A three dimensional linked cell neighborhood, including the cell
of interest and its 26 adjacent neighbor cells (front and rear cells are
shifted apart from the other cells). (b) Only 13 (of 26) neighbor-
ing linked cells are to be considered due to the successive counting
through the linked cells. (c) The particles outside (square) the linked
cell neighborhood do not interact with the poi whereas the particles
inside (circle) do – although both are equally distanced with sepa-
ration length s. This leads to an asymmetry in force computation.
(d) The introduction of an inner cut-off sphere around the poi avoids
these asymmetries because equally distanced neighboring particles in-
side the inner cut-off sphere will always interact with the poi. Here,
the largest possible radius is shown.

because for every particle in the system the neighborhood has to be analyzed. For,
say, N = 500 particles we actually have to perform N(N − 1)/2 ≈ 125, 000 com-
putations whereas for this proposed neighborhood method and a typical number
M = 15 of neighboring particles it will be reduced to NM ≈ 7, 500 calculations.
This is a significant reduction of operations that has to performed. The question
is now, how to define a near neighborhood of M neighboring particles?
In our hierachical linked cell code the simulation volume is divided into so-called
linked cells and by defining only the 26 adjacent cells around the cell of interest
(in the following denoted as coi) as the “linked cell neighborhood” which is il-
lustrated in Fig. 3.5 (a). Only the M particles therein are checked for collision
during the current time step whereas the rest will be ignored. Moreover, due to
the fact that we successively consider all cells in the system once as the coi and
construct for each of them the whole linked cell neighborhood, it is redundant
to consider all 26 adjacent neighbor cells. Effectively, we only consider 13 well
selected adjacent cells besides the coi as it is shown as an example in Fig. 3.5 (b).
This can be done because the 13 “missing” neighboring cells will consider the
current coi as one of their 13 neighboring linked cells if it is their turn to be coi.
Then, we have considered all particles with all others once inside the linked cell
neighborhood around the coi. In [89] we compared the efficiency of the method
of linked cells with other competitive neighborhood search algorithms such as the
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verlet list and the linked linear list. In [1] and [98] the linked cell method and
others are described very well and their possible computational implementation
is briefly sketched.
Technically, all M particles are combined in a linked list which is connected to
these neighboring cells. All particles that will enter the linked cell neighborhood
during the simulation will be stored in this linked list, others that leave will be
released from the list. That means, the list is a dynamical list with changing
size (changing M) as a function of time. This necessitates a periodic update of
the list. We will be on the safe side if we sort the particles into the list during
each time step because the neighborhood will change in each time step. But
doing this is a waste of time and we can do the update each z time steps if we
make sure that during the time interval [t, t + z∆t] the linked cell neighborhood
will not change drastically, e.g., that new particles from outside cannot enter the
neighborhood and even overlap with the poi without being detected. We have to
determine the time interval between two updates such that those particles with
highest velocities will not manage to enter the linked cell neighborhood from out-
side and collide with the poi during this time. Consequently, the update itself
must be done more often the faster particles move. So, in the code we determine
a critical length, (lLC − 2a)/8 (where lLC is the size of a linked cell and a is the
particle radius), that represents the minimal distance two particles have to pass
in order to cross one linked cell and collide. The maximum distance the fastest
particle would move during a time step is determined via vmax∆t, where vmax is
the maximum velocity in the system measured during ∆t. If the sum of max-
imum distances (accumulated over z time steps) exceeds the critical minimum
length the update will have to be done and, thus, we make sure that all particles
will be detected that are about to collide during [t, t + ∆t].

3.6.2 The Inner Cut-Off Sphere

Like the simulation algorithms described in the preceding sections, also the Hi-
erarchical Linked Cell structure (which we will introduce in section 3.6.3), must
distinguish between near and far-field contributions. As already mentioned in
Sec. 3.6.1, we can use the linked cell neighborhood, i.e., the 3d cubically arranged
linked cells (in dimension d), in order to allow for the computation of the near-
field contribution. All the particles in the linked cell neighborhood are combined
in a linked list which allows us to compute all their distances to the poi directly
in order to check them for collision with the poi. Simultaneously, we can also
use this linked cell neighborhood for the computation of the long-range potential
between all neighbors and the poi and all neighbors amongst each other. This
will lead to the near-field contribution to the total force acting at the poi.
However, due to the cubical shape of the linked cell neighborhood, the situation
can occur in which a pair of particles interacts via long-range forces but a third
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particle with exactly the same distance to the poi is just located outside the linked
cell neighborhood and experiences no long-range interaction at all. This situation
is illustrated in Fig. 3.5 (c) and provides an asymmetry in the force calculation.
We can avoid this asymmetry by introducing a so-called inner cut-off sphere, Fig.
3.5 (d), where the poi is situated at the centre. So, only those particles of the
linked list that are located within this sphere provide the near-field contribution.
On the one hand, the radius rico of the sphere must be as large as possible and
consider as many particles of the linked list as possible in order to provide highest
accuracy in the near-field force calculation. On the other hand, it is technically
not possible to construct a sphere that reaches over the limitations of the linked
cell neighborhood. So, we have to ensure that rico is such small that it never
reaches over the limitations whenever the poi is situated in the coi. We can fulfil
this condition if we choose for the radius the smallest linked cell size. For cubical
linked cells it is rico = lLC.

3.6.3 The Hierarchical Linked Cell Structure

The hierarchical linked cell code (in the following abbreviated by HLC) actually
belongs to the group of tree-based algorithms. The reduction of N2 is mainly
achieved by treating particle ensembles as pseudo particles in a hierarchical way.
The lowest hierarchy level, h=1, contains 3d basic cells (linked cells) that are
those cells which share a face, edge or vertex with the cell that contains the poi.
3d linked cells or (h=0)-cells make up one (h=1)-cell which in turn – together
with 3d-1 other adjacent (h=1)-cells – is again part of one (h=2)-cell. Moreover,
3d (h=2)-cells make up one (h=3)-cell. h is also the indication for the hierarchy
level we are currently interested in. We can continue this hierarchical structure
up to the maximum hierarchy level h = Hmax, obtaining larger and more distant
cells for higher hierarchies. A (h-1)-cell in each hierarchy level h represents one
pseudo particle and is characterized by the total mass (charge) and the centre of
mass (charge) of all (h-2) pseudo particles within this cell. This is shown in Fig.
3.6. So, we are combining 3d pseudo particles of level h to one pseudo particle of
level h+1. In case of PP methods the number of particles will increase steadily
if we move away from the poi. In contrast, in case of HLC we face always the
same number (= 3d − 1 = 26) of pseudo particles if we move away from the
poi. Moving away here means that we ascend the hierarchy structure to higher
hierarchy levels. For the HLC structure, this gives us a smaller number N that
leads to a reasonable reduction of the computational complexity. The full force
contribution on a particle i reads

F i ≈
Mico−1∑

j=1

F ij

︸ ︷︷ ︸

near−field

+

Hmax∑

h=1

3d−1∑

α=1

(

F
(M)(h)
iα + F

(D)(h)
iα + F

(Q)(h)
iα

)

︸ ︷︷ ︸

far field

, (3.16)
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Linked Cell neighborhood

centre of mass (charge)

(   =1)−cellhLinked (   =0)−Cellh

Figure 3.6: The total masses (charges) and centres of mass (charge) of particles
within 3d adjacent and cubically arranged linked cells are combined to
the total mass (charge) and centre of mass (charge) of one (h=1)-cell.
Likewise for the next higher hierarchy, 3d (h=1)-cells are grouped
together to one (h=2)-cell.

where Mico is a subset of the M particles of the linked cell neighborhood situated
within the inner cut-off sphere. The double sum considers the force contribution
of the 3d − 1 = 26 pseudo particles in Hmax hierarchies.
The following information summarizes the key data of the HLC structure in
general.

hierarchy level h:

number of (h-1)-cells:

number of linked cells
in one direction/within (h-1)-cell:

number of fringe cells
in one direction at one side
(see Sec. 3.6.4):

1≤ h ≤ Hmax ∧ h,Hmax ∈ N

3d

3h / 3d(h−1)

(3Hmax-1)/2

In order to express the reduction in computational time expense in terms of N ,
let us think about the number of time consuming computations to be performed
for one particle in order to calculate the far-field force contribution with means
of the HLC structure. If we build up the hierarchy until h=Hmax we will consider
(3d-1)Hmax pseudo particles that interact with the poi. For a given maximum
hierarchy level Hmax there are nd

LC = 3dHmax linked cells that make up the simula-
tion volume. Since the number of particles increases linearly with enlarging the
simulation volume we also can write N ∝ nd

LC = 3dHmax. From this, we see that
Hmax ∝ log3N and both the number of pseudo particles that act on the poi and
the number of computations scale like O(log3N). Therefore, the time expense
for all N particles can be considered as

tCPU ∝ O
(
N log3N

)
.
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Figure 3.7: A 2D example of the Hierarchical Linked Cell structure in presence of
non-periodic boundaries. The structure is built up to the hierarchy-
(Hmax=3)-level. A hierarchy-h-level contains 3d (h-1)-cells. The simu-
lation volume is plotted with solid lines whereas fringe cells are drawn
by thin dashed lines.

3.6.4 Non-periodic Boundary Conditions

As in most of the previously introduced methods for the simulation of particle
systems with long-range forces, it is also important to specify the boundaries. In
our HLC code it is possible to switch between non-periodic and periodic bound-
aries. If we deal with non-periodic boundaries we automatically activate rigid
walls that limit the simulation volume and elastically reflect particles bouncing
at the walls. While we use periodic boundaries in one part of this thesis where we
deal with homogeneous particle systems, in the other part we study ring shaped
particle aggregates (chapter 5) that require non-periodic boundaries.
Usually, there are areas within the simulation volume which are not covered by
the HLC structure that is built up around the poi. Non-periodic boundaries do
not consider the influence of particle ensembles on the poi that are located in
those areas. Due to the fact that the HLC structure is simply cut off if it reaches
over the boundaries of the simulation volume, a situation can occur in which at
least half of the simulation volume is not covered by the structure. This is the
case if the poi is somewhere close to a boundary as is displayed in Fig. 3.7. The
cell of interest containing the poi is here positioned directly at the boundaries.
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In the half space of the right hand side of the coi, all hierarchy levels are trun-
cated by the boundaries and one can imagine them to be arranged outside of the
simulation volume which is indicated by dashed lines.
The way of grouping (h-1)-cells together to h-cells leads to the necessity of fringe
cells located beyond the boundaries of the simulation volume. For the outermost
coi we have to add (3Hmax-1)/2 fringe cells in order to be able to consider the hi-
erarchy cells up to the Hmax-level around the coi in the familiar way. This means,
that we generally have to distinguish between two cases before constructing the
HLC structure: either a (Hmax-1)-cell has to be constructed completely inside or
partly (or even completely) outside the simulation volume.
Since (h-1)-fringe-cells do not contain particles, they will not contribute to both
the total mass (charge) and centre of mass (charge) of the larger h-fringe-cell.
Generally, the introduction of fringe cells is always required if we do not deal
with periodic boundaries.

3.6.5 Periodic Boundary Conditions

Here we briefly show how the HLC structure looks like in the presence of periodic
boundary conditions. Periodic boundaries make the (spatially limited) simulation
volume infinitely large by mirroring particles in a particular way. A poi very
close to the boundaries of the simulation volume feels a lack of neighbor particles
in comparison with the situation when it is in the middle of the system (in
the bulk) where neighbor particles are supposed to be everywhere. Periodic
boundary conditions fill up the neighborhood outside the simulation volume by
particles from the opposite side by shifting them exactly by the length L. This is
illustrated in Fig. 3.8 and is done there for the centres of mass (charge) of cells of
any hierarchy. Finally, every particle has its own hierarchical structure which can
reach over the boundaries of the simulation volume and contains there particles
as well, in contrast to the case of non-periodic boundary conditions for which the
fringe cells remain empty.

3.6.6 The Outer Cut-Off Sphere

A simulation algorithm that takes pair-wise particle interactions (section 3.2)
in a periodic simulation box into account has to consider all N particles within
the box once in a time step. If we deal with periodic boundary conditions we
have to introduce a cut-off radius roco around the poi, where only particles with
rij < roco are considered. Otherwise, without the introduction of a outer cut-off,
neighboring particles can be considered twice for the computation of the forces.
The diameter of the cut-off sphere (see larger circle in Fig. 3.8) must therefore
be 2roco = Lmin, i.e., the size of the shortest edge of the simulation volume, Lmin,
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simulation volume simulation volume

structure (inside the simulation volume)HLC

Figure 3.8: (Left) System with Hmax = 2 in 2D. The HLC structure outside the
simulation volume is constructed by shifting corresponding (h=0) and
(h=1)-cells from inside the simulation volume (separated from the
other cells) towards the correct locations. Dashed straight lines (ar-
rows) have the length L of the simulation volume. (Right) The same
as left but a system with Hmax = 3 in 2D and periodic boundaries are
shown only in one direction.

due to symmetry reasons2. Thus, the potential at rij = roco has to be truncated
and we can use for the long-range potential over the whole rij-range

φij

(

{rij}
)

=

{

−k
∑N−1

j=1
cicj

|rij | for |rij | < roco

0 for |rij | ≥ roco

. (3.17)

So, φij represents a superposition of the force contributions of almost N parti-
cles.
Supposing now the presence of pseudo-particles in the sense of the HLC algo-
rithm, the interaction sphere will cut through the largest (h=Hmax-1)-cells of the
HLC structure, compare Fig. 3.8. From the single particle’s point of view we
therefore have to decrease the influence of a pseudo particle on the poi because
all those particles that are situated outside of roco but belong to the pseudo parti-
cle are supposed to be neglected. Due to the fact that we cannot cut the pseudo
particles of the highest hierarchy level into pieces as we wish to do, we thus

2The potential is a central potential which decays radially according to Eq. (2.11). If we deal
with non-cubic linked cells the simulation volume will not be cubic as well. Therefore, 2roco

must be as large as Lmin in order to keep the outer cut-off sphere within the simulation
volume as a whole and, so, to sustain sphericity of the potential.
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decided to introduce a multiplicative weighting function for both the potential
and the force calculation, that takes the non-consideration of the particles into
account that are located outside the sphere. The weight function is constructed
such that the force contribution of the pseudo particle α sensitively depends on
the location of its center of mass (charge), riα, relative to roco. If |riα| = roco

the pseudo particle contributes to the force as if it would contain only 50 % of
the total number of single particles that it originally contains. If |riα| < roco or
|riα| > roco its contribution is clearly above 50 % and clearly below 50 % of its
original contribution, respectively.
We studied the influence of a weight function having these properties and, un-
fortunately, we finally did not see any improvement in the time evolution of the
systems. We will therefore not go into more details concerning the weight func-
tion. But we will keep in mind that – from that point of view – the HLC and the
direct summation method in section 3.7 are not really comparable because the
N2 method in fact neglects some particles whereas the HLC code considers all in
the form of (Hmax-1)-pseudo particles, provided that the HLC structure covers
all N particles in the system.

3.6.7 Computational Time

As we have already estimated in section 3.6.3, the time spent by the HLC algo-
rithm for computing the force contributions of the pseudo particles scales with
N like O(N log3N). In this section we will prove this estimation.
In the left panel of Fig. 3.9 we have plotted the processor time against the num-
ber of particles for constant volume fraction. As expected, the direct summation
method (squares) scales like O(N2) (upper dashed line). In comparison, the HLC
code using both Hmax = 2 (triangles) and Hmax = 3 (upside down triangles) scales
like O(N log3N) over the whole N -range. For small N , the construction of the
HLC structure (see Fig. 3.7 for wall boundaries and Fig. 3.8 for periodic bound-
aries) consumes relatively a lot of time dissembling the strong N -dependence of
the computational complexity. This gives a higher time consumption as expected
which becomes less and less dominant for increasing N , until the N -dependence
turns into a (N2)-scaling because of the increasing number of particles per cell
(see the numbers close to each triangle in the figure). E.g., the largest system for
which we have used Hmax = 2 even shows an averaged number of 69.5 particles
per cell. It is clear that if a linked cell contains too many particles the algorithm
becomes inefficient. This is why we have to switch to the next higher hierarchy
for rather small particle numbers N . In the panel we see that we apply Hmax = 3
for N & 10,000 and, thenceforward, tCPU indeed scales exactly with O(N log3N)
with increasing particle number. To summarize, for a given particle number N ,
we have to choose the appropriate Hmax in order to keep the computational time
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Figure 3.9: Benchmark3 for homogeneous systems including a mutual 1/r-long-
range potential using the Hierarchical Linked Cell algorithm. (Left)
Total CPU time, tCPU (in CPU-seconds), taken for 100 time steps
plotted against the particle number N . Solid symbols correspond to
periodic, open symbols to wall boundaries. Squares denote results
from direct summation, triangles denote HLC with Hmax = 2, upside-
down triangles denote HLC with Hmax = 3. The given numbers
correspond to the number of particles per linked cell for a given N and
hierarchy level. (Right) The computational time of some important
force-subroutines of the HLC in percent of the total CPU time plotted
as function of N in case of wall boundaries.

expense as low as possible. In the right panel of Fig. 3.9, we have plotted the
time expense of some subroutines of the HLC algorithm against N in percentage
of the total time, tCPU. Open symbols correspond to simulations where we used
Hmax = 2, black symbols to simulations where we used Hmax = 3. The subrou-
tine lcell_pforces() (circles) includes both the pair-wise summation of parti-
cles within the inner cut-off sphere and the particle-(pseudo particle) interactions
of all hierarchies up to Hmax. The routines hierarchy_2_mpforces() (squares)
and hierarchy_3_mpforces() (triangles) exclusively compute the force contri-
butions in the hierarchy levels 2 and 3, respectively, and their percental CPU
time decrease with increasing N . The decrease implies an increase of the per-
cental complexity of another force routine. This will be the pair-wise summation
in lcell_pforces() which makes it increasing (circles) with N . Because in-
creasing N (i.e., increasing the size of the simulation volume) and keeping Hmax

constant means an increasing linked cell size. This increases the radius of the
inner cut-off sphere, rico, wherein more particles will be treated pair-wise. The
result will be an increase of lcell_pforces() in percentage of tCPU, as shown

3The benchmark was performed on an Intel(R) Xeon(TM) processor with a 3.06 GHz CPU
and 512 Mb RAM.
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in the panel. All other routines not considered here (e.g., such as the ones that
construct the HLC structure taking into account periodic or wall boundaries) con-
tribute much less to the percental computational complexity, i.e., they consume
a constant amount of time, independent of N .

3.7 HLC versus PP

In this section we evaluate the results of the HLC code as we have introduced
in the last chapter. A way to do this, is to compare the results with those of a
code that has implemented the pair-wise summation of the forces, as discussed
in section 3.2. The implementation of the pair-wise treatment of the particles
is straightforward and provides the most accurate results. However, accurate
results by direct summation are obtained at the expense of computational time,
see section 3.6.7.
In the following, we will present the fast N logN HLC algorithm in comparison
with the accurate N2 algorithm. In this sense, we will check the inter-particle
forces and the time evolution of the temperature in a cooling granular gas with
r < 1.

3.7.1 Bulk Force State

In this section we investigate how the long-range inter-particle forces act. We
expect a behavior according to Eqs. (2.1) and (2.3). We perform a simulation
with N = 4913 and periodic boundary conditions. For the simulation we use both
the N2 method and the HLC algorithm. We let the system evolve in 9,995 time
steps and extract the force state of the bulk material from a snapshot thereafter.
Furthermore, we shift the force at the point r = roco such that it vanishes at the
outer cut-off radius, roco (see section 3.6.6), i.e., for the potential and the force
we obtain

φshifted(r) = φ(r)
(

1 − r

roco

)2

|F shifted(r)| = −dφ(r)

dr
+

(

dφ(r)

dr

)

r=roco

. (3.18)

In the left panel of Fig. 3.10 we show the repulsive long-range force between two
particles in a double linear plot as a function of the separation distance. The
solid curve corresponds to Eq. (2.3), the dashed line to the shifted force, see
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Figure 3.10: Force as a function of the inter particle distance. (Left) Eq. (2.3)
(solid line) and Eq. (3.18) (dashed line). (Right) Data from both
the N2 (large open circles) and the HLC algorithm (other symbols).
Single particle force contributions provide data coinciding with the
dashed line, pseudo particle force contributions are stronger and lie
above. Simulation specifications: N = 4913, ν = 0.076, cb = +2·107,
r = 0.85, Hmax = 3, roco = 0.01615. Data extracted from a snapshot
taken after 9,995 time steps.

Eq. (3.18)4. The inset shows the same but in a double logarithmic plot. The
right panel shows the results of the HLC code and the N2 algorithm in a double
logarithmic plot as well: in presence of a shifted potential, all those particles and
pseudo particles that are close to the cut-off, roco = 0.01615, act with a repulsive
force, F (r), on the poi that drops to zero. Single particle force contributions lie on
the dashed line. Pseudo particle force contributions lie above because they have a
stronger influence on the poi due to the fact that they are composed of many single
particles. The single particle contributions within the inner cut-off sphere (open
squares) lie on the line as expected. The force contributions of the 26 pseudo
particles in first hierarchy (solid circles) both lie on the line and on a line above.
This means, that the pseudo particles consist of one and two single particles,
respectively. The pseudo particles in second hierarchy show force contributions
(open diamonds) that are even stronger, i.e., the pseudo particles consist of more
than two single particles. Their contributions seem to be “quantized” which
only reveals that the number of single particles within a pseudo particle is also
“quantized”. In the maximum hierarchy level (Hmax = 3), the force contributions
(crosses) are strongest and show omitted distance domains while dropping to zero.
This is due to the geometry of the HLC structure containing the cubic pseudo
particles where distances between the pseudo particle and the poi simply cannot

4By computer simulations, we found that there is no significant difference in the time evolution
of a repulsive N -body system whether the mutual potential is shifted or not. Thus, we will
use in section 3.7.2 a non-shifted force and potential.
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be covered. If we divide the force contribution of each pseudo particle by the
number of single particles it contains, all the data will collapse onto the dashed
line. We have verified this but not shown here. The collapse leads us to the
conclusion that the HLC code provides correctly computed forces between the
HLC pseudo particles and single particles in presence of periodic boundaries.

3.7.2 Temperature

In this section we evaluate how well the results of the HLC code coincide with
those of the direct summation method. Like every model that claims a vast
agreement with “reality” (here represented by the N2 method), also the HLC
code will not provide full agreement.
The simulation specifications are as follows: we do not consider a cut-off sphere
for the HLC code as discussed in section 3.6.6, nor do we consider a shifted
potential for both the HLC and the N2 code as expressed by Eq. (3.18) and use
periodic boundary conditions. For the purpose of evaluation, we anticipate some
results from chapter 4 and will refer to this chapter as soon as we need more
information.
We will evaluate the quality of the results of the HLC code by focussing on the
time evolution of the thermal energy of a dissipative system with both repulsive
and attractive long-range forces. Figs. 3.11 and 3.12 show the double logarithmic
plot of the decaying thermal energy, mTg(t), in units of the present long-range
potential at contact, Eb or Ee (see Sec. 2.2), plotted against time, t, for different
densities, ν. In the repulsive case, Fig. 3.11, we clearly see that the HLC results
significantly deviate from the results obtained by the N2 method as soon as the
thermal energy drops noticeably below Eb. The horizontal line indicates the order
parameter, mTg(t)/Eb, as being unity. So, we can rely on the results of the HLC
code as long as mTg(t) & Eb. Surprisingly, for high densities (ν = 0.152, bottom
panels), the limit line of confidence can be shifted towards lower values than
mTg(t)/Eb = 1.
Moreover, the HLC code can distinguish between two ways of force calculation:

Monopole Force Contribution Only. We truncate the Taylor series expan-
sion of Eq. (2.12) at the dipole term, φ

(D)
iα and F

(D)
iα , respectively. The dipole

contribution itself vanishes because we implemented the force contributions such
that it is P α = Rα (cf. Fig. 2.2 and appendix B). So, in Fig. 3.11, we present
the monopole force contribution only by solid squares (“HLC (H2) m”).

Monopole & Quadrupole Force Contribution. In this case, we truncate
the Taylor series expansion of Eq. (2.12) at the quadrupole term, φ

(Q)
iα and F

(Q)
iα ,

respectively. I.e., for the simulations in Fig. 3.11, both the monopole and the
quadrupole term contribute to the force computation (“HLC (H2) m+q”).
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Figure 3.11: The repulsive case: comparing the HLC algorithm (“HLC”) with the
standard particle-particle method (“N2”, solid circles). HLC with
monopole contribution only (“m”, solid squares) and additionally
with quadrupole contribution (“m+q”, open squares). From top
to the bottom: densities 0.010 and 0.152. (Left) For the repulsion
strength cb = +2 · 107. (Right) For the repulsion strength cb =
+2 · 108.

From Fig. 3.11 we see, that the results provided by direct summation are sup-
posed to be most accurate, and the order parameter has decreased strongest for
a given time if we look at the domain where mTg(t)/Eb < 1. So, the results
of the HLC code show a less strong decaying order parameter, resulting in a
weaker cooling behavior, whatever multipole contribution we applied. In the re-
pulsive case, the HLC code appears to provide a weaker long-range potential. As
expected, the code including both the monopole and quadrupole computation
(open squares) provides results that are closer to those of the N2 code than the
HLC code without quadrupole contributions.
The same “improvement” we see for the attractive case5 in Fig. 3.12. In contrast

5In attractive dissipative particle systems, the kinetic energy decays until the system becomes
strongly inhomogeneous (for this, we refer to section 4.4) and the transition is indicated by
a sudden increase of the kinetic energy.
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Figure 3.12: The attractive case: comparing the HLC algorithm (“HLC”) with
the standard particle-particle method (“N2”, solid squares). HLC
with monopole contribution only (“m”, open squares) and addition-
ally with quadrupole contribution (“m+q”, open circles). (Left) For
the density 0.010. (Right) For the density 0.152.

to the direct summation method, the HLC code shows an earlier increase of the
order parameter, indicating an earlier transition from the homogeneous to the
inhomogeneous regime.
In contrast to the repulsive case, for the attractive case, the HLC structure pro-
vides a stronger mutual potential that makes the transition regime setting in
earlier in time. Furthermore, just like in the repulsive case, the HLC code in-
cluding both mono and quadrupole terms provides a little “improvement” of the
results, i.e., the rapid increase of the order parameter is slightly delayed (open
circles) towards the N2 results as compared to using the monopole contribution
only (open squares), see both panels of Fig. 3.12. Thus, the implementation of
the quadrupole contribution provides improved results, as expected.

3.7.3 Error Estimation

In this subsection we will estimate the error of the force calculation made by the
HLC code due to the geometrical arrangement of the pseudo particles. We will
use the geometrical specifications of a typical simulation of N = 1000 particles
as performed in the preceding sections. The length of the simulation volume is
L/lLC = 9 and we choose a density of ν = 0.152.
We assume that the distance ratio, riα/ 〈rjα〉, is almost independent on the num-
ber and spatial distribution of the particles. In particular, the error, e, is only
dependent on the distance ratio but not dependent on the choice of cb and m.
This means, particle constellations with a differently strong long-range force con-
tribution on the poi, but with the same distance ratio, will give the same error
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hierarchy 1 hierarchy 2

direction riα/lLC 〈rjα〉 /lLC 〈riα〉 /lLC 〈rjα〉 /lLC

(1 0 0) 1.0...1.5 0.16 2.5...3.5 0.5
(1 0 1) 1.0...2.1 0.24 3.5...4.9 0.7
(1 1 1) 1.0...2.6 0.29 4.3...6.1 0.9

riα/ 〈rjα〉 6.7 5.9

“m” “m+q” “m” “m+q”
e 0.022 0.006 0.028 0.008

Table 3.1: Typical distances, riα, between a pseudo particle α and the poi i,
and between the particles in α and α’s center of mass (charge), rjα,
in units of a linked cell size, lLC, in different direction of α from i.
Different directions provide different distances, which we consider for
the computation of riα/ 〈rjα〉. e is the error of the force computation by
the HLC code as compared to the N2 method for both the monopole
contribution excluding the quadrupole term (“m”) and including it
(“m+q”).

for the monopole and quadrupole contributions. So, although the particle con-
stellation we used for the error estimation of the test particle configuration (see
case (4) in Fig. 2.3) is different from that in a typical simulation, we can confer
the error estimation in the left panel of Fig. 2.4 on the HLC results. From table
3.1 we can determine the typical distance ratios, riα/ 〈rjα〉, for hierarchy 1 and 2
of a HLC simulation. Conferring these distance ratios on the left panel of Fig.
2.4, we can extract the error made by the force computation for hierarchy 1 and
2 both including and excluding the quadrupole terms. The resulting e is given
in the last line of the table. For calculating the distance ratio, we take the mean
distance obtained by the three possible arrangements of the cubic pseudo particle
relative to the particle of interest: along the edge of the cell of interest in (1 0 0)
direction, along the face diagonals of the coi in (1 0 1) direction and along the
space diagonals of the coi in (1 1 1) direction. The direction notation corresponds
to the notation according to Miller’s indices that are commonly used in solid state
physics. We see that hierarchy 2 can contribute a larger error than hierarchy 1
although the corresponding pseudo particles are farther away from the poi. As we
can see, in the worst case, errors of the order of 3 % in the monopole force con-
tribution of hierarchy 2 can occur and might lead to the deviations between the
results, seen in Figs. 3.11 and 3.12, as soon as the particles’ long-range potential
becomes strong as compared to the actual system’s thermal energy.
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3.8 Summary

An intuitive approach for calculating long-range forces is to compute for all par-
ticles the interaction force with all others. This requires a direct summation of
the forces of all particles acting on a poi. But this requires a computational com-
plexity of O(N2) which is not acceptable for large particle numbers N . Therefore
many techniques have been invented that scale down the computational time to
O(N logN) or even to O(N). These techniques can be divided into two main
categories:
(i) where distant particles are grouped together to pseudo particles in a tree-like
hierarchy and then act on each particle, and (ii) where all particles are smeared
out over the whole simulation volume and their potential is evaluated on a grid.
Once obtained all the forces acting on each particle by either method (i) or (ii),
a Molecular Dynamics environment will be able to integrate Newton’s equations
of motion by means of an adequate integration scheme such as Verlet’s algorithm
in our case.
Another algorithm that provides the long-range forces on the particles is the Hi-
erarchical Linked Cell algorihm (HLC) we incorporated into an MD environment.
The HLC is based on the linked cell structure which is a standard neighborhood
search algorithm. The reduction in computational time is achieved by consid-
ering the particles in linked cells as pseudo particles and by combining them
hierarchically up to larger pseudo particles. Cells of different hierarchies repre-
sent differently large pseudo particles at different distances to a poi.
The computational time required for the HLC code was found to be O(N log3N)
theoretically and numerically for homogeneous systems. As an example, a typi-
cal simulation time of 9,000,000 time steps, performed by an N2 simulation with
N = 5832 particles, takes approximately 235 days wall-clock time on an Intel
single processor with a 3 GHz CPU. Using Hmax = 2, it will take about 166 days
and with Hmax = 3 about 26 days, employing the HLC method. The results of
the HLC code agree with those of the direct summation code for the repulsive
case as long as the condition mTg(t) & Eb is fulfilled. As soon as the thermal
energy of the system drops significantly below the mutual repulsive potential at
contact, the HLC code leads to weaker cooling, see Fig. 3.11. This observation
is independent of the potential strength and density of the system. The same we
found for the attractive case but not for such low temperatures. To summarize:
for the same mTg(t), HLC provides better results for smaller Eb (Ee). Finally,
the additional use of quadrupole terms for the force computation shows little
improvement in both the attractive and the repulsive case.
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4 Dilute Homogeneous Particle Systems

In this chapter we will focus on dilute homogeneous particle systems with both
long-range repulsion and attraction forces and investigate the interplay between
dissipation and long-range forces. In order to obtain accurate results from the
simulations, we make use of the straight-forward direct summation method, where
each particle interacts with all other particles. This, of course, limits us to small
particle numbers.

4.1 Fundamental Properties

In the following subsections, fundamental facts and properties which are impor-
tant for the description of granular gases such as “granular temperature” and
“pair distribution function” are defined and explained in order to be prepared
for the subsequent investigation of dilute granular media: in section 4.2 granu-
lar gases without long-range forces are introduced as reference. Repulsive and
attractive long-range forces are discussed in sections 4.3 and 4.4, respectively,
and are compared with the reference results of section 4.2. The summary in 4.5
provides a brief overview of the results of this chapter.

4.1.1 Granular Temperature

The average kinetic energy per particle in a homogeneous poly-disperse particu-
late system with N discrete particles with masses mi and velocities vi(t) is

ekin(t) =
Ekin(t)

N
=

1

N

(

1

2

N∑

i

miv
2
i (t)

)

, (4.1)

where Ekin(t) is the total kinetic energy of the system. The velocities are time
dependent due to dissipative collisions. The motion of the particles consists of
a macroscopic flow of all particles and their velocity fluctuations that superpose
the (bulk) flow. These fluctuations can be understood as a random movement of
the particles, similar to the random motion of pollen grains suspended in water1.

1The random motion is commonly denoted as “Brownian motion”. In Ref. [27] the random
movement of pollen grains is due to their interactions with the randomly moving molecules
of the liquid.
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The fluctuating velocity is described by the variance σ2
v(t) of the distribution of

the particles’ velocities around their mean 〈v(t)〉 = (1/N)
∑N

i vi(t):

σ2
v(t) :=

1

f 〈m〉

N∑

i

mi

N

(

〈v(t)〉 − vi(t)
)2

=
1

f

( 〈
v2(t)

〉
− 〈v(t)〉2

)

, (4.2)

where 〈m〉 =
∑N

i mi/N is the average mass of a particle and σv(t) is the stan-
dard deviation of the distribution of the velocities. f = 3 is the number of
degrees of freedom in the case of only translational motion of the particles in
three dimensions. In this thesis we will use the definition of the so-called gran-
ular temperature, Tg(t) := σ2

v(t). If there is no macroscopic (average) flow of
the particles in the gas, i.e., 〈v(t)〉2 ≪ 〈v2(t)〉 as assumed in this chapter, the
granular temperature of the particles simplifies to

Tg(t) ≈ 〈v2(t)〉
3

=
1

3 〈m〉

N∑

i

mi

N
v2

i (t)

(4.1)
=

2

3 〈m〉
Ekin(t)

N
. (4.3)

If we compare the granular temperature of the particles with its counterpart
from Thermodynamics, T (t) = 2Ekin(t)/(3NkB), we realize that the Boltzmann
constant kB is in our context equivalent to the average particle mass 〈m〉 and
the units change from degrees Kelvin for T (t) to units of a squared velocity for
Tg(t). Tg(t) will be used in the following for mono-disperse particles with uniform
masses m and radii a.
Per se, granular gases are systems with inelastically colliding bodies. However,
granular systems with very weak inelasticity exhibit molecular gas like behavior
and collisions will hardly support any loss of kinetic energy. The equipartition
theorem of standard Thermodynamics does hold and breaks down for stronger
dissipative granular gases [47,48]. So, the velocity distribution in elastic granular
systems also can simply be obtained by replacing the Boltzmann constant kB

within the Maxwell-Boltzmann distribution function by the granule mass m,

ρ({v}) =

(
1

2πTg(∞)

)3/2

exp

(

− v2

2Tg(∞)

)

, (4.4)

if we assume the gas to be in thermal equilibrium at t → ∞. Eq. (4.4) is the
phase space distribution function of appendix A.3 integrated over all particle
positions. In order to obtain the number fraction dN(v) of particles within the
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Figure 4.1: The Maxwell-Boltzmann velocity distribution function of an elastic
granular gas with volume fraction, ν = 0.076, at equilibrium state
(t → ∞) for the case without repulsion (cb = 0) and with repulsion
intensity (cb = +2 · 109).

velocity interval [v, v + dv] we simply set (in three dimensions2) for the number
of particles within a spherical shell in the velocity space

dN(v) = 4πv2ρ({v}) dv . (4.5)

dN(v)/dv is the well-known Maxwellian number probability distribution func-
tion in three dimensions for the whole velocity range the particles in the gas
cover. As soon as inelastic collisions between the particles take place, the con-
cept of equipartition of kinetic energy breaks down and the velocity distribution
is not Maxwellian anymore. An approach for the velocity distribution function
for dissipative many-body systems is introduced in and uses a Sonine polynomials
expansion of ρ({v}) [13, 30].
Moreover, as shown in many textbooks, the Maxwell velocity distribution is the
same for any interaction potential, including long-range interactions we focus on
here. Fig. 4.1 shows the Maxwell-Boltzmann velocity distribution according to
Eqs. (4.4) and (4.5) for long-range repulsive forces (cb = +2 · 109) and without
(cb = 0). The velocity distributions are fitted (solid lines), and in the case of
cb = 0 we obtain mTg(∞) ≈ 1.05 · 10−10 (where m = 1.0472 · 10−6) and for the
standard deviation of the velocities σv(∞) ≈ 3.9 · 10−3. In case of cb = +2 · 109

we have mTg(∞) ≈ 8.9 · 10−11 and σv(∞) ≈ 3.6 · 10−3.

2In one dimension (f = 1) we obtain the number fraction 2πρ({v})dv and the power 3/2 in
Eq. (4.4) becomes 1/2. Note, that the standard deviation for f = 1 is σv(∞) =

√

Tg(∞)

and for f = 3, we have σv(∞) = 1
√

3

√

3 − 8/π
√

Tg(∞) ≈ 0.39
√

Tg(∞).
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The fact that a repulsive system is cooler than systems without long-range forces
depends on the preparation of the initial configuration, i.e., which initial temper-
ature we will give to the system.

4.1.2 Excluded Volume

For defining a granular temperature, the consideration of particles as point masses
is sufficient. In real granular gases, however, particles have a finite volume and the
correct measurement of observables, such as the collision frequency, requires the
consideration of the particle size. Contrary to point masses, for a given volume
fraction

ν =
N

V

4

3
πa3 ,

where V is the simulation volume. particles with uniform radius a > 0 have less
space available for moving due to their mutual exclusion caused by their physical
dimension. The higher the volume fraction the stronger particles interact with
each other. The effect of restricting the particles’ free space for motion is referred
to as the effect of excluded volume.
The equation of state of an ideal (granular) gas expresses the relation between
the state quantities of the gas such as pressure and density and has to be modified
due to the excluded volume effect. Particles will be considered as hard spheres
that cannot penetrate each other, which leads to the definition of the hard sphere
potential,

φ(rij) =

{

+∞ for |rij| ≤ 2a

0 for |rij| > 2a
, (4.6)

where we assume mono-disperse particles with uniform radius a. This will lead
to an increased pressure (and increased collision frequency) as compared to the
case we would consider for a granular gas composed of point masses (with zero
diameter). The equation of state for a granular gas can then be expanded in
ascending powers of ν and it is found

pV

(3/2)NmTg

= 1 + 4ν + 10ν2 + 18.36ν3 + 28.2ν4 + 39.5ν5 + ...

≈ 1 + 4ν
1 − ν/2

(1 − ν)3
, (4.7)

which is referred to as the virial expansion of the equation of state [16,45,46,103].
The right-hand-side of Eq. (4.7) contains the pair distribution function at contact,
rij = 2a,

g(2a) =
1 − ν/2

(1 − ν)3
(4.8)



Dilute Homogeneous Particle Systems 69

(see section 4.1.3). The hard sphere potential is defined by only one param-
eter a and so is the right-hand-side of Eq. (4.7). For hard spheres including
two-particle long-range interactions, the right-hand-side of Eq. (4.7) will have
additional parameters that define the new interaction potential. Especially for
Coulomb interactions, the equation of state turnes out to be a non-analytic func-
tion of density [104]. Eq. (4.8) takes into account the increased probability to
find a neigboring particle at rij = 2a. Repulsive Coulomb forces will lead to a
decreased probability whereas attractive Coulomb forces will additionally lead
to an increased probability. In section 4.3.1 we show that g(2a) has then to be
completed by an exponential factor which considers the modified probabilities.
For very dilute gases, a → 0 and ν → 0 (decreasing ν can be achieved by de-
creasing a while keeping N and V constant), Eq. (4.7) becomes the equation for
the ideal granular gas, pV = 3

2
NmTg(t) = Ekin(t).

4.1.3 Pair Distribution Function

The pair distribution function or reduced one-particle distribution function at
contact (→ appendix A.3), g(2a), enters the equation of state Eq. (4.7). g(rij)
provides information about how the neighborhood of a reference particle i is
structured, i.e., counts the number ∆N of neighboring particles j depending on
the radial distance rij . Then the number of particles in a spherical shell around
i with volume 4πr2

ij∆rij is

∆N = 4πr2
ij∆rijn

∗(rij) , (4.9)

where ∆rij is the width of the shell and

n∗(rij) = ng(rij) (4.10)

is the local number density (at distance rij from i). Eq. (4.9) provides information
about how the distances between all pairs of particles are distributed in the
system [45,58, 98] and we have in the continuous case

g(rij) =
n∗

n
=

1

4πr2
ijn

dN(rij)

drij
. (4.11)

If the pair distances are equally distributed (case of an ideal gas, g(rij) = 1),
we can set n∗ → n if the system is assumed to be homogeneous, i.e., if we as-
sume n = N/V as the number density of the bulk material. From the reference
particle’s point of view we then will find for each distance the same number of
neighboring particles. If the particles do not move independently from each other,
i.e., if they interact via collisions and even via long-range repulsive or attractive
forces, g(rij) will be different from unity which corresponds to different particle
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Figure 4.2: (Left) A hcp-packing of N = 8000 particles at the very beginning of
the simulation, t = 0 (solid line), and after a short time, t = 0.009
(dashed line). (Right) A random packing of a mono-dispersed (solid
line) and poly-dispersed (dashed line) particle system with N = 1000.
The vertical line on the left indicates the fact that the particle of
interest is detected by itself.

number densities in the shells. Two-particle interactions of any kind will cause
g(rij) to deviate from unity and are considered as correlations between the parti-
cles. This means that interactions are dependent on particles’ locations and the
assumption of molecular chaos3 breaks down.
In Fig. 4.2 the pair distribution function is plotted against the inter-particle dis-
tance rij in units of the minimum diameter 2amin for a crystalline (left) and a
random poly-disperse arrangement (right) of particles with rather low density. In
the initial crystalline case which is a hexagonal closest packing (hcp) with lattice
spacings of 10 amin in x, y-direction and 14.14 amin in z-direction, g(rij) shows
well defined peaks that correspond to high densities at the distance of the nearest,
second-nearest, third-nearest, etc. neighbors. In-between there are geometrically
excluded regions where the density is zero and no particle can be found.
If we melt the crystal, particles leave their original locations due to their initial
random velocity components and come therefore closer to each other. This leads
to a significant broadening of the peaks as displayed by the dashed line in the left
panel of Fig. 4.2. After much longer time, a random arrangement is found. Equi-
libriated systems including collisions but no long-range forces (Fig. 4.2, right)
show at rij ≈ 2amin correlated behavior (due to collisions and excluded volume)

3Molecular chaos denotes the assumption that particles’ locations have no influence on the
particles’ velocities and, thus, on collisions. Then, the reduced two-particle distribution
function can be factorized such that the factors depend on the locations and velocities sep-
arately, ρ(rij , vi, vj , t) = ρ(rij)ρ(vi, t)ρ(vj , t). Usually we introduce the pair distribution
function as ρ(rij) = g(rij). Moreover, g(rij) is the reduced one-particle distribution func-
tion g(rij) (see appendix A.3) because the pair distances depend effectively only on the
scalar quantity rij .
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whereas at large pair distances g(rij) becomes unity because particles have no
(collisional) influence at all on each other. In comparison with mono-disperse
particles, for poly-disperse particles with radii a ∈ [amin, 3amin] the slope at the
beginning is less strong because the reference particle will “see” contacting par-
ticles not only at rij = 2amin but also up to the distance rij = 6amin. This gives a
monotone increase of the probability to find a particle between 2amin and 6amin.
The influence of long-range forces on the distribution function will be discussed
in section 4.3.1 in more detail.

4.2 Systems without Long-Range Interactions

The understanding of properties such as temperature and the pair distribution
function makes the discussion of the time evolution of quantities such as the rate
of dissipated kinetic energy in homogeneous systems easier. As a reference, we
first discuss the time evolution of systems without mutual long-range interaction
potentials in order to compare the influence of long-range interactions in the next
chapters. Furthermore, this is a first check of the code regarding the treatment
of collisions only in discrete particle systems with periodic boundary conditions
(see section 3.6.5), for which analytical solutions are known [43].

4.2.1 Collision Frequency

The collision frequency or collision rate is defined as the number of collisions per
unit time and per particle. Assuming Gaussian velocity distributions, the collision
frequency of the homogeneous cooling state is the Enskog collision frequency and
reads, according to Eq. (A.17),

f 0
E(t) = 16na2

√
πg(2a)T 1/2

g (t) , (4.12)

where the Enskog correction factor, g(2a), is applied in order to take also finite
densities ν into account. This applies also for the kinetic energy, for which we
have shown in Fig. 4.4 the difference between Haff’s theory including Enskog’s
correction (solid lines) and Haff’s theory excluding the correction (dashed lines,
indicated by “g(2a) = 1”). f 0

E(t) expresses the number of collisions one particle
will have during a unit time. The superscript “0” denotes the case that no long-
range forces are considered. We will show in section 4.2.2 that the coefficient of
normal restitution, r, enters Eq. (4.12) via the granular temperature, Tg(t).
From the simulations, f 0(t) can be computed by recording the total number of
(binary) collisions that appear in our system until the time t of observation. Then
there were 2C(t) particles involved in these binary collisions. For obtaining the
mean number of particle collisions per particle counted within the time interval
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0...t, we still need to divide this expression by N , obtaining (2/N)C(t). With
the time derivation of C(t) we get the number of single particle collisions for a
particle per unit time, i.e., the “measured” collision frequency,

f 0(t) =
2

N

dC(t)

dt
. (4.13)

Fig. 4.3 shows the double logarithmic plot of the collision frequency per time and
particle as it is calculated from Eq. (4.13) using the results of the simulations.
Note the small discretization error from Eq. (4.13) for short times for which the
time intervals are rather large.
Anyway, in the following we set f 0

E(t) ≡ f 0(t) and fE(t) ≡ f(t) because simulation
results (“measurements”) agree quite well with Enskog’s theory.

4.2.2 Kinetic Energy and the Homogeneous Cooling State

Assume (besides fluctuations) a homogeneous density. If the energy density per-
sistently decreases everywhere in the system at the same rate, we will speak about
homogeneous cooling as we focus on in more detail in appendix A.5. The ordinary
differential equation for the energy dissipation rate we derived there, Eq. (A.26),
can be solved analytically and its solution is denoted as Haff’s law,

Ekin(t) =
Ekin(0)

(

1 + 1
2
f 0

E(0)(1 − r2)t
)2 , (4.14)
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Figure 4.4: (Left) Kinetic energy per particle plotted against time according to
Eq. (4.14), with (solid lines) and without (dashed lines) correction
factor, g(2a). (Right) Kinetic energy per particle plotted versus time
for different coefficients of normal restitution, r. Symbols are simula-
tion data, solid lines correspond to Eq. (4.14).

which describes the decay with time of the kinetic energy of homogeneous dis-
sipative granular gases. For large times, we have a decay proportional to 1/t2.
With Eqs. (4.3) and (4.14) we obtain also the time dependence of the collision
frequency from Eq. (4.12):

f 0
E(t) =

f 0
E(0)

1 + 1
2
f 0

E(0)(1 − r2)t
, (4.15)

where f 0
E(0) is the initial collision frequency at t = 0. We have already seen

the time behavior of f 0
E(t) in Fig. 4.3. Fig. 4.4 shows simulation data and the

theoretical prediction for the time behavior of Ekin(t) in a double logarithmic
plot. In the left panel we see the improvement of the prediction, see Eqs. (4.14)
and (4.12), by considering the pair distribution function at contact, g(2a), (solid
lines) compared with the case in which we set g(2a) = 1 (dashed lines). If the
energy decay can be described by Eq. (4.14) we deal with a regime which features
the successive decay of kinetic energy due to dissipative collisions which is referred
to as the homogeneous regime or the homogeneous cooling state (in the following
abbreviated by HCS, see, e.g., [70]). The right panel shows the double logarithmic
plot for different values of the parameter r. Independently from r and from N , all
the simulations show an energy decay with 1/t2 for large times, and the stronger
the dissipation the worse the theoretical prediction of Eq. (4.14).

Deviation from the Homogeneous Regime (Clustering)

The small deviations of the energy decay from the analytical prediction in the
right panel of Fig. 4.4, clearly seen for, e.g., r = 0.75, stems from weak cluster
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formation which is caused by strong dissipation. The cluster growth will lead to
a strongly inhomogeneous regime in which many clusters are formed - not shown
in our simulations. According to [84, 85], in this cluster regime, the evolution of
kinetic energy will not behave anymore like ∝ 1/t2 but will rather proceed as
∝ 1/t (also not shown here). The collision frequency will then decay weaker than
∝ 1/t. Much later, the cluster-growth regime will pass into the saturation regime
where only one final cluster has formed. Here, the decay of kinetic energy and
collision frequency will again be the same as for the HCS regime [84]. Further-
more, a cluster growth-regime is also observed for dissipative systems that are
governed by long-range attractive forces, see section 4.4.

4.2.3 Dissipation Rate

The energy dissipation rate is defined as the amount of dissipated kinetic energy
due to dissipative collisions per time period. From Eqs. (A.23) and (A.26) we
define

I0(t) := 3V γ(t) =
∂Ekin(t)

∂t
= −N

2
f 0

E(t)(1 − r2)mTg(t) (4.16)

as the dissipation rate for granular gases without long-range forces. In contrast
to the collision frequency and the kinetic energy, which change their behavior
with time, the dissipation rate decays always with ∝ T

3/2
g (t). For a certain

temperature, mTg(t), there will be a larger loss of kinetic energy for stronger
dissipation, as we can see in Fig. 4.5. Here, the dissipation rate is extracted from
the simulation by computing the time derivative of the decaying kinetic energy,
according to Eq. (4.16).

4.2.4 Summary

Dissipative, homogeneous granular gases show an ongoing decay of their total
kinetic energy due to dissipative binary collisions between the particles. The pair
correlation function at contact, g(2a), takes particles with finite size into account
and provides better agreement between theory and simulation. For large times,
the decay follows ∝ 1/t2 whereas the collision frequency, f 0

E(t), decreases like
∝ 1/t in time. As long as this is valid, the corresponding state of the system
is referred to as the homogeneous cooling state and can be described by Haff’s
law (4.14) and (4.15). Slight deviations from homogeneity, especially for cases
of strong dissipation (small r), lead to deviations of simulation data from Haff’s
law.



Dilute Homogeneous Particle Systems 75

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-14  1e-13  1e-12  1e-11  1e-10

I0
(t

)

mTg(t)

N=5832, ν=0.076

Haff
r=0.85
r=0.95

slope 3/2

Figure 4.5: Dissipation rate plotted against mTg(t) for two different r extracted
from the same set of data as we already used in the left panel of Fig.
4.4. Early times correspond to top-right, later times to bottom-left.

4.3 Repulsive Long-Range Interactions

In the following, long-range forces in homogeneous dissipative systems will be
discussed. Since we already have discussed the difference between the results
of the HLC algorithm and the results of the direct particle-particle method in
section 3.7.2, we now apply the direct pair-wise treatment as a reference, in order
to get most accurate results.

4.3.1 Pair Distribution Function

In this section we investigate the influence of repulsive long-range forces on the
internal structure of the particle bulk. We will deal with elastic particle systems
in order to circumvent a possible influence of dissipative effects on the results.
In the presence of long-range forces, the pair distribution function at contact, as
introduced in section 4.1.3, will be different from the case for which no long-range
forces are active. For strong repulsive forces, we will observe effective volume
exclusion that ranges much farther than rij = 2a, i.e., a pair of particles will
repel each other even if its separation distance is some particle diameters. Such
as for the case of physical contacts, also for long-range interactions, particles are
spatially correlated. In Fig. 4.6 we have plotted g(rij) against the pair distance
in units of the diameter, 2a, for differently strong repulsive forces. As expected,
the larger cb the stronger the two particles repel each other. This results in a
decreasing g(2a) for increasing cb and a shift of the peak of g(rij) towards larger
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Figure 4.6: The pair distribution function, g(rij), is plotted against the pair dis-
tance, rij, scaled by the particle’s diameter, 2a, for different repulsion
strengths, cb. Density is fixed, ν = 0.076, and the results are taken
during thermal equilibrium for particle systems with N = 1000.

distances which is equivalent to longer ranged correlations. The value of g(rij) at
rij = 2a without long-range interactions is analytically given by Eq. (4.8) and the
point of intersection between the horizontal line at g(2a) ≈ 1.219 and the vertical
line at rij = 2a = 0.001 represents its nominal value. The figure shows that the
peak for cb = 0 does not reach its nominal value because it is shifted slightly from
the point rij/2a = 1 to the right. In appendix C we will briefly comment on the
present data analysis and see that the peak at rij = 2a will indeed be predicted
by Eq. (4.8).

4.3.2 Collision Frequency

According to Haff’s law, the collision frequency will behave like f 0
E(t) ∝ Tg(t)

1/2

for granular gases without mutual long-range interactions. As derived by means of
the pseudo-Liouville operator formalism in appendix A, Eq. (A.18), for repulsive
granular gases we obtain for the collision frequency

fE(t) = f 0
E(t) exp

(

− Eb

mTg(t)

)

, (4.17)

where Eb denotes the corresponding two-particle energy barrier at contact and is
defined in section 2.2. For r = 1, f 0

E(t) keeps its initial equilibrium value for all
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as a function of thermal energy, mTg(t), (right). Stronger repulsive
long-ranged potentials lead to a stronger (faster) decrease of fE(t)
(simulation data = symbols, two-particle theory = lines).

times4. For a fixed Eb, the collision rate remains constant and for increasing re-
pulsion, fE(t) decreases due to the fact that stronger repulsion hinders collisions.
How fE(t) decreases exactly with increasing Eb, depends on the thermal energy
taken by the system for different Eb and will be discussed in section 4.3.3. For
r < 1, fE(t) shows a stronger decay the stronger the repulsion potential Eb has
been chosen. A decay of fE(t) is the consequence of the decay in temperature
due to dissipative collisions. Note that Eb becomes more important (relative to
mTg(t)) the cooler the system has become.
In order to show the decay of the collision rate for a dissipative system with
r = 0.85, we performed a number of simulations with different Eb at fixed vol-
ume fraction ν = 0.076. In the left panel of Fig. 4.7 we see fE(t) plotted versus
time double-logarithmically. With increasing strength cb, the collision frequency
drops faster because stronger barriers Eb will result in fewer collisions. The right
panel of Fig. 4.7 shows also a double logarithmic plot of fE(t) but against mTg(t).
Here, the number of collisions per time decreases with decreasing temperature.
Note that in repulsive dissipative systems Eb becomes more and more prominent
the more the system has cooled down. This leads to an almost vertical drop of
fE(t) for very low temperatures for certain values of the repulsion strengths as
one can see in the right panel. The dashed lines correspond to the solutions of Eq.
(4.17) and show generally a stronger decrease than the simulation results. The
deviation originates from the many-body effect present in simulations, which is,
however, not predicted by the two-particle theory expressed through Eq. (4.17).
The many-body effect will be discussed in section 4.3.5.

4All systems discussed in this chapter have been equilibriated (with r = 1) such that their total
kinetic energy remained constant with time. Thereafter, we activated dissipation and/or
long-range forces and obtained the results discussed.
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Figure 4.8: (Left) Kinetic energy per particle plotted over time for differently
strong repulsive forces in comparison with theory. (Right) The simu-
lation with cb = 2·107 is shown in comparison with theory (simulation
data = symbols, theory = lines).

4.3.3 Kinetic Energy

In repulsive dissipative granular gases, the system cools down less strongly as if
there would be no repulsive interactions because the repulsion hinders particles in
colliding. The time behavior of the kinetic energy in such systems can be derived
by means of the pseudo-Liouville operator as we have shown in appendix A.5.
We obtained

dEkin(t)

dt
= −fE(t)

N

2
(1 − r2)mTg(t) , (4.18)

where the only difference with Eq. (4.16) is the corrected collision frequency,
fE(t). Eq. (4.18) is solved numerically and its solution is displayed for different
repulsion strengths, cb, in Fig. 4.8. Both the simulation data and the theoretical
solutions of the kinetic energy per particle, Ekin(t)/N , are plotted against time
in a double logarithmic plot. Initially, the kinetic energy per particle decreases
in time as it does also in dissipative systems without long-range repulsion forces.
But the difference is that the decay becomes weaker the more the system cools
down and it will not approach ∝ 1/t2 (→ Eq. (4.14)) for large times. This is due
to the fact that for low temperatures, Eb becomes relatively stronger compared
with the temperature. The larger cb the earlier the data deviate from Haff’s law,
see data from bottom to top in the left panel. This corresponds to the results
for the collision frequency in Fig. 4.7, where the stronger cb has been chosen, the
fewer collisions will occur and the less kinetic energy will be dissipated.
In the right panel of Fig. 4.8 the difference between theory and simulation is
quantified by choosing cb for solving Eq. (4.18) such that theory agrees roughly
with data. For the density ν = 0.076 and dissipation r = 0.85, we see that we
have to choose ceff = +0.6 · 107 for the two-particle energy barrier in order to
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obtain agreement with simulation with cb = +2 · 107. The two-particle potential
is modified in the simulation such that it becomes a weaker effective potential.
In all cases

Eeff < Eb (4.19)

was found. This is due to the influence of all the other bodies on each pair of
particles. The many-body effect is discussed in section 4.3.5.

Long-time Behavior

If we run the simulations for sufficiently long times the systems would cool down
until, due to the low temperatures, the particles cannot collide anymore. The
total energy will show an asymptotic behavior when the actual thermal energy
drops below the repulsive energy barrier. Most particles will move at relative
velocities that are below the critical velocity and will not be able to collide and,
hence, do not contribute to the dissipation of energy. Only the few particles
populating the high-energy tail of the Maxwell-Boltzmann distribution in Fig. 4.1
are able to collide with others such that Ekin(t) would asymptotically approach
a horizontal line in the left panel of Fig. 4.8. This would correspond to an
asymptotic approach of fE(t) to a vertical line in the right panel of Fig. 4.7.
However, the present results do not show the asymptotic behavior because the
simulation time would have become too large in order to show a significant energy
loss per unit time.

4.3.4 Dissipation Rate

The dissipation rate, I(t), is defined as the amount of kinetic energy that is lost
per unit time due to all dissipative collisions. The homogeneous cooling state of
a granular gas shows a dissipation rate that decays like ∝ Tg(t)

3/2. I(t) is always
negative which implies that there is a loss of kinetic energy and it is physically
impossible to gain kinetic energy due to collisions. According to [43] and Eq.
(4.18), we have

I(t) =
dEkin(t)

dt
= I0(t) exp

(

− Eb

mTg(t)

)

, (4.20)

where I0(t) = −f 0
E(t)N

2
(1 − r2)mTg(t) is the dissipation rate for homogeneous

particle systems without mutual long-range forces. The left panel of Fig. 4.9
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line to theory and dash-dotted line indicates a slope of 3/2. (Right)
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sities ν = 0.010 and ν = 0.076.

shows us the double logarithmic plot of the dimensionless dissipation rate,

I∗(t) = − I(t)

Nna2g(2a)m−1/2E
3/2
b

= 8
√

π(1 − r2)

(

mTg(t)

Eb

)3/2

︸ ︷︷ ︸

I∗0(t)

exp

(

− Eb

mTg(t)

)

,

against the thermal temperature in units of the repulsive Coulomb barrier. I∗(t)
is not dependent on the number of particles and the density of the systems.
Systems with different N and different ν show agreement for cb = 0 and follow
I∗0(t). Note that I(t) does not show agreement for different ν because denser
systems will dissipate more energy per time unit than dilute systems. The data
of a simulation with N = 1000 and one with N = 5832 are displayed in the left
panel of Fig. 4.9 which agree nearly perfectly. This means, that the influence
of many bodies on the collisional behavior does not change for different particle
numbers at fixed volume fraction and, thus, any single particle is affected by only
its nearest neighbors.
In the limit Eb → 0, the dissipation rate of systems with repulsive long-range

forces will approach the prediction by Haff, i.e., I(t) → I0(t) and I∗(t) → I∗0(t),
as it can be seen from Eq. (4.20). Or, generally, if mTg(t) ≫ Eb the system will
behave like a system without long-range forces and will cool down as ∝ Tg(t)

3/2.
For mTg(t) ≪ Eb, the long-range forces become very important and deviations
from I0(t) and I∗0(t) are strong.
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Different Densities

For cb > 0, systems with different ν will show differently strong deviations rela-
tive to I∗0(t). In the right panel of Fig. 4.9, I∗(t) is plotted against the thermal
temperature in units of the potential barrier, mTg(t)/Eb, in a double logarith-
mic plot. We see that the data set corresponding to ν = 0.010 deviates earlier
(stronger) from Haff (solid lines) than the one for ν = 0.076 and is closer to
the two-particle theory (dashed lines). This is as expected because two-particle
theory represents the limit ν → 0 where we have Eeff/Eb → 1. In turn, we con-
clude that with increasing density the dissipation rate approaches that for the
case without long-range potentials. This is equivalent to a decreasing effective
potential which we try to understand in the following.

4.3.5 Many-Body and other Effects

In the preceding section, we observe that systems with increasing density show a
cooling behavior that becomes more and more similar to that of systems without
long-range forces, i.e., the effective repulsive energy barrier, Eeff , becomes weaker.
We can explain this observation by the effect of many bodies on the colliding
particle pairs. In the following, we present a one-dimensional model for the
many-body effect that is consistent with the observations, but it is emphasized
that the effect of the particle bulk may not be the only reason for the deviation
between observation and theoretical prediction. Thereafter, we will attempt to
quantify the effective energy barrier resulting from this effect.

A one-dimensional Model for the Effect of many Bodies

For the many-body effect, the example of a one-dimensional chain of repelling
particles can be used: due to the larger inter-particle distances, neighboring
particles push a pair of particles less strongly together, the lower the volume
fraction. Thus, the many-body effect becomes weaker. Vice versa, dense granular
gases with long-range repulsive forces behave nearly like Haff’s theory because
particles will be pushed together more strongly by their close neighbors. Two
cases are displayed in Fig. 4.10, where the (repulsion) potential energy in units
of Eb is displayed as a function of the particle distance in units of the mean free
path, l: (i) the case when two particles are far away from each other and the
resulting potential minimum (solid lines) at r = 1l is lower than for the case
(ii) at r = 0.5l when both particles are closer to each other. This situation is
equivalent to a larger mean free path and lower density in case (i) and vice versa
in case (ii). Let us consider a third particle that is located at the minimum in each
case and can freely move. If this particle obtains kinetic energy such that it can
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Figure 4.10: Illustration of the many-body effect. The potential between two
particles in units of the Coulomb barrier, Epot/Eb, is plotted against
the distance in units of the mean free path, r/l. One particle is fixed
and located at the origin, r = 0, the other one is located (i) at r = 2l
(low density) and (ii) at 1l (high density). Dashed lines denote the
single particle potential for r = 2l, the dash-dotted line for r = 1l
and the solid lines denote the resulting two-particle potentials for
both r = 2l and r = 1l. A third test particle (not shown) is assumed
to be located in the potential minima at r = 1l (i) and r = 0.5l (ii),
respectively.

reach the collision distance at r = 2a (solid vertical line), then it has to overcome
a smaller effective potential, Eeff , in case (ii) than in case (i). The single particle
potential lines are in both cases the same. That means, Eb does not change even
if the mean free path and the density change. Conclusively, the ratio Eeff/Eb

will decrease with increasing density and, thus, the effect of neighboring particles
on the particle pair increases as well. This density dependency of Eeff/Eb is
also estimated in [110], and since the maximum volume fraction for a 3D mono-
disperse system of hard spheres is limited5 we will thus get also a minimum
effective potential between the particles for the highest possible densities. So,
the dissipation rate, e.g., will only approach but never agree with the rate in
systems without long-range forces.

5The highest possible density of a random close packing (rcp) of mono-disperse hard spheres
is νmax

∼= 0.64 [124] whereas the highest possible packing of hard spheres at all is that of a
face-centered cubic (fcc) or hexagonal cubic packing (hcp), i.e., νmax

∼= 0.74.
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corresponds to the slopes of the left panel and is plotted against the
volume fraction ν. “Fit A” includes all data, “Fit B” excludes the
data of Scheffler & Wolf [111]. The fit is done by Eq. (4.22), the fit
parameters are listed in table 4.1.

Fit 1 (Linear Fits from Dissipative Simulations)

Now, in order to quantify how much Eeff is reduced as compared to Eb, a so-called
Arrhenius plot is set up, similar to [110,111], see the left panel of Fig. 4.11. Here,
we have plotted ln

(
I(t)/I0(t)

)
= −Eeff/

(
mTg(t)

)
against Eb/

(
mTg(t)

)
. From

simulations we obtain I(t) via Eq. (4.20), I0(t) via Eq. (4.16) and the respective
Tg(t). We fit the data for the densities ν = 0.010, 0.038, 0.076 and 0.152 with a
linear function (solid lines), assuming Eeff to be linearly dependent on Eb. The
slopes of the fitting lines will quantify the deviation between data and theory.
Since for dissipative systems an Arrhenius plot shows strongly scattered values6,
we only roughly realize a linear dependence between Eeff and Eb. So, we will set
Eeff/

(
mTg(t)

)
= α(ν) Eb/

(
mTg(t)

)
, i.e., for the correction factor,

exp

(

− Eeff

mTg(t)

)

= exp

(

− α(ν)
Eb

mTg(t)

)

. (4.21)

Then, Eeff is a function of Eb with a slope 0 < α(ν) < 1. So, α quantifies the
density-dependent fraction of Eb which is shared by Eeff . In the right panel of

6We have averaged ln
(
I(t)/I0(t)

)
linear in time. So, for larger times, i.e., larger values of

Eb/
(
mTg(t)

)
, statistics will decrease because less collisions contribute to the dissipation

rate.
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a b c

Fit A (∗) 8.00 1.00 0.25

Fit B (∗∗) 0.00 6.65 0.68
(∗) including Scheffler values
(∗∗) excluding Scheffler values

Table 4.1: Parameters for the fit function in Eq. (4.22) in the right panel of Fig.
4.11. Fit function A includes the values found by Scheffler & Wolf
[110, 111], fit function B does not consider them.

Fig. 4.11 a linear-linear plot shows the deviation (between the case including long
range forces and the case without) expressed by the ratio, α(ν) = Eeff/Eb, against
the density ν. An empirical function

α(ν) = exp
(

− aν − bνc
)

(4.22)

has been chosen, where a, b and c are fit parameters. α decays with ν, where
the starting point is α(ν = 0) = 1. The shape of the fit function did not appear
as a power law and a simple exponential did not work well either. The figure
shows fits to all data points including the values found in [111] (“Fit A”) and
to our data points only (“Fit B”, open circles), where the first term is neglected
(a = 0). This leaves two fit parameters b and c, and thus represents a stretched
exponential. The corresponding parameters for both fits are listed in Tab. 4.1.
Unfortunately, the density-dependence of α can be fit by two completely different
exponentials and, thus, we cannot really determine the shape of the fit function.
Anyway, from the fit functions it follows, that for a repulsive granular gas, e.g.,
with density ν = 0.076, the effective many-body potential is only about 30 % of
the two-body potential7, whereas the effective potential of a granular gas with
lower density ν = 0.010 is already about 70 % of the two-body potential. So, the
many-body effect increases with density and disappears (i.e., α → 1) for ν → 0.
No data are available for ν > 0.3 and the quality of the Arrhenius plot fits does
not allow for a more quantitative conclusion anyway.

Fit 2 (Non-linear Fits from Elastic Simulations - Part I)

Due to the strongly scattered values in the Arrhenius plot, we fail to extract
a more subtle density dependency of α(ν). We therefore look for another way
to extract Eeff/

(
mTg(t)

)
from the simulation that we can plot as a function of

Eb/
(
mTg(t)

)
: we perform a series of “elastic” simulations with different initial

7A crosscheck by adjusting ceff to cb in the right panel of Fig. 4.8 gives −Eeff/Eb = −ceff/cb ≈
−6 · 106/2 · 107 = −0.3 and is consistent with the results of the Arrhenius plot.
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temperature but for a fixed density. After reaching an equilibriated state, each
simulation provides a single pair of Eeff/

(
mTg(t)

)
and Eb/

(
mTg(t)

)
. Carrying out

many simulations for a given ν provides the same information as the Arrhenius
plot from one single cooling simulation, but without bad statistics. The data
extraction from the elastic simulations is as follows:

g(2a)

g0(2a)
!
=

fE(t)

f 0
E(t)

= exp

(

− Eeff

mTg(t)

)

, (4.23)

i.e., we can use Fig. 4.6 and take the g(2a) for different Eb in units of g0(2a).
More details on this data analysis are presented in appendix C. Alternatively, we
extract the collision frequency, fE(t), for different Eb in units of f 0

E(t). The super-
script “0” denotes the respective quantities without long-range forces. We plot
the results in the left panel of Fig. 4.12 which is a log-linear plot of g(2a)/g0(2a)
as a function8 of Eb/

(
mTg(∞)

)
. We realize that for the density ν = 0.076 both

extraction methods provide the same results (emphasized by the exclamation
mark atop the first equal sign in Eq. (4.23)). The extraction from Fig. 4.6 is
additionally indicated by “g(r)” in Fig. 4.12 (large open circles). The extraction
of the results from fE(t)/f 0

E(t) is carried out for all densities (small symbols). So,
we can conclude that the Boltzmann correction factor of Eq. (4.23) does in par-
ticular correct the pair correlation function at contact and hence the dynamical

8Elastic simulations with a certain initial temperature, Tg(0), will reach soon thermal equi-
librium with constant temperature, Tg(∞) 6= Tg(0), where Tg(∞) depends on the initial
conditions Eb and Tg(0). In thermal equilibrium the systems exhibit a Maxwell-Boltzmann
velocity distribution as shown in Fig. 4.1.
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ν α(ν) (1) α(ν) (2) β(ν) (2) γ(ν) (2) α(ν) (3) δ(ν) (4) ǫ(ν) (4)

0.152 0.16 1 0.811 1.033 0.14 0.187 0.0085
0.076 0.34 1 0.677 1.057 0.28 0.336 0.0201
0.038 0.46 1 0.535 1.088 0.43 0.500 0.0331
0.010 0.77 1 0.340 1.150 0.66 0.736 0.0514

(1) see left panel of Fig. 4.11, linear fit with Eq. (4.21)
(2) see left panel of Fig. 4.12, non-linear fit with Eq. (4.24)
(3) see left panel of Fig. 4.12, linear fit with Eq. (4.21)
(4) see left panel of Fig. 4.12, linear fit with Eqs. (4.25) and (4.26)

Table 4.2: Upper part: fit parameters of different fit functions for different den-
sities. Lower part: fit parameters for α(ν) and β(ν), see Eq. (4.26).

observables such as fE(t), Ekin(t) and I(t). Additionally, the left panel of Fig.
4.12 shows also the limit ν → 0 which is represented by the solid line where we
assume the validity of the two-particle theory, i.e., Eeff = Eb.

But let us now focus on whether the assumption of a linear dependency between
Eeff and Eb, as Eq. (4.21) expresses, is valid. A closer look at the curves in
Fig. 4.12 gives the impression of a non-linear dependency. Apparently, higher
densities show stronger deviations from linearity and therefore we will extend the
correction factor of Eq. (4.21) such that

exp

(

− Eeff

mTg(t)

)

= exp

(

− α(ν)
Eb

mTg(t)

)

exp

(

β(ν)

(
Eb

mTg(t)

)γ(ν)
)

. (4.24)

In this extension, we can set α(ν) = 1 because then we have all density depen-
dencies in the non-linear correction term, and the exponential with α(ν) = 1 can
be still identified with the correction for the ν → 0 limit theory prediction. In
this case, we have two more fit parameters than in Eq. (4.21), whose variation
leads to the fits in the left panel of Fig. 4.12 (dashed lines). The parameters are
shown in Tab. 4.2, indicated by (2). The quality of this fit is shown in the right
panel by the quality factor, q, as a function of Eb/

(
mTg(∞)

)
. As we can observe,

the quality is quite well in the range Eb/
(
mTg(∞)

)
< 10, i.e., q ≈ 1, but deviates

stronger for larger values of Eb. Although not being fitted and thus with worse
quality, the values, g(2a)/g0(2a), obtained from Fig. 4.6 are also displayed in the
quality plot (large open circles). Note, that for α = γ = 1, the fit by Eq. (4.24)
agrees with the linear fit by Eq. (4.21).
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Figure 4.13: (Left) Quality factor of the fit function expressed by Eqs. (4.25) and
(4.26). The respective fit parameters are listed in Tab. 4.2. (Right)
For the “linear” case, only α(ν) is plotted and we use Eq. (4.21) and
the parameters of Fit 1 in Tab. 4.1. For the “non-linear” case, both
α(ν) and β(ν) are plotted, see Eqs. (4.25), (4.26) and the respective
parameters in the last line of Tab. 4.2.

Fit 3 (Linear Fits from Elastic Simulations)

For the sake of completeness, we show in the table for different densities also
linear fits to the (non-linear) data of the left panel of Fig. 4.12, indicated by
(3). Both Fit 3 and Fit 1 are linear fits in the range Eb/

(
mTg(∞)

)
< 12 and

agree quite well within the error margin of the strongly scattered values in the
Arrhenius plot.

Fit 4 (Non-linear Fits from Elastic Simulations - Part II)

The final goal is to find a correction factor that fits the non-linear Eb-dependency
of Eeff for all (in particular, larger) values of Eb/

(
mTg(∞)

)
.

A new more promising correction factor will then be Eq. (4.24) (where we have
found α = 1 and γ ≈ 1 for small Eb/(mTg(∞)) )9 multiplied by a factor that
accounts for the deviations for larger Eb/

(
mTg(∞)

)
:

exp

(

− Eeff

mTg(t)

)

= exp

(

− δ(ν)
Eb

mTg(t)

)(

1 + ǫ(ν)

(
Eb

mTg(t)

)2
)

, (4.25)

where δ(ν) and ǫ(ν) are new fit parameters. The term 1 + ǫ
(
Eb/(mTg(t))

)2
can

be regarded as a correction of the right-hand-side of Eq. (4.21), i.e., δ(ν) ≈ α(ν),

9For α = 1 and γ ≈ 1, see Tab. 4.2, Eq. (4.24) leads to exp(−x)exp(−βx) = exp(−(1 − β)x)
= exp(−δx), where δ = 1 − β and x = Eb/

(
mTg(∞)

)
.
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improving the fit for larger values of Eb/(mTg(t)). In total, the right-hand-
side of Eq. (4.25) identifies with a Taylor series expansion of the exponential
exp(α(ν)Eb/(mTg(t))) truncated at the second order term in Eb/

(
mTg(∞)

)
. The

fit parameters can be fit themselves with the exponentials

δ(ν) = a0 exp
(

− b0ν
c0
)

ǫ(ν) = a1 exp
(

− b1ν
c1
)

. (4.26)

where a0 = 1.00, a1 = 0.065, b0 = 5.468, b1 = 9.002, c0 = 0.628 and c1 = 0.790
are the fit parameters for the density functions.
Using Eqs. (4.25) and (4.26), a best fit provides the fit parameters δ(ν) and ǫ(ν)
listed in Tab. 4.2 with the indication (4) and the quality factor for the fit is shown
in the left panel of Fig. 4.13. As compared to the quality factor in the right panel
of Fig. 4.12, the quality of the “new” fit including the known functions for δ(ν)
and ǫ(ν) is better for larger Eb/

(
mTg(∞)

)
.

To summarize, the right panel displays the analytical functions δ(ν) (dotted line)
and ǫ(ν) (dash-dotted line) of Eq. (4.26) we found (γ(ν) = 2 is not shown). For
comparison, α(ν) (thin solid line) from Eq. (4.22) (Arrhenius plot) is also shown
(where Eeff is supposed to be a linear function of Eb).
So, the evaluation of elastic simulations with different repulsion intensities lead us
to the conclusion that the deviations between the theory and simulation data lead
to a complex dependency between the effective and the theoretical two-particle
Coulomb barrier. This dependency is more complex than concluded in [111] and
in section 4.3.4.
In the next section we use the fit function (4.25) to solve Eq. (4.18) numerically
and to obtain a better prediction of the decaying kinetic energy in a repulsive
granular gas.

4.3.6 Improved Time Evolution of Dynamical Observables

In the last subsection we observed that Eeff does not depend on Eb linearly as
Eq. (4.21) implies but rather non-linearly, see Eq. (4.25). That implies that
the deviations between theory and simulation are more complex than originally
assumed. We will now use the non-linear relation between Eeff and Eb, see Eqs.
(4.25) and (4.26) and the respective parameters in Tab. 4.2, and insert it into
the equations (4.17) and (4.18) for the collision frequency and kinetic energy,
respectively. We assume that the time evolution of fE(t) and Ekin(t) will be now
correctly predicted.
The left panel of Fig. 4.14 shows the collision frequency and is the same as the
right panel of Fig. 4.7 but additionally includes the solution of Eq. (4.17) with the
non-linear extension of Eeff of Eq. (4.25) (solid lines). The predictions agree with
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Figure 4.14: (Left) Decay of the collision frequency, fE(t), with thermal temper-
ature, mTg(t), of a system with fixed ν = 0.076 and r = 0.85 for
different repulsion strengths, cb. (Right) Decay of the kinetic energy
per particle, Ekin/N , with time, t, of a system with fixed ν = 0.152
and cb = +2 · 108 for different dissipation, r.

the data. On the other hand, the right panel shows Ekin(t)/N with time likewise
in a double logarithmic plot for three systems, each with different dissipation.
Besides the solutions of the dilute limit predictive theory (dashed lines) that
show strong deviation from data (symbols), it is shown the solutions with the
non-linear correction (thick solid lines), see Eq. (4.25), and, as a comparison,
the solutions with the linear correction (dash-dotted lines), see Eq. (4.21). The
“new” predictions are closer to the data but still do not exactly agree.
Due to the fact that the solutions are based on elastic simulations where no
dissipation between two colliding particles is active, we assume that dissipative
effects are responsible for the deviation we observe10. As we can see in the
figure, these effects are stronger the more dissipative the system becomes. These
dissipative effects appear to be cumulative, because deviations become larger with
time.
Anyway, the introduction of a density-dependent non-linear relation between Eeff

and Eb improves the prediction of the time behavior of repulsive many-body
systems drastically and might be a promising starting point for further theoretical
investigation.

10The detailed investigation of Eeff in elastic systems led to a correction factor that does
not account for dissipative effects such as the decrease of relative velocity after a collision.
Applying the correction factor on dissipative particle systems will therefore not result in
total agreement.
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4.3.7 Summary for Repulsive Systems

Repulsive forces hinder particles from colliding. That is why dissipative granular
gases with long-range repulsive forces show a reduced collision frequency, a less
strong decay of the total kinetic energy with time and therefore a reduced dissi-
pation rate as compared to systems without long range forces.
The two-particle theory for repulsive long-range forces we developed by means of
the pseudo-Liouville operator formalism is a theory for the dilute limit, ν → 0.
The pair distribution function at contact without long-range forces, g0(2a), see
Eq. (4.8), becomes unity and the dissipation rate is corrected by a Boltzmann
factor, exp

(
−Eb/(mTg(t))

)
. Here, Eb is the repulsive energy barrier that must be

overcome by two approaching particles in order to have a collision. The theoreti-
cal results were already found phenomenologically in Ref. [110,111] and confirmed
by our simulations for low density and weak dissipation.
If we deal with finite densities, Eb will be decreased by the presence of many
nearby particles, resulting in an effective energy barrier, Eeff , and the density-
dependence of g0(2a) becomes important. This results in a decreased pair distri-
bution function at contact, g(2a) = g0(2a) exp

(
− Eeff/(mTg(t))

)
, that corrects

all those dynamical observables that contain g(2a).
Finally, we empirically determined the density-dependence of Eeff by simulations
and found that Eeff is non-linear dependent on Eb in the range Eb/

(
mTg(t)

)
< 25

and for ν ≤ 0.152. We determined a non-linear analytical relation for the effec-
tive energy barrier as a function of density and interaction strength and used it
successfully for an improved theoretical prediction of the dissipation rate, irre-
spective of density, dissipation and interaction strength.

4.4 Attractive Long-Range Interactions

In contrast to repulsive forces, attractive long-range forces are expected to sup-
port cluster formation in the system as it is already observed in dissipative sys-
tems without long-range forces. It is to be expected that in the presence of
attractive forces, a dissipative system will evolve into an inhomogeneous state.
So, the validity of the attractive theory introduced in this chapter is limited to
the initial phase of the evolution of such systems, as long as the conditions for a
homogeneous cooling state are fulfilled.

4.4.1 Pair Distribution Function

The pair distribution function is a measure for how the pair distances are dis-
tributed within an N -body system. Particle systems with exclusively mechanical
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Figure 4.15: Pair distribution function, g(rij), plotted against the pair distance,
rij/2a, for different attractive escape potentials, denoted by the ce.
The data are time-averaged in the homogeneous regime. Note that
g(r) is plotted here from g(r) = 1.

interactions will show a distribution of pair distances that has its maximum at
rij = 2a, as we saw in Fig. 4.6 for the case cb = 0. The same figure shows also
how this distribution changes if we activate a mutual repulsive 1/r long-range
potential between the particles. Then, the number of pair distances at rij = 2a
decreases if Eb becomes stronger because the probability for finding a particle at
this distance drops due to the repulsion.
For attracrive 1/r long-range potentials, the pair distribution function at con-
tact is expected to show the opposite trend. The probability to find a neighbor
particle at rij = 2a will increase if Ee becomes stronger. This is shown in Fig.
4.15, where g(rij) is plotted against the separation length between two particles,
rij , scaled with the particle diameter, 2a, for different attraction strengths, ce.
Stronger attractive forces lead to larger g(rij), as we can see. Systems with weak
attraction forces are shown in order to guarantee a homogeneous particle distri-
bution during the whole simulation time. As for the case of repulsive long-range
interactions, also here we average over many time snapshots in order to obtain the
g(rij) results with good statistics. Too strong attraction will lead to large-scale
inhomogeneities (not shown here), for which the pair distribution function does
not approach unity for large pair distances, indicating higher particle densities
and large-scale correlations. The investigation of these effects in elastic particle
systems is not considered in this thesis.
The value of g(rij) at rij = 2a without long-range attractive interactions is ana-
lytically given by Eq. (4.8) and the point of intersection between the horizontal
line at g(2a) ≈ 1.219 and the vertical line at rij = 2a = 0.001 represents its
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Figure 4.16: Collision frequency, fE(t), of a dissipative system with N = 1000
particles, r = 0.85 and ν = 0.076 for differently strong attraction
forces, ce, plotted against time, t, (left) and the actual thermal en-
ergy, mTg(t) (right). Symbols correspond to simulation data, the
solid line to Haff’s theory, Eq. (4.15), and the dashed lines to the
corresponding theory, according to Eq. (4.27).

nominal value. As for the repulsive case displayed in the left panel of Fig. 4.6,
the data point indicating the maximum of g(rij) does not reach the nominal value
because it is shifted slightly to the right. For more details on the data analysis
we refer to appendix C. We will see there that the maximum of g(2a) for ce = 0
is indeed given by Eq. (4.8).

4.4.2 Collision Frequency

In contrast to repulsive dissipative systems, the pseudo-Liouville operator formal-
ism (as shown in appendix A.4.3) will lead to an increasing collision frequency
for ce < 0:

fE(t) = f 0
E(t)

[

2 − exp

(

− Ee

mTg(t)

)]

, (4.27)

where Ee := |ceGm2|/(2a) denotes the corresponding two-particle escape energy
barrier at contact and is discussed in section 2.2. f 0

E(t) corresponds to Haff’s
collision frequency for systems without long-range forces. We performed a number
of simulations for different |ce|, with fixed volume fraction ν = 0.076, and normal
restitution r = 0.85. In Fig. 4.16, fE(t) is plotted against time in a double
logarithmic plot. All the simulations have in common that in the beginning fE(t)
drops according to Haff’s law. Then, a steep increase follows until a maximum
collision frequency is reached, whereafter fE(t) drops rapidly. The larger |ce|
the earlier the increase sets in because higher escape energies Ee result in more
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collisions. In the beginning of the simulation, at high temperatures, the correction
factor,

[
2−exp

(
−Ee/(mTg(t))

)]
, is close to unity and we have fE(t) ≈ f 0

E(t). In
this stage, the particles in the system are still nearly homogeneously distributed
and all simulations reveal the homogeneous state in Haff ’s sense.
In the right panel of Fig. 4.16 we have plotted fE(t) against the thermal energy,
mTg(t). For different ce, the initial increase of fE(t) relative to Haff (thick solid
line) is predicted well by the two-particle theory (dashed lines), see Eq. (4.27).

Differently Dissipative Attractive Systems

Now, we vary the coefficient of restitution, r, and keep ce (and ν) fixed. Fig. 4.17
is a double logarithmic plot of the collision frequency against time and shows, that
for higher dissipation, fE(t) starts to increase at earlier times. For larger times,
fE(t) decays stronger for higher dissipation. The right panel shows the collision
frequency plotted against the scaled thermal energy, mTg(t)/Ee. Here, we also
have shown Eq. (4.27) (dashed lines) and see that theory again predicts pretty
well the critical temperature where the increase of the collision frequency (i.e.,
deviation from Haff) sets in. It appears that in all simulations the system cools
down to a certain temperature (almost independent of r) at which the increase of
fE(t) starts. For strong dissipation, the system reaches the critical temperature
earlier in time than for weak dissipation (data not shown). If we zoom in the
right panel of Fig. 4.17 around the critical thermal energy, where fE(t) starts to
increase strongly, we realize that the data follow the two-particle theory (dashed
line) immediately before the divergence of the collision rate sets in (see Fig. 4.18).
So, the homogeneous two-particle theory correctly predicts an increased collision
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ture. Some more dissipative simulation results are added. The rapid
increase of fE(t), indicating the transition from the homogeneous
cooling state to the inhomogeneous regime, is shifted systematically
to lower values of mTg(t)/Ee for stronger dissipation r. Time evolves
to the left.

rate as compared with Haff, just before strong inhomogeneities are formed and
the collision rate grows rapidly. Interestingly, the maximum collision frequency
does not appear to depend on dissipation strength, an almost constant fmax

E is
reached11.

Dissipation and Critical Temperature

Fig. 4.18 shows a systematic shift of the critical temperature towards lower values
for stronger dissipation. To interpret this observation, let us assume an equilib-
riated elastic system with actual thermal energy, referenced to the escape energy
barrier, mTg(t)/Ee. If we choose a low initial temperature such that mTg(0)/Ee

is smaller than mT crit
g /Ee, we will immediately observe clustering. If we adjust

mTg(0)/Ee > mT crit
g /Ee, we will never observe clustering. If we consider dissi-

pative particles in the latter case, Tg(t) starts at Tg(0) > T crit
g and decays with

11A maximum collision frequency, fmax
E ≈ 1000, indicates a maximum density where each

particle experiences 1000 binary collisions per unit time. During the theoretical collision
time, tc = 0.001, every particle would experience tcf

max
E ≈ 1 collision and cannot collide

more frequently, explaining fmax
E . For N = 3375, the same maximum density is reached

because it is also tcf
max
E ≈ 1 (not shown). fmax

E ≈ 1/tc depends on the material parameters
such like the stiffness of the collision, the particle’s radius, density, but not on dissipation r.
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Figure 4.19: Kinetic energy per particle plotted versus time: different values of
|ce| for r = 0.85 (left) and one value of |ce| for different dissipation
r = 0.90, 0.95, 0.98 (right). The inset in the left panel shows the
long-time behavior of both Eq. (4.14) and the solution of Eq. (4.28),
as solid and dashed lines, respectively.

time. At some time, due to the dissipative collisions, Tg(t) falls below T crit
g and

cluster growth starts.
The amount of dissipated kinetic energy of a binary collision is quantified by the
dissipation strength. Considering a number of collisions in the system per unit
time, a strongly dissipative gas loses more energy during a time period than a
weakly dissipative gas, resulting in a lower temperature in the same time. This
means that the transition to the inhomogeneous regime take place at lower (crit-
ical) temperatures for stronger dissipation.

4.4.3 Kinetic energy

In appendix A.5.3, the total kinetic energy in the system is described by the
ordinary differential equation

dEkin(t)

dt
= −fE(t)

N

2
(1 − r2)mTg(t) , (4.28)

which we will solve numerically. The solution of Eq. (4.28) is displayed for dif-
ferent parameters ce in Fig. 4.19 and compared to the results of the simulations.
Here, in the left panel, the kinetic energy per particle, Ekin(t)/N , is plotted
against time in a log-log-diagram for r = 0.85 and ν = 0.076. In the beginning
of the simulation we see again that the energy drops as Haff predicts until the
system has evolved into the inhomogeneous regime which is indicated by the re-
markable energy hump. The strong decay of the energy after the hump during
t = 7...10 corresponds to the strong increase of the collision frequency in Fig. 4.16
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Figure 4.20: The three regimes of an attractive dissipative system with N =
1000, ν = 0.076, a = 0.0005, r = 0.90 and ce = −2 · 107. Black
particles have low, bright particles have high velocities. From top to
the bottom: (homogeneous regime) Homogeneous cooling state and
the two-particle theory applies; (inhomogeneous regime) Clustering;
particle pairs come closer which results in the “hump” in the kinetic
energy; (agglomerate regime) All particles are together forming a
single freely spinning agglomerate. The effect of periodic boundaries
is visible here.
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Figure 4.21: (Top panels) Kinetic energy per particle, Ekin(t)/N , plotted against
time, t, for the homogeneous regime for different dissipation. Black
lines are Haff, dashed lines correspond to the two-particle theory.
(Bottom panels) Quality factors, qdata and qtheo, are shown versus
the number of dissipative collisions per particle, tf 0

E(0), for the cor-
responding top panel data. “(prep.)” means that we have prepared
the initial random configuration with the same ce as we use for the
simulation.

for ce = −2 ·107. Generally, three regimes are shown, as we can see also for simu-
lations with different dissipation for a fixed attractive potential in the right panel
of Fig. 4.19: first, kinetic energy corresponds to Haff ’s theory (homogeneous
regime), second, kinetic energy increases and reaches a maximum whereafter it
drops (inhomogeneous regime) and third, average kinetic energy remains constant
(agglomerate regime) on a very low energetic level, due to agglomerate rotation.
Fig. 4.20 displays a typical snapshot of each regime for a system with N = 1000.
As we can see, the two-particle theory predicts an ever decreasing kinetic energy
over all times. The deviation from Haff reveals a stronger decrease than Haff and
starts always roughly at the time when the hump is formed. For larger times,
both run parallel to each other with a slope of -2, see the inset of the left panel
of Fig. 4.19. The hump and the agglomerate formation cannot be predicted by
the pseudo-Liouville operator theory because they occur in the strongly inhomo-
geneous regimes.
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Focussing on the Homogeneous Regime

The construction of the pseudo-Liouville operator in appendix A.2 assumes a
homogeneous distribution of the particles. That is why the two-particle theory,
expressed by, e.g., Eq. (4.28), is only valid for homogeneous particle systems. In
the following, we therefore consider the early homogeneous regime and will check
the agreement between theory and simulation.
In the upper panels of Fig. 4.21 we have plotted the energy evolution of the
homogeneous regime before the hump has formed. We see that the simulation
is less dissipative than the two-particle theory predicts, i.e., the data always lie
above the two-particle theory. From this we conclude, that the effective attractive
many-body potential is weaker than predicted for two particles:

|Eeff | < |Ee| . (4.29)

The same inequality was found for the effective repulsive many-body potential,
expressed by Eq. (4.19). But, while a weaker effective repulsive many-body po-
tential leads to more collisions and thus to a stronger cooling behavior of the
system, a weaker effective attractive many-body potential leads to fewer colli-
sions and thus to a reduced rate of cooling.
The lower panels of Fig. 4.21 show how the quality factors, qtheo and qdata, evolve
with the number of dissipative collisions per particle, tf 0

E(0). qtheo and qdata

are defined as the ratios between the kinetic energy of the two-particle theory
and Haff’s law and between the kinetic energy of the simulation and Haff’s law,
respectively. tf 0

E(0) gives us roughly the number of collisions a particle has in av-
erage at time t if we count from the beginning of the simulation and the collision
rate would remain unchanged. qtheo decays because the kinetic energy predicted
by the two-particle theory decays relative to the Haff case. Remarkably, qdata is
approximately unity. This means that the kinetic energy of the attractive sim-
ulation is predicted by Haff’s law and is not, as theory predicts, cooling down
stronger due to the attraction.

Under which conditions can theory predict the evolution of the simulation? We
expect better predictions if the long-range potential is less prominent, either due
to lower density, smaller intensity of ce, or in case of weaker dissipation. In the
following, we will therefore have a look at systems with lower densities at fixed
ce = −2 · 107, for which the influence of the mutual attractive interactions, i.e.,
of the many-body effect, should be less important.

Lower Densities at fixed ce

For systems with given ce = −2·107 and r = 0.95 but different densities ν = 0.010
and 0.076, the number of dissipative collisions until the inhomogeneous regime
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Figure 4.22: Same as the lower panels of Fig. 4.21. Quality factors are shown for
the homogeneous regimes for lower volume fractions.

is reached is comparable as we can see from the Figs. 4.21 and 4.22. For both
densities we find tf 0

E(0) ≈ 120. This leads us to the conclusion that systems
with different densities must undergo a certain number of dissipative collisions in
order to reach the threshold temperature, which indicates the starting point of
the inhomogeneous regime. This means that attractive dissipative systems have
to lose a certain amount of kinetic energy in order to become inhomogeneous.
This corresponds to a threshold thermal energy, whose existence we implicitly
assumed in the previous sections.
Let us have a look at qtheo and qdata where now the influence of the mutual long-
range potential is less prominent due to the lower densities. If we compare the
quality factors for the simulations with r = 0.95 and different density, ν = 0.076
and 0.010 in the lower panels of Fig. 4.21 and in Fig. 4.22, we observe what we
expected: a better agreement between qtheo and qdata for lower densities. The
lower density of ν = 0.010 makes at least qdata running parallel to qtheo which
means that the data follow the prediction but do not agree. If we additionally
consider weak dissipation, say r = 0.99, as displayed in the left panel of Fig. 4.22,
we observe a quite good agreement between data and theory. This result gives
us the certainty that the pseudo-Liouville operator formalism in appendix A is a
good Ansatz for the theoretical treatment of 1/r long-range attractive potentials
as long as we deal with a dilute (weak many-body effect!) homogeneous distri-
bution of weakly dissipative particles. Further discussion on this can be found in
appendix A.6.
In Fig. 4.23 we have plotted the dimensionless collision frequency, f ∗

E(t), versus
the scaled thermal energy, mTg(t)/Ee (left panel) for different densities. The
right panel zooms into the left panel and displays the region around the critical
thermal energy. The dimensionless quantity, f ∗

E(t), is independent of the density
and, thus, we can easily compare it with results of simulations even for different
densities. We made fE(t) dimensionless such as we did for the dimensionless
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dissipation rate, I∗(t), in the left panel of Fig. 4.9. Now, we can compare the ap-
parent critical thermal energies of simulations with different density and observe
in the right panel of Fig. 4.23 a systematic shift of the critical temperature to-
wards lower values for higher densities. This observation is similar to that in the
right panel of Fig. 4.18 where stronger dissipation leads to lower critical thermal
energies. In order to give an interpretation for this observation, we tie up to the
interpretation of the results in Fig. 4.18: during a given time, stronger dissipation
leads to a lower critical temperature at which cluster growth sets in as compared
to the case of weak dissipation.
Exactly here we start our interpretation for the shift of the critical temperature
towards lower values due to higher densities. If we fix the dissipation and increase
the density ν, the mean free path will decrease and the collision frequency will
increase. That is, the amount of dissipated energy per unit time increases as well.
In this sense, an increase of ν is equivalent to an increase of r (Fig. 4.18), and
both effects will lead to a shift of the onset of inhomogeneities to a lower value
of mTg(t)/Ee.

4.4.4 Many-Body and other Effects

The remarkable fact that the energy decay of dense attractive dissipative gran-
ular gases agrees with the energy decay of the same systems without long-range
forces – as long as the systems are in the homogeneous cooling state – can be ex-
plained by the effect of many bodies on a colliding pair of particles. A significant
change of the parameters ν, r and ce does not affect this observation. Only for
low densities, little dissipation and weak attraction, the energy decay becomes
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stronger and approaches the prediction of the two-particle theory, as shown in
the left panel of Fig. 4.22.
As already done in section 4.3.5 for repulsive systems, we now focus on elastic sim-
ulations in order to exclude dissipative effects. We extract the correction factor
for attractive forces,

[
2−exp

(
Eeff/(mTg(t))

)]
, from the scaled collision frequency,

fE(t)/f 0
E(t), and plot it as a function of the order parameter, Ee/

(
mTg(∞)

)
, as

shown in the left panel of Fig. 4.24 for three different densities (small symbols).
The panel additionally shows the results extracted from g(2a)/g0(2a) in Fig. 4.15
for the density ν = 0.076 (large open squares). Although not showing perfect
agreement between the data of both extraction methods for ν = 0.076 (compare
small solid with large open squares), we set for the attractive case – according to
Eq. (4.23):

g(2a)

g0(2a)
!
=

fE(t)

f 0
E(t)

= 2 − exp

(

− Eeff

mTg(t)

)

. (4.30)

Due to the fact that we consider only small values of Ee (in order to guarantee a
homogeneous system), we are limited to small values of the coupling parameter,
i.e., we can write the correction factor as

g(2a)

g0(2a)
= 2 − exp

(

− Eeff

mTg(t)

)

= 2 − exp

(

− α(ν)
Ee

mTg(t)

)

Ee≪mTg(t)
≈ 1 + α(ν)

Ee

mTg(t)
(4.31)
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ν 0.152 0.114 0.076 0.038 0.010

αb(ν) (∗) 0.21 – 0.35 0.48 0.74

αe(ν) (∗∗) 0.32 0.45 0.75 – ≈ 1
(∗) see Fig. 4.12 (left), linear fit with Eq. (4.21) for Eb/

(
mTg(∞)

)
= 0...1

(∗∗) see Fig. 4.24 (left), linear fit with Eq. (4.31) for Ee/
(
mTg(∞)

)
= 0...0.15

Table 4.3: The correction factor for both the repulsive, αb(ν), and the attractive
case, αe(ν), listed for different densities, ν. The fits are done in the
limit Eb/e ≪ mTg(∞).

and realize that Eeff is linearly dependent on Ee for small Ee. α(ν) is the density-
dependent proportionality constant that corresponds to the positive slopes in the
left panel of Fig. 4.24. The black line corresponds to the two-particle solution,
ν → 0, for which α(ν) → 1. The dashed lines are fits to the data for different
densities.
The right panel of Fig. 4.24 shows the quality factor, q, of the fits which is the
ratio of the data points and their best fit. The fit quality for the data set repre-
sented by the large open squares (where data are extracted from g(2a)/g0(2a)) is
worst in comparison to that for the other data sets, because for the computation
of q, we use the fit to the solid squares (for which the data are extracted from
fE(t)/f 0

E(t)). Generally, the fits for the attractive case are qualitatively better
(i.e., the quality factor is closer to unity) than for the repulsive case, as we can
see from the left panel of Fig. 4.13. This is not surprising, because we are here
limited to a smaller fit range, i.e., Ee/

(
mTg(∞)

)
< 0.15.

Excursion: Comparison with the Repulsive Case for Eb ≪ mTg(∞)

For small order parameters, i.e., for Eb/e ≪ mTg(∞), Eeff depends linearly on
Eb/e for both the repulsive and the attractive case. The correction factor then
simplifies to

1 ± αb/e(ν)
Eb/e

mTg(t)
,

where the positive sign denotes the attractive and the negative sign the repulsive
case. Note that |Eb| = |Ee|. The proportionality constants αb/e(ν) of the linear
regime are listed in Tab. 4.3. If we compare the linear fits for the case Eb/e ≪
mTg(∞) we see that αb(ν) < αe(ν) for a given ν. For the low density limit ν → 0,
we obtain αb/e(ν) → 1, wich is equivalent to a vanishing many-body effect and a
maximum correction of g(2a) (i.e., a maximum deviation from g(2a)/g0(2a) = 1).
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4.4.5 Improved Time Evolution of Dynamical Observables

For solving Eq. (4.28) with the correction factor in Eq. (4.31), we are – in con-
trast to the repulsive case in section 4.3.6 – limited to the case Ee ≪ mTg(t)
(because of maintaining the homogeneous state). In this limit, Eeff is linearly
dependent on Ee and different densities provide different values of the propor-
tionality constant, α(ν). Fig. 4.25 shows the order parameter, mTg(t)/Ee, as a
function of time, t, for a given attraction strength, ce = −2 · 107. The dashed
lines denote the solution of Eq. (4.28) assuming the linear dependency between
Eeff and Ee. The solid lines correspond to Haff’s law without attraction. Open
circles correspond to the respective attractive simulation in the homogeneous
regime which finally shows the transition to the inhomogeneous regime indicated
by the strong increase of the order parameter. In the insets of the panels, we
see that data (open circles) mostly deviate from theory (dashed lines). When we
investigate strongly dissipative systems, theory does not provide correct results
even if we consider the many-body effect by using Eq. (4.31) with α(ν) = 0.75.
We observe that too strong dissipation or too high densities surprisingly lead
to a cooling behavior that can be predicted very well by Haff’s theory (see the
upper left panel of Fig. 4.25, where r = 0.95 and ν = 0.076). On the other hand,
if we decrease the dissipation and hence the dissipative effects, the agreement
between theory and data improves. Dissipative effects can also be diminished by
decreasing the density which leads to fewer collisions per unit time. If we deal
with sufficiently weak dissipation and very dilute systems we will observe nearly
perfect agreement between theory and simulation (see the lower right panel of
Fig. 4.25, where r = 0.99 and ν = 0.010).
Due to the fact that we are able to extract the α(ν) for different ν by fitting the
results for only small inverse order parameters, see the range Ee/

(
mTg(∞)

)
≈

0...0.15 in the left panel of Fig. 4.24, we assume to have an agreement between
theory and data for the range mTg(t)/Ee & 7 in the panels of Fig. 4.25, irre-
spective of ν and r. This is what we do not see and, so, we conclude that the
many-body effect is not only responsible for the deviations, i.e., dissipative effects
also have to be considered – such as in the repulsive case.

4.4.6 Cluster Regime

The inelasticity of particle collisions is responsible for the clustering phenomenon
which is reported in many articles [34,43,75,81,84]. Associated with the transition
from the homogeneous cooling state to the inhomogeneous regime and finally to
cluster formation in a dissipative granular gas is a drastical change of the velocity
field of the granular medium. Initial vortices can grow and are accompanied by
density inhomogeneities [10]. Growing density inhomogeneities are quantitatively
described by small spatial sinoidal density perturbations. Dissipation must exceed
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Figure 4.25: The order parameter, mTg(t)/Ee, plotted as a function of time, t,
for the attraction ce = −2 · 107. Solid lines are Haff’s prediction,
dashed lines are the solution of Eq. (4.28) using the linear correction
of Eq. (4.31) in the limit Ee ≪ mTg(t). (Left) The parameters r =
0.95, ν = 0.076 and α(ν) = 0.75 are used. (Right) The parameters
r = 0.99, ν = 0.010 and α(ν) = 1 are used. The insets show a zoom
into the plots just before the initial increase of kinetic energy (=̂
inhomogeneous regime) sets in.

a critical value, rcl, in order to allow for the growth of density perturbations
with a wave length of the order of the system’s size L [81, 85]. The agitation of
perturbations with smaller wave lenghts requires stronger dissipation, i.e., r < rcl,
whereas no clustering at all is observed if dissipation is weaker than the critical
magnitude. Whether density perturbation modes become unstable, depends on
the degree of inelasticity, r, the system size, L, and the number of particles,
N , in the system. Note that L and N enter the volume fraction, ν, and the
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ν L L/(2a) lopt rcl rsh

0.010 0.037 37 0.374 – –
0.038 0.024 24 0.912 – –
0.076 0.019 19 1.446 – 0.70
0.152 0.015 15 2.296 0.48 0.89
0.300 0.012 12 3.612 0.83 0.95

Table 4.4: We use N = 1000 and a = 0.0005. The critical coefficient of restitution
for cluster instability, rcl, and for shear instability, rsh, are listed for
different densities, ν, and system sizes, L, for systems without long-
range attractive forces. lopt is the optical length which is a measure
for the density of the system.

dimensionless optical length12, lopt = ν L
2a

. It was found [84] that

rcl =

√

1 − 25π3

192l2opt

.

For the instability of the gas against shear modes, it is

rsh =

√

1 − 5π3

144l2opt

,

where rsh > rcl, as it can be seen in Tab. 4.4 for the systems we simulated. To sum-
marize, one obtains for sufficiently weak dissipation, r > rsh, the homogeneous
cooling state, whereas for sufficiently strong dissipation, r < rcl, cluster formation
occurs. The domain rsh > r > rcl supports shear fluxes in the system while the
density remains about homogeneous. According to the table, the systems with
ν ≤ 0.076 are too small in order to allow for growing perturbations even if we
would apply r → 0.
If we now additionally consider Ee > 0, all the facts stated above are supported
by the presence of attractive forces. That means in particular, the critical coef-
ficients of restitution, rcl and rsh, are shifted to higher values, and perturbations
with wave lengths of the order of L can occur even for less dissipative parti-
cles than calculated. This is, e.g., why we observe clustering in our attractive
simulations (ce = −2 · 107) with L = 0.015 (ν = 0.152) already for dissipation
r = 0.85 > rcl (see the right panel of Fig. 4.23), although for ce = 0 we would
have to choose r < 0.48 in order to observe cluster growth.

12The optical length, lopt, is the fraction of the path of a straight line through the simulation
volume in units of the particles’ diameter, 2a, that runs through particles. Hence, it is a
measure for the system’s density.
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4.4.7 Summary for Attractive Systems

Simulating dissipative particle systems with mutual long-range attractive forces
always show three distinguishable regimes both in energy and collision frequency
plots: a homogeneous regime, which can be predicted by Haff’s law in most cases,
an inhomogeneous regime in which both kinetic energy and the collision frequency
increase strongly and reach a maximum and, finally, the agglomerate regime, in
which these quantities drop to a minimum, since particles form an agglomerate
that is spinning inside the simulation space.
The two-particle theory for attractive long-range forces we developed by means
of the pseudo-Liouville operator formalism is a theory for the dilute limit, ν → 0,
where the pair distribution function at contact, see Eq. (4.8), becomes unity and
the correction factor is determined as 2 − exp

(
− Ee/(mTg(t))

)
. Here, Ee is the

attractive escape energy barrier the relative velocity of two separating particles
has to fall below in order to have a collision. The resulting prediction of the
time evolution of the total kinetic energy for very dilute systems (ν ≈ 0.01) was
confirmed by the present simulations.
As soon as we deal with finite densities, the density-dependence of g(2a) becomes
important and the two-particle escape energy barrier, Ee, will become an effective
barrier, Eeff , which is reduced as compared to Ee. This gives an increased pair
distribution function at contact, g(2a) = g0(2a)

[
2 − exp

(
− Eeff/(mTg(t))

)]
, for

which the density-dependence of Eeff was empirically determined by simulations.
We found that Eeff is linearly dependent on the density for ν ≤ 0.152 in the
range Ee/

(
mTg(t)

)
< 0.15, in which the onset of cluster growth can be excluded.

In contrast to the repulsive case, however, we were not able to improve the
prediction of the dissipation rate by applying the empirical findings. Instead,
Haff’s prediction interestingly applies for finite densities and strong inelasticity.
This leads us to the conclusion that not only volume exclusion effects but also
other (dissipative) effects play an important role if we investigate inelastic systems
with finite density.

4.5 Summary

The cooling behavior of a homogeneously distributed system of hard spheres that
interact via short-range forces can be predicted by the so-called pseudo-Liouville
operator formalism. This formalism was extended for both mutual repulsive and
attractive 1/r long-range potentials. The resulting modified cooling behavior was
compared with the results obtained from the simulation of soft sphere systems.
For the repulsive case in the dilute limit, the modified theory leads to a Boltz-
mann factor that corrects the pair distribution function at contact, resulting in
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a correction of the dissipation rate

I(t) = I0(t) exp

(

− Eb

mTg(t)

)

.

As compared to the case without long-range forces, the dissipation rate is decreased.
For the attractive case, theory provides a different correction term, leading to the
corrected dissipation rate

I(t) = I0(t)

[

2 − exp

(

− Ee

mTg(t)

)]

,

which is increased as compared to the case without long-range forces. For the
dilute limit, for which the pair distribution function at contact, g0(2a), is unity,
we confirmed the result by simulations for both the repulsive and attractive case.
In the limit of vanishing long-range forces, theory provides Haff’s law [43], as ex-
pected, where I(t) = I0(t) and I0(t) is the dissipation rate of a granular system
without long-range repulsive forces.



108 4.5 Summary

Increasing the density ν, g0(2a) will become different from unity and the cor-
rection factors become density dependent, due to an effective energy barrier,
Eeff . Eeff is reduced for both the repulsive and attractive case as compared to
systems without long-range forces. This results in a modified pair distribution
function which is decreased in the repulsive and increased in the attractive case
as compared to the case without long-range forces. The dashed lines in Fig. 4.26
represent g(2a) in units of g0(2a). With increasing density, the cooling behavior
becomes more and more similar to that of systems without long-range forces (i.e.,
the dashed lines approach the horizontal line at g(2a)/g0(2a) = 1).
Finally, we investigated empirically how the correction factor changes for systems
with different densities. In the repulsive case, we found a density-dependent ef-
fective repulsive energy barrier that is non-linearly dependent on Eb, which we
successfully used in order to improve the prediction of the dissipation rate.
In the attractive case, we found the density-dependent effective escape energy
barrier to be linearly dependent on Ee. Using this empirical finding, however, it
was not possible to improve the prediction of the cooling behavior, instead, the
cooling rate surprisingly behaves similar to the case without long-range attrac-
tion. That leads us to the conclusion that density effects are not the only reason
for the deviation, but also effects due to dissipation might play a role.



5 Ring-Shaped Particle Systems

Disk-like structures are very common in the universe and are represented by, e.g.,
galaxies, accretion disks and planetary rings. In general, disks and rings around
central gravitational bodies are a natural consequence of dissipation in rotating
systems. A spherical cloud of debris rotating around a central body settles into
a flat circular ring system because of the dissipative nature of the macroscopic
(granular) particles and of the conservation of total angular momentum. Cen-
tral bodies such as the planets of the solar system are oblate which results in
the conservation of the axial component of angular momentum only, which leads
every spherical cloud evolving to a flat ring that orbits around the planet in its
equatorial plane.
Such ring systems are differentially orbiting according to the Keplerian laws: ring
material closer to the central body is moving faster than that farther away. Vis-
cous shear stresses are the consequence, converting systematic particle motion
(on ellipsoidal Keplerian paths) into random motion which leads to a persistently
increasing granular temperature of the ring. As a consequence, the ring system
spreads radially and vertically. Likewise, collisions between the ring particles re-
distribute angular momentum and lead to a radial mass flow towards the central
body and simultaneously to a radial transport of angular momentum towards
outer regions, see Ref. [100].
Many structures are observed in the ring systems of the giant planets in the solar
system. The most popular example, Saturn’s rings, exhibits a wealth of struc-
tures in both radial and azimuthal direction that result from physically com-
pletely different processes. The most important process is the inelastic collision
between ring particles. The removal of kinetic energy due to collisions can keep
the planetary ring narrow and counteracts the heating process due to viscous
shearing [112]. Dissipative collisions are mainly responsible for the unique wealth
of structures. While stable cluster formation is observed in freely evolving gran-
ular gases due to the inelastic nature of inter-particle collisions [34,75,81,82,85],
one observes transient clustering in granular ring systems in a permanent tidal
field with Keplerian shear, as observed in Refs. [115,118]. The influence of satel-
lites (small moonlets embedded in the ring or separated from it) on the ring
dynamics is important as well. Saturn’s moons exert forces on the ring mate-
rial, shepherding the particles in the ring, even clearing regions, whereby gap
formation and gravitational wakes are a consequence, see Refs. [106, 116, 117].
An extensive review on planetary rings, e.g., is given in Refs. [31, 35, 107,121].
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In the following section, we investigate the time evolution of a complete dilute
ring-shaped N -body system by Molecular Dynamics methods. The dynamics is
governed by dissipative particle-particle collisions and we will add mutual long-
range attractive interactions [77] later on in order to study the influence of dissi-
pative contact forces and long-ranged attraction forces on the viscous behavior of
such particle systems. First of all, we focus on general aspects that are important
for the understanding of disk-shaped particle systems.

5.1 General Aspects

In the following, we will explain the basic aspects that are important for the
understanding of the motion of particles in a central gravitational potential.

5.1.1 Keplerian Motion

The presence of a central gravitational potential can deflect or even capture bodies
that approach from infinity, see Fig. 2.1 (c). For the trajectory of a particle i that
moves in a central potential, Newton’s equations of motion provide the general
equation of a conic section in polar coordinates, ric and φ,

ric(φ) =
p

1 + εecccos(φ)
,

where the numerical eccentricity, εecc, determines the type of the section. Here, we
define ric to be the closest distance between mi and Mc for φ = 0, and the largest
for φ = π. Then, ric(φ = π/2) = L2

i /(GMcm) = p, where Li = mi|ric × vφ| is
the orbital angular momentum of the particle. Particle trajectories with εecc = 0
describe a perfectly circular path, whereas those with εecc = 1 describe a parabola.
In the case 0 < εecc < 1, the path can either be described by an ellipse (see Fig. 5.1
(left), where 〈Etot〉 < 0) or by a hyperbola (see Fig. 2.1 (b), where 〈Etot〉 > 0).
The central body is located in one of the two focal points of the ellipse (1st

Keplerian law). As long as the orbital angular momentum is constant in time,
the motion of the particle is such that a line joining the particle and the central
body sweeps out equal areas in equal time intervals. This means, that particles
close to the central body move faster than particles farther away (2nd Keplerian
law). Balancing the centrifugal and gravitational force, miv

2
φ/ric = GMcmi/r

2
ic,

one obtains the Keplerian velocity of a particle in azimuthal direction:

vφ =

(

GMc

ric

)1
2

. (5.1)
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Figure 5.1: (Left) Illustration of a typical Keplerian trajectory of a single particle
with mass mi moving in a central potential with mass Mc. a and b
denote the semi-major and minor axes, respectively, e the eccentric-
ity and εecc the numerical eccentricity. (Right) Double logarithmic
plot of the Keplerian motion in azimuthal direction as a function of
radial distance for a non-gavitating system (large open circles) and a
gravitating system (small solid circles), each with r = 0.60. The solid
line corresponds to Eq. (5.1).

Assuming circular paths, i.e., ric ≈ a, one can set for the orbital period, T =
2πa/vφ, and find that T 2/a3 ≈ 4π2/(GMc) is constant for all particles moving
around Mc, irrespective of their mass (3rd Keplerian law). The approximation
sign is because we implicitly assume a spatially fixed Mc, i.e., Mc ≫ mi.
The right panel of Fig. 5.1 shows the double logarithmic plot of the mean azimu-
thal velocity, 〈vφ〉, as a function of the radial distance, ric. The straight solid line
represents Eq. (5.1) and symbols are data. Solid circles represent a gravitating
ring system with r = 0.60, open circles correspond to the same system without
attraction. Deviations from Eq. (5.1) can be seen for ric < 0.07 and ric > 0.11,
for which too few particles contribute to the computation of the mean azimuthal
velocity and statistics becomes unrelieable.

5.1.2 Granular Temperature

In section 4.1.1 we defined a granular temperature for homogeneous N -body
systems, for which the particles have a fluctuating energy component only and
do not have a mean velocity component. In contrast, a granular annular flow will
indeed show a movement of the particle bulk into a special direction which is the
azimuthal direction. This is due to the Keplerian motion of the particles. So, for
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the granular temperature, we use

Tg(t) =
1

3

( 〈
v2(t)

〉
− 〈v(t)〉2

)

(5.2)

instead of Eq. (4.3). The ring-shaped geometry of the system requires a specific
treatment of the squared mean in Eq. (5.2). Plausibility considerations lead us
to

〈v(t)〉2 → 〈|v(t)|〉2 ,

where we calculate the magnitude of the overall velocity vector before we calcu-
late its mean, see Ref. [86]. This procedure makes sure that velocity components
of different sign1 will not cancel each other and, so, all particles’ velocities will
contribute to the granular temperature.
Finally, we remark that the velocity distribution of the particles within ring
systems are far from the Maxwellian distribution – not only because of the dis-
sipative character of particle collisions but also due to the shear forces that are
permanently acting on the particles.

5.1.3 Virial Theorem

Multiplying Newton’s equations of motion of a many-body system with the ve-
locity vector of a particle i gives

∑

i

mir̈i · ṙi =
∑

i

(

F con
i + F diss

i

)

· ṙi ,

where we split up the total force acting on the particle i into the conservative (due
to the central mass Mc) and dissipative contributions. With the left-hand-side as
the total kinetic energy, Ekin, and

∑

i F
con
i · ṙi = −

∑

i(∇iEpot) · ṙi = −dEpot/dt,
we can write

d

dt

(

1

2

∑

i

miv
2
i

︸ ︷︷ ︸

Ekin

−GMc

∑

i

mi

|ric|
+ ceG

∑

i,j

mimj

|rij|
︸ ︷︷ ︸

Epot

)

=
∑

i

F diss
i · ṙi . (5.3)

In the case of elastic systems the right-hand-side of Eq. (5.3) will be zero and
the total energy, Etot = Ekin + Epot, will be conserved. For the case of inelastic
collisions, i.e., F diss

i = −∑i,j γ
(

vij(t) · nij(t)
)
nij(t), Etot decreases in time. In

a central potential, the time derivative of the sum of the total kinetic energy and

1The overall velocities of two particles whose positions are point symmetric in relation to
the central potential will cancel each other more or less because their velocity vectors are
identical in magnitude but directed oppositely.
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the total potential energy will equal the dissipative force times the velocity of
the particle. The Virial theorem states that for particles in a central gravita-
tional field such as expressed by Eq. (2.1), the time average of the total negative
potential energy is twice the time average of the kinetic energy of all particles:

−〈Epot〉t = 2〈Ekin〉t . (5.4)

In astrophysics, it is common to use this relationship between kinetic and poten-
tial energy in order to determine the mass, Mc, of the central body or, in case
of globular star clusters, the effective mass of the cluster, assuming no mutual
attraction forces between the stars. Then, from Eq. (5.4) results

Mc =

〈
N∑

i=1

miv
2
i

〉

t

/

〈

G

N∑

i=1

mi

|ric|

〉

t

,

where the vi, ri and mi are observable quantities.

5.1.4 Optical Depth

The optical depth, τ , is defined as the ratio of the total surface area of particles to
the area of the ring they reside in. For a mono-disperse particle size distribution
of ∆N particles with radius a in a ring of width ∆A, τ reads

τ :=
∆Nπa2

∆A
=

πa2

m
ρ∗ , (5.5)

where ρ∗ = ∆Nm/∆A is the two-dimensional mass density (surface density) of
the ring and does not depend on the ring’s vertical height. This holds as long
as we deal with vertically thin ring systems. Note, that the optical depth can
exceed unity.
The optical depth is dimensionless and its importance stems from the fact that
most physical quantities (such as impact frequency and kinematic viscosity) can
be expressed as a function of τ only.

5.1.5 Kinematic Viscosity

Generally, the kinematic viscosity is dependent on the density, Eq. (5.5). In the
case of a freely evolving gas, for which the volume force is zero, the kinematic
viscosity increases with temperature and is referenced to the density, i.e., ν∗ =
Tg(t)/τ . As soon as we deal with gases moving in a central gravitational field,
the density-dependent kinematic viscosity reads

ν∗(R, t) = 0.46
3Tg(t)

Ω(R)

τ

1 + τ 2
,
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where Ω = Ω(R) = 2π/TKep is the Keplerian frequency. On the other hand, for
low densities, the kinematic viscosity is found to be

ν∗(R, t) = kν
3Tg(t)

Ω(R)
τ , (5.6)

which is confirmed both theoretically in Refs. [18,36] and by simulations, e.g., in
Refs. [42, 130], where kν ≈ 0.15 is a constant. In the simulations, the kinematic
viscosity is supposed to obey Eq. (5.6) because we deal with dilute ring systems
(τ < 0.3).

5.2 The Model System

Before we investigate complete ring shaped particle systems, we will introduce
the simulation method we developed. We will extend the Molecular Dynamics
simulation method, as introduced in section 3.1, by the volume force of a central
body. Long-range attractive interaction forces between all ring particles and all
others are computed according to the hierarchical linked cell algorighm with non-
periodical boundary conditions, as described in section 3.6. The HLC method is
applied on ring-shaped particle systems in Ref. [87].

5.2.1 Forces

For solving Newton’s equations of motion for each particle, the algorihm com-
putes the new positions of the particles by means of Verlet’s integration scheme
described in chapter 3.1. For doing this, the integrator needs to know the cur-
rently acting forces on any particle. In the following, we summarize the forces
that can act on the particles in our model.

(i) Short-Range Forces

short-range forces are activated only if particles are in mechanical contact. A me-
chanical contact between two particles in our simulations occurs as soon as both
particles overlap, i.e., when the absolute value of the distance vector between the
particles becomes smaller than the sum of their radii. The overlap is quantified
by δ(t). Then, the force on particle i is computed by

F i(t) = kδ(t)nij(t) − γ
(

vij(t) · nij(t)
)
nij(t) ,

whereas for the other particle j, the force is calculated via F j = −F i. k and γ
are material parameters, determining the strength of the repulsive and that of the
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dissipative force, respectively. The second term in the equation is the dissipative
force that reduces the repulsion force, resulting in a loss of kinetic energy after
the collision. For more details on the short-range forces considered, we refer to
section 3.1.1.

(ii) Long-Range Forces

The computation of long-range forces on a particle i is carried out in several steps:
the immediate vicinity of particle i contains Mico − 1 particles within the inner
cut-off sphere (see section 3.6.2), where Mico is the typical number of neighboring
particles. The force between each of the Mico − 1 particles and particle i is
calculated separately.
The next steps consist of the calculation of the force between i and the pseudo
particles of any hierarchy applied. Due to the special geometry of thin ring
systems, we make the hierarchical structure in z-direction composing only of one
linked cell (lower panel of Fig. 5.2), while arranging 3Hmax linked cells in x and
y-direction (upper panel). So, in contrast to the homogeneous particle systems of
chapter 4, we have a reduced number of 3Hmax×3Hmax×1 basic cells for the linked
cell neighborhood search and (3×3×1)−1 = 8 pseudo particles in each hierarchy
that act on i. So, the total long-range force contribution for particle i reads

F i(t) =

Mico−1∑

j=1

F ij(t) +
Hmax∑

h=1

8∑

α=1

(

F
(M)(h)
iα (t) + F

(Q)(h)
iα (t)

)

,

where F ij is given in section 2.1.1 and F
(M)
iα , F

(Q)
iα are given in section 2.3. The

maximum hierarchy Hmax is chosen such that each linked cell contains not too
many particles. Otherwise, a large number of particles per cell will make the
HLC algorithm running inefficiently, because in each linked cell every particle
is checked with all others in the same cell. Typically, we use Hmax = 4 which
provides 81 linked cells in x and y-direction, leading to an optimal average number
of less than 10 particles per cell. The geometrical properties of the HLC structure
in arbitrary dimension d is summarized in section 3.6.3.

(iii) Volume Force

The volume force of the central gravitational potential keeps the particles in
Keplerian orbits, where the centrifugal force balances the attractive volume force.
The central potential is assumed to be fixed in the geometrical center of the
simulation volume and acts on each particle. The volume force is only dependent
on the distance vector, ric, between the particle i and the central potential, and
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Figure 5.2: The HLC algorithm for ring-shaped particle systems with Hmax = 3.
Thin solid lines show the linked cell structure of the simulation vol-
ume, thick solid lines show the HLC structure. Dashed lines show the
HLC structure outside the simulation volume in case of non-periodical
boundaries. (Top) The HLC structure in plane view. (Bottom) The
HLC structure in side view.

reads

F i(t) = −GMcmi
nic(t)

r2
ic(t)

.

The volume force depends on the mass of the central potential, Mc, and on the
mass of the particle i, mi. The unit vector, nic(t) = (ri(t) − rc)/|ri(t) − rc|,
points towards i and G is the gravitational constant introduced in section 2.1.1.
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5.2.2 Adjusting the Time Step

Long-range interactions can be considered as collisions without mechanical con-
tact. Transferring the idea of the spring model (cf. section 3.1.1) to long-range
interactions2, we can set for the theoretical collision time

tc =
π

ω0
=

π
√

K/mred

, (5.7)

where K is the spring constant containing the information about the nature of
the long-range interaction potential we focus on. mred = mimj/(mi + mj) is
the reduced mass for the case that we distinguish between ring particles and the
central body. Such as in the case of mechanical contacts, where K is equivalent
to the spring constant, k, that can be obtained by the second spatial derivative
of the short-ranged spring potential,

K =
d2

dr2
ij

(

1

2
k
(
2a − rij

)2

)

= k ,

long-range interactions provide a spring constant, that can be computed by the
second spatial derivative of the long-ranged gravitational potential. This gives

K =
d2

dr2
ij

(

− ceGmimj

rij

)

= −2ceGmimj

r3
ij

. (5.8)

Inserting this K in Eq. (5.7) gives the collision time

tc =
π

√

−2ceG(mi + mj)/r
3
ij

!
= z∆t , (5.9)

for the long-range interaction potential. Here, the theoretical collision time in-
creases with distance, rij, between particle i and particle j. The rule that a
mechanical contact should be well resolved for the MD integrator, i.e., the colli-
sion time of a head-on collision with spring constant k should take at least z =
50...100 time steps, applies to the case of long-range forces as well. Taking z = 100
and mi, mj as the particle’s or central body’s mass, we obtain the required time

step from Eq. (5.9) that increases with r
3/2
ij . Note, that for interactions with the

central body, we set ce = −1 in Eq. (5.8). Using the closest possible distance,
i.e., at physical contact between two particles, we obtain the minimum time step
one has to take for the simulation.
Fig. 5.3 shows the time step, ∆t, of Eq. (5.9) as a function of the inter-particle

2We leave out the damping term of the spring model because long-range interactions do not
dissipate kinetic energy.
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Figure 5.3: The simulation time step, ∆t (in CPU-seconds), is plotted double-
logarithmically as a function of the inter-particle distance, rij (in ar-
bitrary units). Vertical lines indicate the closest distances (i.e., at
contact) between two ring particles (“pp”) and between a ring par-
ticle and central particle with small (“pc”) and large radius (“pC”).
The inclined lines denote the required time step predicted by Eq.
(5.9) for interactions between two ring particles (dashed lines) and
between a ring particle and the central particle (dash-dotted lines).
The horizontal lines denote the time step ∆t = 0.08, that we use in the
simulations together with k = 4.55 · 10−17. (Left) Using ce = −2 · 105.
(Right) Using ce = −2 · 108.

distance, rij , in a logarithmic plot for the cases ce = −2·105 (left) and ce = −2·108

(right panel). The upper inclined lines give the minimum time step for a long-
range interaction between two ring particles and are shifted vertically depending
on the choice of ce (compare the left with the right panel), whereas the lower ones
are valid for the long-range interactions between a ring particle and the central
body.
For the simulations, we have chosen ∆t = 0.08 (horizontal line), resulting from
Eq. (5.9) with a ring particle’s mass, mi = mj = 5.899 ·10−16, and a closest possi-
ble approach of rij = 2a = 7.86·10−4 (vertical line, indicated by “pp”). For closest
encounters of ring particles to the central body, the required minimum time step
is ∆t = 0.11 (“pc”, contact at rij = a + ac = 1.393 · 10−3) and ∆t = 6.06 (“pC”,
contact at rij = 2.0393 · 10−2) for a central particle’s radius of ac = 0.001 and
ac = 0.02, respectively. This guarantees a proper simulation run as long as the
ring particles are farther from the central body than rij = ric = 1.393 · 10−3.
To verify these considerations, we run simulations with the spring constant,
k = 4.55 ·10−17, self-gravitation strength, ce = −2 ·108, and time step, ∆t = 0.08,
but different radius of the central body, ac = 0.001 and 0.02. Hence, we allow for
different close encounters between the ring particles and the central mass. In Fig.
5.4 we see the total kinetic energy of the system referenced to the initial value
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Figure 5.4: The total kinetic energy referenced to the initial energy,
Ekin(t)/Ekin(0), plotted against time in units of the Keplerian pe-
riod, t/TKep. The simulation with a central body’s radius ac = 0.001
(small solid circles) runs improperly, while the one with ac = 0.020
(open circles) runs properly.

as a function of time in a semi-logarithmic plot. The choice of a large radius
of the central body (“pC”) provides a proper run of the simulation, whereas a
small radius (“pc”) shows a rapid gain of kinetic energy (at t ≈ 0.38 TKep), which
indicates an improper run. A too small radius allows for a too close encounter,
where the particle will be influenced by strong gravity and its trajectory will be
strongly curved. If the time step is chosen too large for this interaction, the MD
integrator cannot resolve the trajectory properly and, hence, solves the equations
of motion inaccurately. This results in a rapid gain of kinetic energy as shown in
the figure. So, the time step has to be adjusted carefully, not only with respect
to the stiffness of mechanical contacts, but also with respect to the nature of the
implemented long-range potential.

5.2.3 HLC versus PP

Adjusting the time step correctly to the spring stiffness and, according to the
previous section, also to the strength of the gravitational potential, we will com-
pare now the results obtained by the Hierarchical Linked Cell method with those
of reference simulations. The reference simulations use – such as in chapter 4 –
the PP method (cf. section 3.2) and hence are highly accurate but very expensive
in computational time.
We set up a vertically thin disk with N = 4728 particles at an initial granular
temperature, let it evolve in time and extract its actual time-dependent thermal
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Figure 5.5: (Left) The actual thermal energy in units of the escape energy barrier
is plotted against the time in orbital periods. Open symbols corresp-
sond to the results of the HLC code, solid symbols to the results of
the pair-wise summation method. (Right) The central processor unit
time, tCPU (in CPU-seconds), for the MD simulation of ring-shaped
particle systems including long-range attraction forces is plotted loga-
rithmically as a function of the particle number, N . Lines correspond
to expected values, symbols to simulation results.

energy. If we plot the total thermal energy, mTg(t), of the disk in units of the
escape potential, Ee (see section 2.2), as a function of time we will see an increas-
ing function, see the left panel of Fig. 5.5. The energy shows different offsets
(due to the different reference, Ee) and is evolving for two different attraction
strengths. In the case ce = −1 · 105, the simulation results obtained by the dif-
ferent simulation methods agree very well over the whole time range displayed.
For the case ce = −5 · 105, however, the results diverge. This seems to be the
consequence of applying a larger attraction strength. Comparing this with the
findings for attraction forces in homogeneous systems, see section 3.7.2, we expect
better agreement for all times if we adjust mTg(t = 0)/Ee > 1.
The additional computation of quadrupole moments for the force contributions at
each hierarchy level slightly improves the results (large open circles) as compared
to the usage of monopole terms only (small open circles). Nevertheless, we obtain
better agreement between the results of the HLC and the direct summation code,
the lower the attraction forces are chosen, and if we consider quadrupole terms
in addition to the monopole force computation.

5.2.4 Computational Time

As mentioned in section 3.6.7, a linked cell should contain no more than 10 par-
ticles, otherwise the linked cell neighborhood search and hence the hierarchical
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linked cell algorithm will become computationally very expensive. In the right
panel of Fig. 5.5 we plot the computing time of the CPU, tCPU, as a function
of the number of particles, N , of the ring-shaped particle system in a double-
logarithmic plot. For low hierarchies, Hmax = 2 and Hmax = 3, the CPU time
increases with N as O(N2), because of the increasing number of particles per
linked cell. A larger maximum hierarchy level Hmax is expected to result in a
reduced time effort. Indeed, for Hmax = 4, we observed an increase of the com-
putational time expense with N as O(N logN). However, the same efficiency as
we observed for homogeneous systems (see Fig. 3.9) is surprising, because here
we deal with completely inhomogeneous systems, where many linked cells remain
empty during the simulation, see Fig. 5.2.
For a given small number of particles, e.g., N ≈ 500, one can clearly see that
the computational time jumps to large values for Hmax = 4 as compared to lower
maximum hierarchies. Increasing Hmax gives less particles within the inner cut-off
sphere to be computed pair-wise but leads to an increased computational time
expense for small N . This can be explained by the increased time for administrat-
ing and constructing the more complex HLC structure. On the other hand, for
large particle numbers, the force computation time becomes more prominent as
compared to the administration time. So, higher hierarchies are more efficient for
larger particle numbers, so that the HLC algorithm behaves as order O(N logN).

5.3 The Deliquescing Particle Ring

Ring-shaped particle systems that encircle central gravitational potentials in a
plane are differentially moving. According to the second Keplerian law, parts of
the ring closer to the central potential move faster than those that are radially
farther away from the center. This results in shear forces between the particles,
i.e., inner particles will be decelerated, outer particles will be accelerated. Due
to collisions, particle velocity components will become disordered, resulting in
random motion set up onto the azimuthal Keplerian overall motion. This unsys-
tematic motion contributes to the granular temperature in the system and results
finally in a radially and vertically dispersing ring system. These systems are far
from being in thermodynamical equilibrium. They are persistently heating up,
resulting in an increasing kinetic energy and temperature.
To understand how those dilute ring-shaped particle systems evolve in time, it
is important to quantify the kinematic viscosity3, ν, which is the only material
parameter that we will try to understand better in the following.

3We will use here the Greek character, ν, for the kinematic viscosity and do not run risk to
mistake it with the volume fraction of the preceding chapter. The volume fraction only
makes sense as long as we deal with homogeneous particle systems which is not the case
here.



122 5.3 The Deliquescing Particle Ring

5.3.1 The Hydrodynamic Equations in 2D

In this section we will discuss the approximate hydrodynamic momentum balance
equations for a viscous annular flow of material encircling a central body in a thin
layer. The underlying thin-disk approximation, see Refs. [78,100,119], states that
the mean vertical height must be much smaller than the radial extension of the
disk. If so, all physical quantities can be integrated over the vertical height which
reduces the problem to a 2D problem. We keep in mind, that the mass flow is
still imbedded in three dimensions, and so, the volume force is still proportional
to R−2.
The approximate momentum balance equation is found if we assume that

• all physical quantities are constant over the height of the disk, so, the z-
component of the quantities entering the hydrodynamic equations vanish

• the radial mass flow is negligible as compared to the azimuthal mass flow,
i.e., 〈vR〉 ≪ 〈vφ〉

• there is no resulting mean mass flow in vertical direction, i.e., 〈vz〉 ≈ 0,
because we assume the same mass flow in positive as in negative vertical
direction

• the system is an axi-symmetric system, i.e., the derivative with respect to
the azimuthal component vanishes

• the volume viscosity is negligible as compared to the shear viscosity because
we do not assume a significant volume change of the ring

• the pressure gradient is negligible as compared to the viscous terms [100].

These assumptions lead us to a simplified set of hydrodynamic equations in polar
coordinates, i.e., the equation of continuity reads

∂ρ∗

∂t
+

1

R

∂(ρ∗RvR)

∂R
= 0 (5.10)

and we obtain for the R and φ components of the Navier-Stokes equations

∂vR

∂t
+ vR

∂vR

∂R
−

v2
φ

R
= −GMc

R2

+
1

ρ∗
2

R

(
∂

∂R

[

ν∗ρ∗
(

2

3

∂(RvR)

∂R
− vR

)]

+
ν∗ρ∗

R

(
1

3

∂(RvR)

∂R
− vR

))

,

(5.11)

∂vφ

∂t
+ vR

∂vφ

∂R
+

vRvφ

R
=

1

ρ∗
1

R2

∂

∂R

[

R3ν∗ρ∗ ∂

∂R

(vφ

R

)]

. (5.12)
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Eqs. (5.11) and (5.12) can be simplified further. The two dimensional kinematic
viscosity, ν∗, is responsible for the radial momentum transport due to inter-
particle collisions. As a consequence, the radial and vertical spreading of the
ring depends on ν∗. Since 〈vR〉 ≪ 〈vφ〉, in Eq. (5.11) all terms containing ν∗

and vR can be neglected as compared to the contribution of the volume force,
−GMc/R

2, and we obtain the azimuthal (Keplerian) velocity vφ = (GMc/R)1/2.
In contrast, in Eq. (5.12) we still have to consider a non-vanishing kinematic
viscosity. Inserting the expression for the Keplerian velocity in Eq. (5.12), we
obtain the radial velocity

vR = − 3

ρ∗R
1
2

∂

∂R

(
ν∗R

1
2 ρ∗) . (5.13)

In contrast to the azimuthal velocity, vR vanishes if ν∗ is assumed to be zero since
there is no radial spreading when there is no friction. Inserting the radial velocity
of Eq. (5.13) in the equation of continuity, Eq. (5.10), gives

∂ρ∗(R, t)

∂t
=

3

R

∂

∂R

[

R
1
2

∂

∂R

(

ν∗(R, ρ∗)R
1
2 ρ∗(R, t)

)
]

, (5.14)

where we have written the dependencies of the variables on R and t explicitly.
In the following, we will make the equation dimensionless. As a first step, we
switch from ρ∗ and R to the dimensionless quantities τ(R, t), see Eq. (5.5), and
s = R/R0, respectively. Here is s0 = 1 at the density maximum. Eq. (5.14) then
becomes

∂τ(s, t)

∂t
=

3

R2
0s

∂

∂s

[

s
1
2

∂

∂s

(

ν∗(s, τ)s
1
2 τ(s, t)

)
]

.

Now, let us make ν∗(s, τ) and the time, t, dimensionless. For this, we have to
discuss the Ansatz for the integrated kinematic viscosity. According to Ref. [42]
and Eq. (5.6), we use the Ansatz

ν∗(s, τ) = kν
3Tg(t)

Ω(R0)
s

3
2 τ(s, t) ,

where 3Tg(t) is the time-dependent total velocity dispersion at the center s0 of
the ring, see Eq. (5.2), kν ≈ 0.15 a constant [36,130], and Ω(s) = Ω(R0)s

−3/2 the
Keplerian orbital frequency in the dimensionless radial coordinate, s. Let us put
s and τ in arbitrary powers and obtain a more general form for ν∗. Then, we
have

ν∗(s, τ) = ν0s
ατ(s, t)β , (5.15)

where ν0 = 3kνTg(t)/Ω(R0). Inserting this Ansatz in the PDE, we obtain

∂τ(s, t)

∂t
=

3

R2
0s

∂

∂s

[

s
1
2

∂

∂s

(

ν0s
α+ 1

2 τ(s, t)β+1
)
]

.



124 5.3 The Deliquescing Particle Ring

Finally, using the time transformation t = θR2
0/(12ν0), we will make the PDE

entirely dimensionless

∂τ(s, θ)

∂θ
=

1

4s

∂

∂s

[

s
1
2

∂

∂s

(

sα+ 1
2 τ(s, θ)β+1

)
]

, (5.16)

where θ is termed the viscous time. Note, that θ is not linear with t, because of
the time-dependence of ν0.
Furthermore, we can transform Eq. (5.16) into an equation that takes the shape
of the diffusion equation. With the substitution

u(s, θ) = sα+ 1
2 τβ+1 (5.17)

and its derivative with respect to τ ,

∂u

∂τ
= (β + 1)sα+ 1

2 τβ = (β + 1)sα+ 1
2

(

u

sα+ 1
2

) β

β+1

,

we can eliminate τ in Eq. (5.16) by setting

∂u

∂θ
=

∂u

∂τ

∂τ

∂θ
=

1

4
(β + 1)uβ/(β+1)s(α−β− 1

2
)/(β+1) ∂

∂s

[

s
1
2
∂u

∂s

]

. (5.18)

Now, we eliminate s by setting s = x2 with ∂s/∂x = 2x and ∂x/∂s = 1/(2x),
and can write

∂

∂s

[

s
1
2
∂u

∂s

]

=
∂x

∂s

∂

∂x

(

x
∂x

∂s

∂u

∂x

)

=
1

4x

∂2u

∂x2
.

Using this result in Eq. (5.18), leads to a Diffusion equation

∂u

∂θ
=

1

16
(β + 1)

uβ/(β+1)

x(3β−2α+2)/(β+1)
︸ ︷︷ ︸

D(x,u;α,β)

∂2u

∂x2
(5.19)

with the variable diffusion constant, D(x, u; α, β), that depends on the new radial
coordinate, x, and implicitly (via u) on the viscous time, θ. α, β are constant
parameters. For α = 1 and β = 0, we obtain the constant diffusion coefficient
D = 1/16 = const., representing the usual equation of diffusion. For α = 0 and
β = 0, the solution of Eq. (5.19) is given, for example, in Ref. [100]. A more
general solution has been shown in Ref. [78]. In the following, we will discuss Eq.
(5.19) for different α and β.
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Figure 5.6: The optical depth, τ , as it follows from the numerical solution of
Eq. (5.19), plotted as a function of x (lines) for α = β = 0 in a
semi-logarithmical plot for the viscous times θ = 0.000, 0.007, 0.014,
0.021, 0.028 and 0.035. (Left) The initial condition is an analytical
Gaussian (symbols). (Right) The initial condition is a typical initial
MD data set (symbols).

5.3.2 Density-independent Kinematic Viscosity

In this case, we set β = 0 and the Ansatz Eq. (5.15) is not dependent on τ , i.e.,
in the new coordinate x we have

ν∗(x) = ν0x
2α and u(x, θ) = x2α+1τ(x, θ) ,

and the diffusion constant in Eq. (5.19) turns into D = (1/16)x2α−2. The PDE
can then be solved analytically by separating of variables [78, 100, 119].
Fig. 5.6 shows the resulting optical depth in the new coordinates x, θ as a func-
tion of x in a semi-logarithmical plot. In the left panel lines correspond to the
numerical solution of Eq. (5.19) for α = β = 0, symbols to the analytical initial
Gaussian function we used. As long as β = 0, we will always find an analytical
solution for τ . The right panel shows the numerical solution for α = 0, β = 0,
that evolves from a typical initial data set used as input for our MD simulations.

5.3.3 Radius and Density dependent Kinematic Viscosity

Now, we set α 6= 0, β 6= 0 and hence assume that the viscosity being dependent
on both the radial coordinate and the density. First, we set α = 3/2 and β = 1,
as proposed in Ref. [42]. This gives

ν∗(x, τ) = ν0x
3τ(x, θ) and u(x, θ) = x4τ(x, θ)2 ,
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Figure 5.7: The optical depth, τ , plotted as function of x in a semi-logarithmical
plot for α = 1.5, β = 0.0 (left) and α = 1.5, β = 1.0 (right) and
evolves from the same initial MD data set as shown in Fig. 5.6. The
curves correspond to the viscous times θ = 0.000, 0.007, 0.014, 0.021,
0.028 and 0.035.

and the diffusion constant in Eq. (5.19) turns into D = (1/8)u1/2x−1. We will
solve the resulting PDE numerically and obtain results for τ as a function of x,
which is shown semi-logarithmically in the right panel of Fig. 5.7. Obviously, the
ring is predicted not to deliquesce that strong as it is shown in the left panel for
the case α = 1.5 and β = 0.

5.3.4 Moments of the Distribution

A good test for the quality of the numerical solution of Eq. (5.19) is to compute
the moments of the radial distribution of the optical depth and see them evolve
in time. The total mass of the ring can be obtained by using polar coordinates
R, ϕ:

Nm =

∞∫

0

2π∫

0

ρ∗(R, t) R dϕ dR
(5.5)
=

m

πa2

∞∫

0

2π∫

0

τ(R, t) R dϕ dR . (5.20)

Evaluating the integral over the azimuthal angle, ϕ, the normalized probability
distribution function in the radial coordinate, R, reads f(R, t) = 2Rτ(R, t)/(Na2)
and gives the probability to find a particle in the interval [R, R + dR]. The i’th
moment of an arbitrary distribution is defined as µ(i) =

∫∞
0

Rif(R, t) dR. The
most general form of the i’th moment in the coordinates R and t reads

µ(i) =
2

Na2

∞∫

0

Ri+1τ(R, t) , (5.21)
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Figure 5.8: The variance, V (θ), of the radial distribution of τ(R), see Eq. (5.24),
plotted as a function of the viscous time, θ, for different parameters,
α and β. Solid lines correspond to the numerical solution.

where R0 is the radial center of the ring where τ has its maximum. The zeroth (i =
0) moment of any distribution gives unity. The first (i = 1) moment gives here
the radial center of mass, R0. Expressing the moments in the new coordinates,
x and θ, by using the transformations, R = R0x

2 and t = θR2
0/(12ν0), gives

µ(i)(θ) =
4R2+i

0

Na2

∞∫

0

τ(x, θ) x2i+3 dx . (5.22)

Using the substitution u(x, θ) = x2α+1τβ+1(x, θ), we obtain the i’th moment

µ
(i)
α,β(θ) =

4R2+i
0

Na2

∞∫

0

x(2i+2iβ+3β−2α+2)/(β+1) u(x, θ)1/(β+1) dx , (5.23)

depending on the parameters α and β. The time evolution of the variance of the
normalized distribution used in Eqs. (5.22) and (5.23), i.e.,

Vα,β(θ) = µ
(2)
α,β(θ) −

(

µ
(1)
α,β(θ)

)2

, (5.24)

is plotted against θ in Fig. 5.8 for different parameter sets α, β. The variance is a
measure for the width of the ring with its center at µ(1) ≈ R0, and will be later the
reference measure for comparing simulation results with theory. We see that, as
long as β = 0, the variance of the distribution of τ increases significantly with the
viscous time for different α. As soon as we choose β 6= 0, the slope drops to smaller
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Figure 5.9: (Left) The total energy of differently dissipative rings as a function of
orbital periods. (Right) According to the Virial theorem Eq. (5.4), the
ratio, −〈Ekin〉t/〈Epot〉t, is plotted over the number of orbital periods.

values and the variance will be entirely determined by β. For increasing β, the
slope will become significantly smaller, independent of the choice of α. It seems,
that for β 6= 0, the density-dependence of ν∗ (determined by β) characterizes the
spreading of the ring stronger than the dependence on R (determined by α).

5.4 Non-gravitating Ring Systems

In this subsection we investigate complete ring systems by means of MD simula-
tions as introduced in section 5.2 with different dissipation strength and without
self-gravity.

Total Energy and the Virial Theorem

According to the Kepler laws, the particles’ trajectories are ellipsoidal with 0 <
εecc < 1 in Eq. (5.1), leading to a negative total energy of the particle system. The
left panel of Fig. 5.9 shows the total energy, referenced to its absolute magnitude,
as a function of orbital periods. As expected, the energy is negative and decays
to larger negative values for stronger dissipative ring systems. This holds only
for particles that are bound in a central (gravitational) field. The Virial theorem
is also valid for particles moving on closed paths in a central gravitational field.
Then, Eq. (5.4) holds. In the right panel of Fig. 5.9, the ratio, −〈Ekin〉t/〈Epot〉t =
0.5, is plotted against time. The Keplerian period, TKep, is mirrored by the
oscillating data, showing a larger amplitude for r = 1.00 (strong heating) than
for r = 0.29 (weak heating). The peaks do not coincide with integer numbers
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Figure 5.10: The granular temperature in units of the initial value, Tg(t)/Tg(0),
is plotted as a function of orbital periods, t/TKep (left), and as a
function of the scaled radial coordinate, R/R0, for the time t/TKep =
6.3 (right), for different dissipation r. Solid lines correspond to fit
functions, according Eq. (5.26).

of t/TKep because not all values from the data set are plotted due to the time
average. We see that the ratio indeed oscillates around the mean value of 0.5,
also for differently dissipative particle systems. However, as discussed in section
5.1, in the presence of dissipative particle collisions, Eq. (5.4) does not hold. Still,
the Virial theorem seems to be valid since in dilute systems dissipative particle
collisions are so rare that they do not considerably affect the energy content of
the system. According to the left panel, only 0.025 % of the total energy has
been removed after one orbital period for the case r = 0.45. Thus, Eq. (5.4) is
approximately valid.

Temperature

Due to Keplerian shear, viscous heating does occur and the ring permanently
heats up, counteracting the collisional cooling process, see Ref. [112]. As we
can see from the left panel of Fig. 5.10, the granular temperature, referenced to
its initial value, taken at the center R0 of the ring rises stronger in time with
decreasing dissipation. The fact that for low dissipation heating can overcome
cooling processes results in both a radially and vertically deliquescing particle
ring. In contrast, strongly dissipative disks remain narrow and deliquesce less
than elastic rings because the vlocity dispersion scales with the vertical height
[35]. For a specific dissipation, there will be a (constant) density for which the
viscous energy gain balances the collisional energy loss. Too high dissipation
would lead the disk evolving to a quasi monolayer, whereas a too low dissipation
would lead the disk evolving to a spherical cloud [18]. In the figure, we see that the
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temperature for strongly dissipative rings (r = 0.29, 0.45) increases less strong
with time, reaching almost a horizontal line, whereas weakly dissipative rings
(r ≥ 0.60) show a permanently increasing temperature, indicating a spreading
ring system. In the right panel of Fig. 5.10, the referenced temperature is plotted
as a function of the scaled radial coordinate, R/R0, for differently dissipative
particle systems for a given time t = 6.2 TKep. One can clearly see, that the
temperature decreases with larger radial coordinate, such as the temperature
does at the center, R/R0 = 1, for decreasing r.

Kinematic Viscosity

We will now apply the theoretical results of section 5.3 to a deliquescing particle
ring. We solve the partial differential equation, Eq. (5.19), numerically for the
optical depth, τ(R, t), in the radial coordinate and time. For the solution, we
consider the kinematic viscosity to be differently dependent on the radial coordi-
nate R and optical depth τ by adjusting the parameters α and β, see Eq. (5.15).
As a result, we obtain solutions for τ depending on α and β, see the figures 5.6
and 5.7. We extract the optical depth from differently dissipative simulations
and compare it with the numerical results in order to obtain information about
the kinematic viscosity in our particle systems.
For comparison we use the time evolution of the variance of τ , as expressed by
Eq. (5.24). The variance of the numerical solutions is computed for all viscous
times, θ, whereas V obtained from the simulations is calculated for all real times
in units of the orbital period, t/TKep. In order to compare the variances, we have
to transform the real time into the viscous time via

θ =
12ν0

R2
0

t =
72πkνTg(t)

R2
0Ω(R0)2

( t

TKep

)

, (5.25)

where we have used ν0 = 3kνTg(t)/Ω(R0) and Ω(R0) = 2π/TKep. Note, that ν0

is dependent on time via Tg(t). The real time dependency of θ cancels in Eq.
(5.19) since we solve it for θ. Whereas for the time transformation in Eq. (5.25)
we need to know the exact dependence, so, we use

Tg(t)

Tg(0)
= a0

( t

TKep

)

+ a1

( t

TKep

)P

(5.26)

for fitting the temperature in the left panel of Fig. 5.10 (see the solid lines). Here,
we set P = 2 for the simulations with r = 1.00, 0.90 and 0.80 and P = 0.5 for
r = 0.66, 0.60, 0.45 and 0.29. A best fit provides the dimensionless fit parame-
ters, a0 and a1, and we can insert Eq. (5.26) into Eq. (5.25), obtaining finally the
time transformation.
In the left panel of Fig. 5.11, the variances obtained by the numerical solutions
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Figure 5.11: (Left) The variance, V (θ), of the radial distribution of τ(x, θ), see
Eq. (5.24), plotted as a function of the viscous time, θ, for different
parameters, α and β. Solid lines correspond to the numerical solu-
tion, symbols to data of different dissipation. (Right) The same as
left but with simulation results of stronger dissipation.

are plotted as a function of θ for different models for ν∗, i.e., for different pa-
rameter sets α, β given in the panel. In addition, the variances obtained from
differently dissipative (r = 1.00, 0.90, 0.80) simulations are plotted, after being
time-transformed. The data sets increase for short viscous times stronger (for
θ < 0.002), and for large viscous times weaker (for θ > 0.02) than theory pre-
dicts. For intermediate viscous times the slopes can be regarded as increasing
linearly, such as the theoretical results. The same we observe for stronger dissi-
pative simulations (r = 0.66, 0.60, 0.45) in the right panel. Due to the case that
stronger dissipation leads to a weaker increase of temperature, see the left panel
in Fig. 5.10, the viscous time-scale becomes shorter for stronger dissipation as
compared to the case of weaker dissipation. In the right panel, we plotted the
cases α = 5.00, 4.00, 3.00 and β = 0 in addition to the theoretical results of the
left panel. To summarize, for intermediate viscous times, simulation results show
a linear increase of the variances such as the theoretical predictions. However,
no data set of α, β leads to a correct prediction of the dynamical behavior of the
particle ring.

5.5 Gravitating Ring Systems

In this section, we will investigate self-gravitating ring systems by computer sim-
ulations using the Hierarchical Linked Cell algorithm introduced in section 5.2.
The ring particles will experience their mutual gravitational potential in addition
to the central potential.
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Figure 5.12: (Left) Eq. (5.4) is plotted against the time in Keplerian periods
for two differently attractive and dissipative systems. (Right) The
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plotted as a function of orbital periods, t/TKep, for a gravitating and
non-gravitating system, both with r = 0.90. For comparison, the
result of a non-dissipative system without attraction forces is added.

Virial Theorem and Temperature

In section 5.1.3 we found that the Virial theorem is approximately valid for
our systems, even if we deal with dissipative systems. Now, is it valid for self-
gravitating systems as well? Particles in self-gravitating systems influence each
other while orbiting around the central body. Both the mutual attraction and
the volume force scale with s = 3 in Eq. (2.3). We assume, that the Virial
theorem is still valid since the condition that the particles must interact with a
1/r long-range potential is fulfilled. The left panel of Fig. 5.12 shows the ratio
−〈Ekin〉t/〈Epot〉t as a function of time in units of the Keplerian orbital period,
TKep. We see, besides oscillatoric effects that mirror the periodicity of the orbit-
ing ring, that the ratio keeps the value 0.5 predicted by Eq. (5.4) over the whole
simulation time. This means that the combination of the volume force with the
mutual long-range attraction force obeys the Virial theorem as well.
In the right panel of Fig. 5.12, we plot the temperature taken at the ring center
and referenced to its initial value as a function of time in units of TKep. We see
(for r = 0.90), that in presence of attraction forces the temperature increases
stronger than for the case Ee = 0. For comparison, it is also shown the temper-
ature increase of a non-gravitating system but with r = 1.00. Anyway, a system
with r = 1.00 is supposed to heat up stronger than a system with r = 0.90. The
additional attraction makes the system with lower dissipation heating up with
the same rate as the elastic system – at least for the simulation time showed.
Particles that influence each other via attraction forces, convert potential energy
into kinetic energy if they come closer to each other. In combination with contact
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Figure 5.13: The optical depth, τ , is plotted as a function of the scaled radial
coordinate, x =

√

R/R0 for a non-gravitating (open squares) and a
gravitating ring (solid squares), both with dissipation r = 0.60 at
t = 2.9 TKep. The line without symbols corresponds to the initial
MD configuration.

collisions, this gives rise for an increase of the disordered motion of the particles,
resulting in an increase of the granular temperature.

Kinematic Viscosity

Due to the fact that gravitating ring systems heat up stronger than non gravi-
tating rings, Fig. 5.12 (left) for r = 0.90, they consequentially deliquesce faster
in time. This can be seen in the left panel of Fig. 5.13, where we show the radial
profile of the optical depth over the radial coordinate, x, which we introduced
in section 5.3.1. The profile develops from an initial configuration with initial
optical depth of about τ0 = 0.3 (line without symbols), to a deliquesced pro-
file after almost three Keplerian orbital periods, where it becomes broader. If
we consider only dissipation, here r = 0.90, the profile (open squares) shows a
smaller width than the profile of a gravitating ring (solid squares) with r = 0.90
and ce = −2 · 105 at t = 2.9 TKep. Generally, for a given time, gravitating rings
show larger variances of the distribution of τ than non-gravitating rings. In the
right panel of Fig. 5.13, the variances from different dissipative self-gravitating
rings are shown. Strong self-gravity in combination with low dissipation results
in an oscillating variance, which does not fit to any parameter set α, β. So, we
cannot make a proper ansatz of the kinematic viscosity, expressed by Eq. (5.15).
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Clustering

Dissipation and attraction strength enhance clustering in particle rings whereas
the permanent shear rate is counteracting the formation of lumps and “moon-
lets”. Fig. 5.14 shows typical ring-shaped particle systems without self-gravity
(left) and with self-gravity (right) at t = 2.9 TKep. The dissipation strength in-
creases from top to the bottom panels. For dissipation r = 0.85 there is still no
clustering shown whereas for r = 0.60 cluster formation has already sets in. This
confirms our assumption that dissipation enhances the clustering process.
On the other hand, elastic systems (r = 1.00) under permanent shear can also
show clustering if attraction is tuned sufficiently strong. The left panel of Fig.
5.15 shows a ring system where the attraction force has been chosen such high
that clustering set in. However, the nature of the clusters is different for the
elastic case as compared to the inelastic case. Since in the latter case particles
tend to stay together after a collision due to the removal of kinetic energy, in the
elastic case, particles bounce against each other, not losing kinetic energy. This
different behavior results in a different surface structure of the clusters. While in
the inelastic case, clusters exhibit a well-defined surface, in the elastic case, the
cluster’s surface is not well-defined due to the non-decreasing relative velocities
of the particles.
The right panel shows two particle clusters obtained from two different simula-
tions. In the panel, the cluster on the left has formed under gravity and dissipative
conditions (ce = −2 · 105, r = 0.60), whereas the cluster on the right has formed
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under (strong) gravity and elastic conditions (ce = −2 · 108, r = 1.00). One can
clearly see the “rough” surface of the elastic cluster.

5.6 Summary

In this chapter we investigated complete ring-shaped elastic and dissipative par-
ticle systems with and without self-gravity. We focused on the time evolution,
where the particle systems deliquesce due to permanent viscous shear determined
by the two dimensional kinematic viscosity. We developed a partial differential
equation for the optical depth, assuming different ansatzes for the kinematic vis-
cosity. We compared the variance of the solutions for the optical depth with
those of the simulations. We found that both theory and simulations show an
increasing variance with time and, moreover, theory predicts the behavior of the
rings better for intermediate viscous times than for short and long times. How-
ever, we were not able to find parameter sets for α and β, leading to different
models for the kinematic viscosity, that describe the dynamical behavior of the
rings properly for all times: theory predicts a linear increase of the variance,
whereas simulations show a non-linear increase, even an oscillatoric increase of
the variance in the case of gravitating rings.
Moreover, we showed that for a given attraction strength, dissipation must be
strong enough in order to obtain clustering processes that can compete with the
present shear rate. On the other hand, we showed that even for completely elas-
tic particle systems, the attraction strength must be adjusted sufficiently high in
order to support clustering.



6 Summary

In this thesis, on purpose, we focussed on the most challenging, longest ranging
potentials. We analyzed granular media of low densities obeying 1/r long-range
interaction potentials between the granules. Such systems are termed granular
gases and differ in their behavior from ordinary gases by dissipative interactions,
i.e., they do not conserve energy. Due to the dissipation, a unique wealth of
structures can occur, enhanced or hampered by long-range interactions.

Numerics

For the analysis of such systems, we developed a soft sphere Molecular Dynamics
(MD) method in three dimensions, taking properly into account the interplay
between dissipative contacts and long-range interaction forces. Due to the infi-
nite range of the 1/r potential, we would have to consider the interaction of all
particles with all others, resulting in a computational time effort that scales like
O(N2), where N is the particle number. We were able to bypass the pair-wise
treatment by exploiting the linked cell structure we use for the neighborhood
search such that particles in cells are considered as pseudo particles and grouped
together in a hierarchical way. This hierarchical set-up based on linked cells is new
to our knowledge. The combination with a multipole expansion of the mass distri-
bution inside the pseudo particles gives a reduced number of interaction partners.
The implementation of this Hierarchical Linked Cell (HLC) algorithm including
periodic or wall boundary conditions shows a scaling behavior as O(N logN), as
confirmed by various simulations. We found that the results of the HLC algo-
rithm agree with those of the direct summation code as long as the temperature
is higher or about the same as the repulsion/attraction energy barrier.

Dilute Homogeneous Granular Systems

The second part of the thesis was devoted to the investigation of the cooling
behavior of dissipative granular gases in presence of mutual long-range repulsive
and attractive forces. In order to obtain reference results, we exclusively treated
the particles pair-wise, limiting us to small particle numbers in the simulations.
In order to understand the cooling behavior, we applied the pseudo Liouville op-
erator theory. Although dealing with soft spheres under the influence of mutual
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long-range forces, we observed good agreement between theory and simulations
in the limit of low densities and weak dissipation. In the case of repulsive long-
range forces, the dissipation rate is reduced, taking into account the repulsive
energy barrier the relative velocity of two approaching particles must exceed in
order to collide. In the case of attractive forces, the dissipation rate is increased
due to an escape energy barrier the relative velocity of two separating particles
must overcome in order to not experience a collision. Both qualitative effects
vanish if we consider the case of vanishing long-range force intensity or density.
Our repulsive theory confirms earlier heuristic results [111], while the attractive
theory is new to our knowledge.
Even though, the theory works in the dilute limit, for finite densities, the dissi-
pation rate observed from simulations changes with increasing density and allows
us to empirically provide a predictive analytical correction factor dependent on
the density. We performed various elastic simulations with different repulsive and
attractive strengths for densities in the range 0.010 ≤ ν ≤ 0.152. The correction
is non-linear dependent on density in the repulsive case and linear dependent in
the attractive case, at least for the stable homogeneous cooling state examined.
We used the empirical findings for the solution of the equations for the energy
evolution with time and obtained an improved prediction, in good quantitative
agreement with simulations. Small deviations remain and are supposed to be a
consequence of dissipation because they increase with dissipation strength. In
the attractive case, the improvement was less successful. Surprisingly, for mod-
erate densities and dissipation strengths, the attractive systems show the same
dissipation rate as systems without attraction forces.

Dilute Ring-Shaped Granular Systems

The third part of the thesis contains the investigation of self-gravitating ring-
shaped particle systems. We applied the HLC code and tested it for such strongly
inhomogeneous systems. It works well and, such as for homogeneous systems, the
computational time expense scales as O(N logN). We found that for sufficiently
strong attraction forces, elastic systems show clustering even though a perma-
nent shear rate and shear heating are present. Strong dissipation also leads to
inhomogeneous rings, formation of clusters, and “planetesimals”.
Moreover, we developed and numerically solved an approximate Navier-Stokes
hydrodynamic set of equations for the projected density with different Ansatzes
for the kinematic viscosity and compared the solutions with our simulation re-
sults. The agreement is good only for intermediate times, whereas for short times,
besides initial equilibration effects, the rings spread faster and for later times the
rings spread slower than predicted by theory.



Samenvatting

In dit proefschrift wordt het gedrag geanalyseerd van lage concentraties granu-
laire materialen met 1/r grote-reikwijdte interactie potentialen tussen de deeltjes.
Zulke systemen worden granulaire gassen genoemd. Ze verschillen in hun gedrag
van gewone gassen door de dissipatieve interacties, die dus niet voldoen aan be-
houd van energie. Door de dissipatie ontstaat een breed scala van structuren,
versterkt of verzwakt door de interacties met grote reikwijdte.

Numerieke Aspecten

Voor de analyse van zulke systemen is een driedimensionale “soft sphere” Molec-
ulaire Dynamica (MD) methode ontwikkeld, die op de correcte wijze dissipatieve
contacten en interactiekrachten met grote reikwijdte combineert. I.v.m. de oneindige
reikwijdte van de 1/r potentiaal, zouden we de interactie van alle deeltjes met alle
andere deeltjes moeten beschouwen, wat resulteert in een rekentijd die schaalt als
O(N2), waarbij N het aantal deeltjes is. We waren in staat de paarsgewijze be-
handeling te vermijden door gebruik te maken van de “linked cell” structuur, die
gebruikt wordt voor het zoeken van naburige deeltjes, op een dusdanige manier
dat deeltjes in een cel beschouwd worden als pseudo-deeltjes die gegroepeerd wor-
den in een hiërarchische wijze. Deze hiërarchische opzet, gebaseerd op de “linked
cells”, is nieuw voor zover ons bekend. De combinatie een multipool expansie
van de massaverdeling binnen de pseudo-deeltjes geeft een reductie van het aan-
tal partners dat een interactie vertoont. De implementatie van dit “Hierarchische
Linked Cell” (HLC) algoritme, inclusief periodieke en vaste-wand randvoorwaar-
den, is succesvol verricht. Het schalingsgedrag, als O(N logN), is bevestigd door
vele simulaties. De resultaten van het HLC-algoritme komen good overeen met
die van een directe-som algoritme als de temperatuur hoger of van dezelfde orde-
grootte is als de afstotings-/attractie-energiebarrière.

Lage-Concentratie, Homogene Granulaire Systemen

Het tweede deel van dit proefschrift betreft het onderzoek naar het afkoelings-
gedrag van dissipatieve granulaire gassen in de aanwezigheid van elkaar onder-
ling aantrekkende of afstotende krachten met grote reikwijdte. Om de meest
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nauwkeurige resultaten te verkrijgen, worden alle deeltjes paarsgewijs beschouwd,
wat ons beperkt tot kleine aantallen deeltjes in de simulaties. Om het afkoelings-
gedrag te begrijpen is de pseudo Liouville operator theorie gebruikt. Hoewel
zachte deeltjes met interactie met grote reikwijdte beschouwd worden, is er een
goede overeenkomst tussen theorie en simulaties in de limietgevallen van lage con-
centraties en zwakke dissipatie. In het geval van afstotende krachten met grote
reikwijdte, is de dissipatiesnelheid verlaagd, gelet op het feit dat de relatieve snel-
heid van twee deeltjes een afstotende energiebarrière moet overschrijden, opdat
deze deeltjes botsen. In het geval van aantrekkende krachten is de dissipatiesnel-
heid hoger, gezien de ontsnappingsenergie-barrière waaronder de relatieve snel-
heid moet liggen voordat de deeltjes botsen. Beide effecten verdwijnen als de
sterkte van de interactie met grote reikwijdte verdwijnt of als de deeltjesconcen-
tratie naar nul gaat. De correctiefactor bij afstotende krachten is al eerder, op
een heuristische wijze beschreven [111]. De resultaten bij aantrekkende krachten
zijn nieuw, voor zover ons bekend.
Voor eindige concentraties neemt de dissipatiesnelheid af (in vergelijking met
het geval zonder krachten met grote reikwijdte) bij afstotende krachten, ter-
wijl deze toeneemt in het geval van aantrekkende krachten. Daarom is onder-
zocht hoe de dissipatiesnelheid varieert met toenemende concentratie. Er is een
empirische, analytische correctiefactor geformuleerd, die afhangt van de concen-
tratie. Vele elastische simulaties zijn uitgevoerd met verschillende sterktes van
de afstotende en aantrekkende interacties voor concentraties 0.010 ≤ ν ≤ 0.152.
De correctiefactor hangt op een niet-lineaire wijze af van de concentratie bij
afstotende krachten en op een lineaire wijze bij aantrekkende krachten. De em-
pirische bevindingen zijn gebruikt bij de oplossing van de vergelijkingen voor de
dissipatiesnelheid, wat een verbeterde voorspelling oplevert. Kleine afwijkingen
bleven bestaan, welke mogelijk een gevolg zijn van dissipatie. In het geval van
aantrekkende krachten was de verbetering niet succesvol, maar verrassenderwijze
bleek dat voor niet te lage concentraties en dissipatie, de aantrekkende systemen
dezelfde dissipatiesnelheid hebben als systemen zonder aantrekkende krachten.

Lage-Concentratie, Ringvormige Granulaire Systemen

Het derde deel van het proefschrift betreft onderzoek naar zelf-graviterende ring-
vormige deeltjessystemen. De HLC-code is getest en toegepast op de sterk het-
erogene systemen. De code werkt goed en de rekentijd schaalt als O(N logN),
net als voor homogene systemen. Voor voldoende grote aantrekkende krachten
blijken elastische systemen ook te kunnen clusteren, ondanks de aanwezigheid
van permanente afschuivingsnelheid en -opwarming. Sterke dissipatie leidt tot
heterogene ringen, de vorming van clusters en “planetesimals”.
Bovendien zijn er benaderende Navier-Stokes, hydrodynamische vergelijkingen
voor de concentraties opgesteld en numeriek opgelost, met verschillende aan-
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names voor de kinematische viscositeit. De oplossingen zijn vergeleken met de
resultaten van de simulaties. De overeenkomst is alleen goed voor middelmatige
tijden. Voor kortere tijden spreiden de ringen sneller (afgezien van initiële even-
wichtseffecten); voor langere tijden spreiden de ringen langzamer dan voorspeld
door de theorie.
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7 Concluding Remarks and Outlook

Dilute Homogeneous Granular Systems

• We found that attractive dissipative systems show clustering for a given
attraction strength when dissipation is strong enough and/or density is
sufficiently high. In astrophysics, the question is important, under which
circumstances a homogeneous cloud of particles will be instable against
its own gravity and collapses in order to form “planetesimals”. More pre-
cisely, what is the minimum mass (which is connected to the self-attraction
strength) of the cloud in order to collapse. It is worth to estimate the
minimum mass of the particle systems we investigated as a function of
dissipation and attraction strength.

• Dissipative homogeneous granular gases show cluster growth for a given dis-
sipation strength, if the system’s size and/or the density are large enough.
Vice versa, for a given system size and density, there is a critical dissipa-
tion strength, which discriminates between the homogeneous cooling state
and the instable regime. The presence of long range repulsive and attrac-
tive forces will hamper and enhance cluster formation, respectively. That
is, in particular, the critical dissipation strength will be decreased due to
repulsion and increased due to attraction forces. By using the correction
factors for the energy dissipation rate we empirically found, a hydrodynamic

dissipation strength

clustering

homogeneous
cooling state

attraction strength

?

?

?

?

repulsion strength
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stability analysis of the homogeneous cooling state will give the critical dis-
sipation as a function of the strength of the long-range force. This leads to
a “phase diagram” in the parameter space of dissipation and force strength.
Note, that there also exists a regime with attraction and dissipation that
remains homogeneous. Furthermore, we can prove the shape of the function
with simulations by systematically varying the parameters dissipation and
force strength.

Ring-Shaped Granular Systems

• We were simulating complete ring shaped particle systems evolving in time.
Besides the fact that both dissipation and self-gravitation strongly influence
the dynamical behavior of the ring systems, we observed initial oscillatoric
equilibration effects as well. So, it is recommendable, from the technical
point of view, to spend effort on finding initially equilibriated ring systems
for the MD procedure, in order to obtain results that are free from such
effects. In order to achieve this, one has to take into account that the center
of mass must be exactly located at the center of the central body.

• For low dissipation, the particle systems spread in both radial and verti-
cal direction. Thus, the optical depth is changing radially and with time,
as does the granular temperature. In contrast, in the approximate two-
dimensional Navier-Stokes hydrodynamic set of equations used, a granular
temperature is assumed that is constant in radial direction and changes
with time. As a representative temperature, we used the granular temper-
ature measured at the ring center, i.e., for a constant radius. For further
investigation, it will be useful to determine the exact radial dependence of
the temperature that enters the equations for the kinematic viscosity. For
example, the temperature can be empirically determined as a function of
the radial coordinate by simulations.

• In presence of mutual attraction forces between the ring particles, we found
that the time evolution of the temperature differs stronger from the one
we obtained by non-gravitating systems the lower the dissipation has been
chosen. This results in a different dynamical behavior of the ring which
we did not account for when solving the hydrodynamic equations. So, it
is recommendable to extend the hydrodynamic equations by a self-gravity
term.



A Some Kinetic Theory

Although we treat particles in our MD simulations as dissipative soft spheres with
a smooth interacting potential, we will apply in this appended chapter the concept
of the pseudo-Liouville operator to describe both repulsive and attractive mutual
long-range potentials between mono-disperse particles with radius a theoretically.
The pseudo-Liouville operator was derived for elastic, discontinuous hard core
potentials. In order to apply it for inelastic hard sphere potentials [28] it was
extended by both normal [126] and tangential restitution [56, 76].

A.1 The Liouville Operator

From Hamiltonian mechanics we know that the Hamilton function H (“Hamilto-
nian”) determines the time evolution of a mechanical observable, A({q(t), p(t)}),
via the so-called Poisson bracket, {A,H}, i.e.,

dA

dt
=

N∑

j=1

( ∂A

∂qj

dqj

dt
+

∂A

∂pj

dpj

dt

)

=

N∑

j=1

( ∂H
∂pj

∂A

∂qj

− ∂H
∂qj

∂A

∂pj

)

=: {A,H} . (A.1)

The sets {qj} and {pj} are called generalized variables and are completely inde-
pendent from each other. It is dqj/dt = ∂H/∂pj and dpj/dt = −∂H/qj, which
are referred to as the Hamiltonian equations of motion. The Hamiltonian cor-
responds to the total energy of the system (in case of constraints that are not
explicitly dependent on time we have energy conservation, i.e., dH/dt = 0),

H =
N∑

j=1

p2
j

2mj
+

N−1∑

j=1

N∑

k=j+1

ϕ(|qjk|) ,

where the first term corresponds to the kinetic energy and the second term to
the potential energy for pair-interactions. For time dependent constraints such
as (tangential or normal) dissipative collisions, H is not a conserved quantity
anymore so that Eq. (A.1) becomes invalid. The Liouville operator L is then
defined by the relation

iLA := {A,H} =

N∑

j=1

pj

mj

∂

∂qj

A −
N−1∑

j=1

N∑

k=j+1

∂ϕ

∂qjk

( ∂

∂pj

− ∂

∂pk

)

A

= iLfreeA + iLcollA , (A.2)
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where i =
√
−1 is the imaginary unit, and we can split it up into a free-streaming

Lfree (corresponding to the translation of freely moving particles) and a collisional
component Lcoll (corresponding to interacting particle pairs). The latter is de-
fined for continuously differentiable (smooth) potentials. With Eqs. (A.1) and
(A.2), the time evolution of the mechanical observable is then the solution of the
differential equation (d/dt)A({q(t), p(t)}) = iLA({q(t), p(t)}), i.e.,

A({q(t), p(t)}) = exp(iLt)A(0) . (A.3)

In the next section, we will focus on how L = L({q(t), p(t)}) looks like in order
to get an expression for A. Specific examples for A and an exact derivation for
(d/dt)A will be shown later.

A.2 The pseudo-Liouville Operator

For a granular system with spheres interacting via hard sphere potentials, see
Eq. (4.6), we cannot apply derivatives as occurring in Eq. (A.2) because they are
not defined for a discontinuous hard sphere potential. On the other hand, due to
dissipation, the Hamiltonian is not a conserved quantity anymore and we have
to rewrite the interaction term, Lcoll, in Eq. (A.2), according to [13, 28, 76] and
references therein:

Lcoll =

N−1∑

j=1

N∑

k=j+1

|vjk · r̂jk|Θ(−vjk · r̂jk)δ(|rjk| − 2a)
(

b+
jk − 1

)

, (A.4)

which takes the discontinuous hard core potential properly into account. This new
operator, together with the unchanged part, Lfree, preserves the formal structure
of Eq. (A.2),

iLA :=

N∑

j=1

vj
∂

∂rj
A +

N−1∑

j=1

N∑

k=j+1

|vjk · r̂jk|Θ(−vjk · r̂jk)δ(|rjk| − 2a)
(

b+
jk − 1

)

A ,

(A.5)
and L can therefore be referred to as a pseudo-Liouville operator. Here, we used
the particles’ positions and velocities as generalized variables. Lcoll selects only
those particle pairs that will collide:

• |vjk · r̂jk| is the normal component of relative velocity and increases the
number of collisions per time unit the larger it is

• δ(|rjk|−2a) makes sure, that particle j will collide with particle k at distance
2a. The contact point is somewhere at the surface of particles j and k. So,
the condition that the collision parameter |b| must be smaller than the
diameter of a particle, 2a, for having a collision is automatically fulfilled
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Figure A.1: Two particles j and k, each with radius a, are about to collide.

• Θ(−vjk · r̂jk) does not vanish (is unity) if vjk · r̂jk = vjkcos(φ) < 0 for
π/2 < φ < 3π/2, i.e., if the normal velocity leads to an approach of the
particles, see Fig. A.1

• the collision operator (b+
jk − 1) acts on A({q(t), p(t)}) and gives its change

due to a collision and replaces instantaneously the generalized variables just
before the collision, {q(t), p(t)}, by those just after, {q′(t), p′(t)}.

A.3 Ensemble Averages

If we know the N -particle phase space distribution function, ρ(Γ; t), at a certain
time t (e.g., t = 0) we will be able to determine the dynamical observable A(Γ; t)
for every time thereafter. Here, Γ denotes the sets {r}, {v}. For a homogeneous
and Maxwellian N -body system [76], ρ(Γ; t) is determined in three dimensions
by

ρ(Γ; t) =
( 1

2πTg(t)

)3N/2

exp
(

−
N∑

l=1

v2
l

2Tg(t)

) W ({r})
∫ ∏N

l=1 drl W ({r})
(A.6)

with Tg(t) as the granular temperature and

W ({r}) = exp

(

− 1

Tg(t)

N−1∑

j=1

N∑

k=j+1

ϕ(|rjk|)
)

=
N−1∏

j=1

N∏

k=j+1

Θ
(
|rjk| − 2a

)
, (A.7)

where the RHS is valid for hard spheres. Eqs. (A.6) and (A.7) give us the prob-
ability for finding the N -body system in a state with granular temperature Tg(t)
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and energy
∑N−1

j=1

∑N
k=j+1 ϕ(|rjk|). For hard spheres, the exponential function

corresponds to the Heaviside function due to the fact that one can never find a
system with at least one pair of particles that overlap, i.e., that have a separation
length of |rjk| < 2a (“excluded volume”).
Since we analyze a N -body system, we are interested in the ensemble average
of A, i.e., 〈A(t)〉, in order to predict the time evolution of the observable by
averaging over the phase space coordinates Γ:

〈A〉(t) :=

∫

dΓ ρ(Γ; 0)A(Γ; t) . (A.8)

According to Eq. (A.6), (A.7) and (A.8) we then obtain for the ensemble average
at Tg(t = 0)

〈A〉 =

∫ N∏

l=1

drldvl ρ({r, v}; 0)A({r, v})

=
( 1

2πTg(t)

)3N/2 1

Z
(A.9)

×
∫ N∏

l=1

drldvl

N−1∏

j=1

N∏

k=j+1

Θ
(
|rjk| − 2a

)
A({r, v})exp

(

−
N∑

l=1

v2
l

2Tg(t)

)

with

Z =

∫ N∏

l=1

drl W ({r}) =

∫ N∏

l=1

drl

N−1∏

j=1

N∏

k=j+1

Θ
(
|rjk| − 2a

)
= V N (A.10)

as the partition function that normalizes the probability and corresponds to the
number of possible micro-states the system can take.
For convenience of nomenclature, we focus on a particular pair of particles (1, 2)
by considering the particular positions rj = R1, rk = R2 and velocities vj = v1,
vk = v2 and by multiplication and integration over the corresponding δ-functions.
The spatial part of Eq. (A.9) can be rewritten as

∫ N∏

l=1

drl

N−1∏

j=1

N∏

k=j+1

Θ
(
|rjk| − 2a

)
A({r, v}) →

∫ N∏

l=1

drldR1dR2 δ(rj − R1)δ(rk − R2)
N−1∏

j=1

N∏

k=j+1

Θ
(
|rjk| − 2a

)
A({r, v})

= N2V N−2

∫

dR1dR2 g0(R1, R2)A(R1, R2, v1, v2) , (A.11)

so that we can replace rj , rk, vj , vk in A({r, v}) by R1, R2, v1, v2. g0(R1, R2)
is the reduced two-particle distribution function or the pair distribution function.
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The superscript “0” is introduced here in order to distinguish the pair distribution
function later from that when long range forces are acting (no superscript). The
N − 2 identical integrations over Gaussians of the velocities in Eq. (A.10), i.e.,
dv3...dvN , can be carried out so that

∫ N∏

l=1

dvl exp
(

−
N∑

l=1

v2
l

2Tg(t)

)

=
(

2πTg(t)
)3(N−2)/2

∫

dv1dv2exp
(

− v2
1 + v2

2

2Tg(t)

)

.

(A.12)
Thus, altogether (Eqs. (A.10), (A.11) and (A.12)) one obtains for the dynamical
variable

〈A〉 =
N2

V 2

( 1

2πTg(t)

)3

×
∫

dR1dR2dv1dv2 g0(R1, R2)A(R1, R2, v1, v2)exp
(

− v2
1 + v2

2

2Tg(t)

)

(A.13)

The pair distribution function, g0(R1, R2), gives the probability to find the par-
ticle j at R1 and k at R2, simultaneously. In the following, we only have to
specify the dynamical variable A(R1, R2, v1, v2).

A.4 Collision Frequency ...

Consider the collision frequency per particle and time unit as the dynamical
observable and C the number of binary collisions in the whole system at time t
so far,

fE(t) =
2

N

d

dt
〈C〉(t) (A.3)

=
2

N
〈iLcollC〉(t)

(A.13)
=
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×Lcoll
12 Cexp

(

− v2
1 + v2

2

2Tg(t)

)

(A.4)
=
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×|v12 · R̂12|Θ(−v12 · R̂12)δ(|R12| − 2a)
(

b+
12 − 1

)

C

=
2Ni

V 2

( 1

2πTg(t)

)3
∫

dRdrdV dv g0(r)exp
(

− v2 + V 2

2Tg(t)

)

×|
√

2v · r̂|Θ(−
√

2v · r̂)δ(|r| − 2a) (A.14)
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where we set the substitutions r = r1 − r2, r̂ = (r1 − r2)/|r1 − r2|, R = r1 + r2

and
√

2v = v1 − v2,
√

2V = v1 + v2. Free streaming does not change C(t),
thus it is 〈iLfreeC〉(t) = 0. The expression (b+

12 − 1)C = ∆C provides unity for
each pair that collides, i.e., in total the integration provides the total number of
collisions that occur in the system until time t. With

∫
dR = V , n = N/V and

integration over the velocity,
∫

dV exp(−V 2/(2Tg(t))) = (2πTg(t))
3/2, we have

fE(t) = n
( 1

2πTg(t)

)3/2
+∞∫

0

dr r2g0(r)δ(r − 2a)

π∫

0

dϑ sin(ϑ)

2π∫

0

dϕ

︸ ︷︷ ︸

4a2g0(2a) × 2 × 2π

×
+∞∫

−∞

dv exp
(

− v2

2Tg(t)

)

|
√

2v · r̂|Θ(−
√

2v · r̂) . (A.15)

In order to apply the theory for our problems of long range forces, we apply a new
non-standard way of solving the integral. Instead of using spherical coordinates,
we remain in the cartesian system such that the centre-to-centre-vector, r̂, defines
one axis. We then will split up the relative velocity vector as v2 = (v · r̂)2 + (v ·
ŝ)2 + (v · t̂)2 = v2

n + v2
s + v2

t , where the unit vectors r̂, ŝ, t̂ are perpendicular to
each other, such that

fE(t) = 16nπa2g0(2a)
( 1

2πTg(t)

)3/2
+∞∫

−∞

dvn exp
(

− v2
n

2Tg(t)

)

|
√

2vn|Θ(−
√

2vn)

×
+∞∫

−∞

dvt exp
(

− v2
t

2Tg(t)

)

︸ ︷︷ ︸√
2πTg(t)

+∞∫

−∞

dvs exp
(

− v2
s

2Tg(t)

)

︸ ︷︷ ︸√
2πTg(t)

. (A.16)

A.4.1 ... in the Absence of Long Range Forces

In the absence of long range forces, integration over vn leads to the classical Haff
result

f 0
E(t) = −16na2

√
πg0(2a)Tg(t)

−1/2

0∫

−∞

dvn exp
(

− v2
n

2Tg(t)

)

vn

= 16na2
√

πg0(2a)Tg(t)
1/2 (A.17)

because the Θ-function in Eq. (A.16) will only select from the interval ]−∞, 0]
and the negative sign in the first line comes if we neglect the absolute value bars
of |

√
2vn| in the integrand.
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A.4.2 ... in the Presence of Repulsive Long Range Forces

In the case of repulsive long range forces we have to specify the range of possible
vn. In order to have a collision, the initial normal relative velocity must exceed

the repulsive potential barrier at contact: vn ≤ −vn,b = −
(
2cbkm/a

)1/2
for mono-

disperse particles and the Θ-function has to select only velocities from the interval
]−∞,−vn,b]. We obtain

fE(t) = 8
√

2na2
√

πg0(2a)Tg(t)
−1/2

×
+∞∫

−∞

dvn exp
(

− v2
n

2Tg(t)

)

|
√

2vn|Θ
(
−

√
2(vn + vn,b)

)

= −16na2
√

πg0(2a)Tg(t)
−1/2

−vn,b∫

−∞

dvn vnexp
(

− v2
n

2Tg(t)

)

︸ ︷︷ ︸

−Tg(t)exp

(

−
v2
n,b

2Tg(t)

)

= f 0
E(t) exp

(

−
v2

n,b

2Tg(t)

)

(A.18)

and see that the difference to the classical solution (A.17) is an exponential factor
exp
(
−v2

n,b/(2Tg(t))
)
, where the critical velocity vn,b represents the strength of the

repulsive potential at contact. For high granular temperatures or Tg(t) ≫ v2
n,b,

the correction factor goes to unity and the repulsion cannot avoid particles from
colliding anymore and the gas behaves like a classical granular gas without long
range forces. For low temperatures, the exponential factor becomes important
and has to be considered.
For small critical velocities, we can also expand the exponential factor in a Tay-
lor’s series about vn,b = 0 and obtain for an expansion until the 4th order in
vn,b

fE(t) ≈ f 0
E(t)

(

1 − 1

2

v2
n,b

Tg(t)
+

1

8

v4
n,b

Tg(t)2

)

, (A.19)

which gives best approximations at high temperatures. For low temperatures (at
least for those Tg(t) where long range forces become important) we need more
polynoms than in Eq. (A.19) shown.

A.4.3 ... in the Presence of Attractive Long Range Forces

For attractive forces we have to extend the range of possible vn. Not only ap-
proaching particles (which are specified by the velocity interval ]−∞, 0]) are about
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to collide but even those that move away from each other can collide. Therefore
we have to extend the interval of velocities to ]−∞, +vn,e], where vn,e is the so-
called “escape” velocity. vn has to fall below this limit in order to support a

collision, i.e., vn ≤ +vn,e = +
(
2|ce|km/a

)1/2
for mono-disperse particles. For a

collision due to attractive forces, instead of Eq. (A.18) we obtain

fE(t) = 8
√

2na2
√

πg0(2a)Tg(t)
−1/2

×
+∞∫

−∞

dvn exp
(

− v2
n

2Tg(t)

)

|
√

2vn|
︸ ︷︷ ︸√
2vnsgn(vn)

Θ
(
−

√
2(vn − vn,e)

)

= 16na2
√

πg0(2a)Tg(t)
−1/2

+vn,e∫

−∞

dvn vnsgn(vn)exp
(

− v2
n

2Tg(t)

)

= 16na2
√

πg0(2a)Tg(t)
−1/2

×
( +vn,e∫

0

dvn vnexp
(

− v2
n

2Tg(t)

)

︸ ︷︷ ︸

Tg(t)−Tg(t)exp
(
− v2

n,e

2Tg(t)

)

−
0∫

−∞

dvn vnexp
(

− v2
n

2Tg(t)

)

︸ ︷︷ ︸

−Tg(t)

)

= f 0
E(t)

[

2 − exp
(

−
v2

n,e

2Tg(t)

)
]

(A.20)

which exposes a different correction factor than Eq. (A.18). For high temper-
atures Tg(t) ≫ v2

n,e, again the exponential factor becomes unity and we obtain
the classical result (A.17) for gases without long range forces. For low tempera-
tures, the influence of the attractive potential becomes strong and the collision
frequency increases up to twice the classical result.
For low escape velocities, we can do the same expansion as for the case of repul-
sion, see above, and obtain

fE(t) ≈ f 0
E(t)

(

1 +
1

2

v2
n,e

Tg(t)
− 1

8

v4
n,e

Tg(t)2

)

, (A.21)

which reveals similarity to Eq. (A.19) except for the sign from the second term in
the brackets. The difference in sign gives rise to the fact that for attractive long
range forces fE(t) increases and for repulsive long range forces it shows a decay
comparing with the case where no long range forces act.
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A.5 Kinetic Energy ...

Haff’s law can be derived from the hydrodynamic energy balance equation [43,
93]. This equation balances the energy flux density through the surface of a
volume element taken out from a cooling granular gas. There are many physical
phenomena that determine the flux density: the transport of the kinetic energy
per volume unit by the simple movement of the material results in a flux density,
w(t)u, where w(t) = 1

2
̺u2 + 1

2
̺σ2

v is the kinetic energy density, u the overall
velocity of the material and σv the fluctuating contribution that represents the
granular temperature, according to Eq. (4.3). Then we have the flux density,
pu, which is generated by the pressure p perpendicular to the surface of the
volume element by the surrounding elements. On the other hand, internal friction
expressed by the macroscopic viscosity parameter η due to the movement of
different parts of the fluid element relative to each other will produce heat which is
carried with the velocity, u. Moreover, driven by internal temperature gradients,
heat can be transported from warmer to cooler regions within the volume element
whose efficiency is determined by the thermal diffusivity, κ. The change of all
these contributions to the energy density per time unit can be obtained by their
spatial derivatives. Then the hydrodynamic energy density balance equation
reads

∂w(t)

∂t
= − ∂

∂xk

(

w(t) 〈v〉k + p 〈v〉k δik

)

︸ ︷︷ ︸

energy density flux due
to the movement of the
fluid as a whole and the
pressure onto the fluid
element

+
∂

∂xk

(

〈v〉i η
(∂〈v〉i

∂xk
+

∂〈v〉k
∂xi

)
)

︸ ︷︷ ︸

energy density flux due
to internal friction

+
∂

∂xk

(

κ
∂

∂xk

(1

2
̺σ2

v(t)
)
)

︸ ︷︷ ︸

energy density flux due
to internal temperature
gradients

+ γ(t)
︸︷︷︸

energy density dissipa-
tion rate due to dissipa-
tive particle-particle col-
lisions

,

(A.22)

where γ(t) < 0 is the energy dissipation (cooling) rate due to dissipative collisions
between the particles. According to Section 4.1.1, in Eq. (A.22) we have written
for the overall velocity components, uk = 〈v〉k1. For a homogeneous system, we
assume the same density of the volume element as for the whole system, i.e.,

1We have here used Einstein’s notation of vectors. In this notation we can avoid writing down
vectors and use their components where repeated indices in a single term will be summed
up, e.g., 〈v〉k δik =

∑3
k=1 〈v〉k δik. δik is the Kronecker’s symbol and vanishes if i 6= k.
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̺ = Nm/V , and it is ∂/∂xk = 0. We assume no macroscopic flow of particles,
that is why we can set w(t) = 1

2
̺σ2

v = 1
6
̺ 〈v2〉 = 1

2
Nm
V

Tg(t) = 1
3V

Ekin(t), according
to Eqs. (4.2) to (4.3). With these assumptions we obtain from Eq. (A.22)

dw(t)

dt
= γ(t) =

1

3V

dEkin(t)

dt
. (A.23)

Using Ekin(t) as the dynamical observable as an ensemble average and considering
〈iLfreeEkin〉(t) = 0 because free streaming particles do not change the energy, we
will obtain

d

dt
〈Ekin〉(t) = 〈iLcollEkin〉(t)

(A.14)
= −N2i

4V 2
m(1 − r2)

( 1

2πTg(t)

)3

×
∫

dRdrdV dv g(r)exp
(

− v2 + V 2

2Tg(t)

)

× |
√

2v · r̂|Θ(−
√

2v · r̂)δ(|r| − 2a)(b+
12 − 1)Ekin ,

(A.24)

where the binary collision operator reduces the total kinetic energy by the amount

(b+
12 − 1)Ekin = (b+

12 − 1)
(1

4
mv2

∗

)

= −1

4
m(1 − r2)

(

(v · r̂)2 + v2
n,cr

)

due to one binary collision for mono-disperse particles. v∗ is here the modified
relative velocity of both particles due to long range forces: the kinetic energy of
both particles is reduced if the particles are decelerated relative to each other
(approaching repulsive particles or separating attractive particles). The kinetic
energy is increased if the particles are accelerated relative to each other (approach-
ing attractive particles or separating repulsive particles, whereas the latter case
will be rejected by the Θ-function anyway). v2

n,cr determines whether we have re-
pulsive (v2

n,cr = sgn(vn)v2
n,b) or attractive (v2

n,cr = sgn(−vn)v2
n,e) forces. With the

settings and integrations of the last section that led to Eq. (A.16), we analogously
get

d

dt
〈Ekin〉(t) = −4πNnm(1 − r2)a2g0(2a)

( 1

2πTg(t)

)1/2

×
+∞∫

−∞

dvn exp
(

− v2
n

2Tg(t)

)

|
√

2vn|Θ(−
√

2vn)
(

v2
n + v2

n,cr

)

.

(A.25)
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A.5.1 ... in the Absence of Long Range Forces

In the absence of long range forces, this leads to the classical Haff result

d

dt
〈Ekin〉(t) = −8

√
πNnm(1 − r2)a2g0(2a)Tg(t)

3/2

= −f 0
E(t)

N

2
(1 − r2)mTg(t)

=: I0(t) (A.26)

because the Θ-function in Eq. (A.25) will only select from the interval ]−∞, 0].

A.5.2 ... in the Presence of Repulsive Long Range Forces

With the Θ-function of Eq. (A.18) that selects the velocities of the interval
]−∞,−vn,b] which leads to a collision only in the case of respulsive potentials,
Eq. (A.25) can be rewritten as

I(t) ≡ d

dt
〈Ekin〉(t) = −4πNnm(1 − r2)a2g0(2a)

( 1

2πTg(t)

)1/2

×
+∞∫

−∞

dvn exp
(

− v2
n

2Tg(t)

)

|
√

2vn|

× Θ
(
−
√

2(vn + vn,b)
)(

v2
n + sgn(vn)v2

n,b

)

= 4
√

πNnm(1 − r2)a2g0(2a)Tg(t)
−1/2

×
−vn,b∫

−∞

dvn exp
(

− v2
n

2Tg(t)

)

vn

(

v2
n − v2

n,b

)

︸ ︷︷ ︸

−2Tg(t)2exp
(
−

v2
n,b

2Tg(t)

)

= I0(t) exp
(

−
v2

n,b

2Tg(t)

)

. (A.27)

This differential equation is only numerically solvable and the RHS of Eq. (A.27)
represents the dissipation rate of a mono-dispersed granular gas of dissipative
hard spheres in the presence of a repulsive long range potential.

A.5.3 ... in the Presence of Attractive Long Range Forces

With the Θ-function of Eq. (A.20) that selects the velocities of the interval
]−∞, +vn,e] which leads to a collision in the case of attractive potentials, Eq.
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(A.25) can be rewritten as

I(t) ≡ d

dt
〈Ekin〉(t) = −4πNnm(1 − r2)a2g0(2a)

( 1

2πTg(t)

)1/2

×
+∞∫

−∞

dvn exp
(

− v2
n

2Tg(t)

)

|
√

2vn|
︸ ︷︷ ︸√
2vnsgn(vn)

×Θ
(
−
√

2(vn − vn,e)
)(

v2
n + sgn(−vn)v2

n,e

)

= −4
√

πNnm(1 − r2)a2g0(2a)Tg(t)
−1/2

×
+vn,e∫

−∞
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(

− v2
n

2Tg(t)

)

vnsgn(vn)
(

v2
n + sgn(−vn)v2

n,e

)

= −4
√

πNnm(1 − r2)a2g0(2a)Tg(t)
−1/2

×
( +vn,e∫

0

dvn exp
(

− v2
n

2Tg(t)

)

vn

(

v2
n − v2

n,e

)

︸ ︷︷ ︸

2Tg(t)2−Tg(t)v2
n,e−2Tg(t)2exp

(

− v2
n,e

2Tg(t)

)

−
0∫

−∞

dvn exp
(

− v2
n

2Tg(t)

)

vn

(

v2
n + v2

n,e

)
)

︸ ︷︷ ︸

−2Tg(t)2−Tg(t)v2
n,e

= I0(t)

[

2 − exp
(

−
v2

n,e

2Tg(t)

)
]

. (A.28)

This differential equation is only numerically solvable and the RHS of Eq. (A.28)
represents the dissipation rate of a mono-dispersed granular gas of dissipative
hard spheres in the presence of an attractive long range potential.

A.6 The Dilute Limit

The pseudo-Liouville operator formalism is a theory that considers binary particle
collisions. Each pair of particle in a N -body system is checked for a collision. As
soon as two arbitrary particles fulfil the conditions for a mechanical contact (see
A.2), the formalism considers both particles to collide and to contribute to the
change of the dynamical observables previously discussed. The formalism strictly
considers binary collisions as interactions between hard spheres and would fail if
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multiple particle interactions take place.
In principle, the time of a binary collision is defined as the time span between the
moment when the relative velocity starts to change due to the interaction force
and the moment when it does not change anymore. This definition applies when
both particles are separated by an infinite distance before and after the collision,
and when during the collision time there are no more particles in the collision
involved. Any deviation from these constraints makes the pseudo-Liouville oper-
ator concept useless in respect of its application to our systems.
So, we have to make a compromise when applying it to soft sphere particle systems
including 1/r long range interaction potentials: we have to apply the formalism
to systems in the dilute limit in order to obtain best agreement. In this ideal
situation, particles are separated by infinite distances where even 1/r potentials
are vanishing and long range multiple particle collisions do not occur. In this
case, the pseudo-Liouville operator theory applies also to long range interacting
soft spheres.
The results for the dynamical observables shown in the previous subsections con-
tain the correction factor in the dilute limit by using the repulsive two particle
energy barrier, Eb, and the attractive two particle escape energy barrier, Ee,
respectively. Strictly spoken, they are inconsistent because they also contain
the pair distribution function at contact, g0(2a), which considers finite densities.
Nevertheless, in chapter 4 we have compared simulation results (where ν 6= 0)
with the theoretical results of this appendix (where ν → 0), always having in
mind that the theoretical results partly account for non-vanishing densities via
g0(2a).

A.7 More about the pseudo-Liouville Operator

Let us focus on the term |
√

2vn| within the pseudo-Liouville operator. As already
remarked, its absolute value has influence on both the collision frequency and the
loss of kinetic energy (due to collisions): the larger it is the faster the particle
travels through the collision cylinder and the more often it can collide with a
partner. However, the absolute value of the travel velocity of two approaching
particles will, for example, be changed by long range forces such that it will be
decelerated by a repulsive binary force or accelerated by an attractive binary
force:

|
√

2vn| → |
√

2(vn + vn,b)| with vn < 0 for repulsive particles

|
√

2vn| → |
√

2(vn − vn,e)| with vn < 0 or vn > 0 for attractive particles
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Using this, we will get for the collision frequency in case of repulsive forces,
according to Eq. (A.18),

fE(t) = ...

= −16na2
√

πg0(2a)Tg(t)
−1/2

−vn,b∫

−∞

dvn (vn + vn,b)exp
(

− v2
n

2Tg(t)

)

= f 0
E(t)

[

exp
(
− A2

)
+ A

√
π
[

erf
(
A
)
− 1
]
]

(A.29)

and for the case of attractive forces, according to Eq. (A.20),

fE(t) = ...

= 16na2
√

πg0(2a)Tg(t)
−1/2

( +vn,e∫

0

dvn (vn − vn,e)exp
(

− v2
n

2Tg(t)

)

−
0∫

−∞

dvn (vn − vn,e)exp
(

− v2
n

2Tg(t)

)
)

= f 0
E(t)

[

2 − exp
(
− B2

)
− B

√
π
[

erf
(
B
)
− 1
]
]

. (A.30)

Here, erf(·) denotes the error function, A2 = v2
n,b/
(
2Tg(t)

)
, and B2 = v2

n,e/
(
2Tg(t)

)
.

For Tg(t) → +∞ we have A, B → 0 and erf(A), erf(B) → 0. On the other
hand, for Tg(t) → 0 we have A, B → +∞ and erf(A), erf(B) → 1. Thus, for
both very low and very high temperatures, the modified and unmodified solu-
tion merge. Fig. A.2 displays the difference between the modification in |

√
2vn|

and the unmodified solutions for fE(t) in the cases of repulsive and attractive
long range forces for the case of intermediate temperatures. In this temperature
regime, where the exponential correction factor becomes important, the modifi-
cation |

√
2vn ±

√
2vn,cr| has much more influence. We see, that in the repulsive

case (Fig. A.2, left) the modification gives a stronger repulsive potential than Eq.
(A.18) predicts. This is reasonable, because the additional deceleration, vn +vn,b,
of the particles in presence of repulsive forces leads to a stronger repulsive poten-
tial indeed. In the attractive case the modification likewise provides a stronger
attractive potential which is also reasonable because of the additional accelera-
tion, vn − vn,e, of particles. This results in an increase of fE(t) much earlier than
the unmodified theory shows (Fig. A.2, right).
In contrast, note, that we saw in Chapter 4 that the simulation results show a
weaker repulsive and attractive potential than the unmodified theory predicts
(see inequalities (4.19) and (4.29)). The reason for this is the many-body effect
mentioned there.
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Figure A.2: Collision frequency, fE(t), plotted against scaled thermal energy for
repulsive long range forces (left) and attractive long range forces
(right), according to different equations.

A.8 Effective Particle Radius

Furthermore, but not relevant anymore for phenomena that are governed by
particle-particle collisions with physical contacts, there have to be done some
modifications in radius dependent quantities if we focus on phenomena that are
affected by interactions over distances larger than 2a. Diffusion, for example,
depends not only on interactions via physical contact but also strongly on inter-
actions via long range forces, i.e., it depends on changes of momentum due to any
kind of interactions. Thus, the radius a becomes an effective radius, aeff , where
aeff > a. Radius dependent quantities like the pair distribution function g0(2a)
will be modified as well. g0(2aeff) will then take a larger (effective) excluded vol-
ume into account because particles will “see” each other now stronger than they
would do if the interactions would take place via physical contacts only. However,
examining this in more detail is far from the scope of this thesis.
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B Multipole Expansion

In this Appendix we sketch briefly the derivation of Eq. (2.14) and of the corre-
sponding potential φij. According to Fig. 2.2, both the potential and the force
of a distant particle ensemble α acting on the poi are:

φiα

(

{rij}
)

= −kci

nα∑

j

cj

|riα − rjα|
,

F iα

(

{rij}
)

= −kci

nα∑

j

cj
riα − rjα

|riα − rjα|3
, (B.1)

where riα = ri − Rα, rjα = rj − Rα and we consider the case |riα| ≫ |rjα| in
the following. Rα denotes the geometrical center of α, see Eq. (2.13), and nα the
number of single particles that make up α. With the equalities

|riα − rjα| = (r2
iα − 2riα · rjα + r2

jα)1/2 , and

riα − rjα

|riα − rjα|3
= −∇iα

1

|riα − rjα|

for a conservative force, we can express Eq. (B.1) as function of the inverse
distance

φiα = −kci

nα∑

j

cj

(r2
iα − 2riα · rjα + r2

jα)1/2

F iα = kci

nα∑

j

cj∇iα
1

(r2
iα − 2riα · rjα + r2

jα)1/2
, (B.2)

where ∇iα denotes the derivative with respect to the three-dimensional distance
vector riα (this corresponds to a spatially fixed ensemble α and a virtual dis-
placement of the poi). For large distances |riα| ≫ |rjα|, the inverse distance is
approximated by

1

rij

=
1

(r2
iα − 2riα · rjα + r2

jα)1/2
=

1

riα

[

1 +
(r2

jα

r2
iα

− 2
riα · rjα

r2
iα

)]−1/2

≈ 1

riα
+

riα · rjα

r3
iα

+
3(riα · rjα)2 − r2

iαr2
jα

2r5
iα
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in a Taylor series about the point zero. In the series we arranged the resulting
terms regarding their order in rjα/riα. Terms with 4th or higher order are ne-
glected. Inserting the series into Eq. (B.2) and evaluating the gradient provides
for the approximated force and the approximated potential

φiα ≈ −kci

nα∑

j

cj

(

1

riα
︸︷︷︸

monopole

+
riα · rjα

r3
iα

︸ ︷︷ ︸

dipole

+
3(riα · rjα)2 − r2

iαr2
jα

2r5
iα

︸ ︷︷ ︸

quadrupole

)

F iα ≈ −kci

nα∑

j

cj

(

riα

r3
iα
︸︷︷︸

monopole

+
3riα(riα · rjα) − rjαr2

iα

r5
iα

︸ ︷︷ ︸

dipole

+
15riα(riα · rjα)2 − 6rjα(riα · rjα)r2

iα − 3riαr2
iαr2

jα

2r7
iα

︸ ︷︷ ︸

quadrupole

)

.

(B.3)

This gives us the approximated expressions for the potential and the force on i
generated by α at i’s position, and, according to Eq. (2.2), we can switch between
both equations by F iα = −∇iαφiα. Eq. (B.3) is called the multipole expansion
of the potential and the force, respectively, and corresponds to the first 3 terms
in Eq. (2.12).

For each pseudo particle α we first have to identify and compute the elementary
sums entering Eq. (B.3). This information we need for the computation of the
vector riα and of the nα vectors rjα.

So, the monopole contribution to the potential is

φ
(M)
iα = −kci

1

riα

nα∑

j

cj .

The dipole contribution to the potential

φ
(D)
iα = −kci

r3
iα

nα∑

j

cj(riα · rjα) = −kci

r3
iα

[

(xi − Rα
x)

nα∑

j

cj(xj − Rα
x)

︸ ︷︷ ︸

= 0

+

(yi − Rα
y )

nα∑

j

cj(yj − Rα
y )

︸ ︷︷ ︸

= 0

+

(zi − Rα
z )

nα∑

j

cj(zj − Rα
z )

︸ ︷︷ ︸

= 0

]

= 0 .
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vanishes, because for P α = Rα we obtain
∑

cjrj−
∑

cj

(
1

P

|cj|
∑

|cj |rj

)
= 0 if we

deal with equal masses (charges of the same sign). The quadrupole contribution
to the potential is

φ
(Q1)
iα = −3

2

kci

r5
iα

nα∑

j

cj(riα · rjα)2 = −3

2

kci

r5
iα

[

(xi − Rα
x)2

nα∑

j

cj(xj − Rα
x)2 +

(yi − Rα
y )2

nα∑

j

cj(yj − Rα
y )2 +

(zi − Rα
z )2

nα∑

j

cj(zj − Rα
z )2 +

2(xi − Rα
x)(yi − Rα

y )

nα∑

j

cj(xj − Rα
x)(yj − Rα

y ) +

2(xi − Rα
x)(zi − Rα

z )
nα∑

j

cj(xj − Rα
x)(zj − Rα

z ) +

2(yi − Rα
y )(zi − Rα

z )

nα∑

j

cj(yj − Rα
y )(zj − Rα

z )
]

and

φ
(Q2)
iα =

1

2

kci

r3
iα

nα∑

j

cjr
2
jα

=
1

2

kci

r3
iα

( nα∑

j

cj(x
2
j + y2

j + z2
j ) − 2

nα∑

j

cj(xjR
α
x + yjR

α
y + zjR

α
z )

+(Rα2
x + Rα2

y + Rα2
z )

nα∑

j

cj

)

.

For the force monopole term

F
(M)
iα = −kci

riα

r3
iα

nα∑

j

cj .
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For the force dipole terms

F
(D1)
iα = −3kci

riα

r5
iα

nα∑

j

cj(riα · rjα)

= −3kci
riα

r5
iα

[

(xi − Rα
x)

nα∑

j

cj(xj − Rα
x)

︸ ︷︷ ︸

= 0

+(yi − Rα
y )

nα∑

j

cj(yj − Rα
y )

︸ ︷︷ ︸

= 0

+(zi − Rα
z )

nα∑

j

cj(zj − Rα
z )

︸ ︷︷ ︸

= 0

]

= 0 ,

F
(D2)
iα = kci

1

r3
iα

nα∑

j

cjrjα = kci
1

r3
iα

nα∑

j

cj(rj − Rα)

︸ ︷︷ ︸

= 0

= 0 .

For the force quadrupole terms

F
(Q1)
iα = −15

2
kci

riα

r7
iα

nα∑

j

cj(riα · rjα)2

= −15

2
kci

riα

r7
iα

[

(xi − Rα
x)2

nα∑

j

cj(xj − Rα
x)2

+2(xi − Rα
x)(yi − Rα

y )
nα∑

j

cj(xj − Rα
x)(yj − Rα

y )

+(yi − Rα
y )2

nα∑

j

cj(yj − Rα
y )2

+2(xi − Rα
x)(zi − Rα

z )

nα∑

j

cj(xj − Rα
x)(zj − Rα

z )

+(zi − Rα
z )2

nα∑

j

cj(zj − Rα
z )2

+2(yi − Rα
y )(zi − Rα

z )
nα∑

j

cj(yj − Rα
y )(zj − Rα

z )

]

,
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F
(Q2)
iα = 3kci

1

r5
iα

nα∑

j

cjrjα(riα · rjα)

= 3kci
1

r5
iα

[

(xi − Rα
x)

nα∑

j

cjxj(rj − Rα) + (Rα2
x − Rα

xxi)

nα∑

j

cj(rj − Rα)

︸ ︷︷ ︸

= 0

+(yi − Rα
y )

nα∑

j

cjyj(rj − Rα) + (Rα2
y − Rα

y yi)
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j

cj(rj − Rα)
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= 0

+(zi − Rα
z )

nα∑

j

cjzj(rj − Rα) + (Rα2
z − Rα

z zi)

nα∑

j

cj(rj − Rα)

︸ ︷︷ ︸

= 0

]

,

and

F
(Q3)
iα =

3

2
kci

riα

r5
iα

nα∑

j

cjr
2
jα

=
3

2
kci

riα

r5
iα

[
nα∑

j

cj(x
2
j + y2

j + z2
j ) − 2

nα∑

j

cj(xjR
α
x + yjR

α
y + zjR

α
z )

+(Rα2
x + Rα2

y + Rα2
z )

nα∑

j

cj

]

.

To summarize, Tab. B.1 lists the elementary sums we need for the computation
of each multipole moment.
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Elementary sums necessary for the multipole contributions

Rα ∑nα

j |cj|,
∑nα

j |cj|xj ,
∑nα

j |cj|yj,
∑nα

j |cj|zj

φ
(M)
iα

∑nα

j cj

φ
(D)
iα

∑nα

j cj,
∑nα

j |cj|,
∑nα

j |cj|xj ,
∑nα

j |cj|yj,
∑nα

j |cj|zj ,
∑nα

j cjxj ,
∑nα

j cjyj,
∑nα

j cjzj

φ
(Q)
iα

∑nα

j cj,
∑nα

j |cj|,
∑nα

j |cj|xj ,
∑nα

j |cj|yj,
∑nα

j |cj|zj ,
∑nα

j cjxj ,
∑nα

j cjyj,
∑nα

j cjzj ,
∑nα

j cjx
2
j ,
∑nα

j cjy
2
j ,
∑nα

j cjz
2
j ,
∑nα

j cjxjyj,
∑nα

j cjxjzj ,
∑nα

j cjyjzj

F
(M)
iα

∑nα

j cj,
∑nα

j |cj|,
∑nα

j |cj|xj ,
∑nα

j |cj|yj,
∑nα

j |cj|zj ,

F
(D)
iα

∑nα

j |cj|,
∑nα

j |cj|xj,
∑nα

j |cj|yj,
∑nα

j |cj|zj,
∑nα

j cjxj ,
∑nα

j cjyj,
∑nα

j cjzj

F
(Q)
iα

∑nα

j cj,
∑nα

j |cj|,
∑nα

j |cj|xj ,
∑nα

j |cj|yj,
∑nα

j |cj|zj ,
∑nα

j cjxj ,
∑nα

j cjyj,
∑nα

j cjzj ,
∑nα

j cjx
2
j ,
∑nα

j cjy
2
j ,
∑nα

j cjz
2
j ,
∑nα

j cjxjyj,
∑nα

j cjxjzj ,
∑nα

j cjyjzj

Table B.1: Elementary sums to be computed for the multipole contributions of both the potential and the force acting on
the poi i by the particle ensemble α.



C Pair Distribution Function

Histograms of the pair distribution function show the normalized number of par-
ticles in the neighborhood of the reference particle in intervals of the distance, ac-
cording to Eq. (4.11). We have shown the histograms for repulsive and attractive
long range forces in Fig. 4.6 and 4.15, respectively. In these plots the maximum
of g(rij) is not shown exactly at the distance rij = 2a but slightly shifted to larger
distances. This is, because we divide the distance space into bins of width ∆rij

(see the bars in the figure) such that the limits of a bin exactly coincides with
rij = 2a. Due to the fact that the data points (solid circles) are located in the bin
centers, no data point will be displayed at rij = 2a and the maximum shown in
the histograms is located at 2a+ 1

2
∆rij . Therefore, the maximum displayed is not

equivalent with the value predicted by Eq. (4.11) in case of no long range interac-
tions. For this reason, we will extrapolate the slope of g(rij) towards smaller rij

by a straight line (dashed) until the line intersects with the vertical at rij = 2a,

 1.25
 1.219

 1.2

 1.15

 1.1

 1.05

 1
 2 1.8 1.6 1.4 1.2 1 0.9

g
(r

)

r / 2a

ν = 0.076, r = 1.00

cb = 0.0
fit

Figure C.1: A histogram of the pair distribution function, g(rij), plotted as a
function of the particle pair distances, rij. Bars indicate the bin
width, black circles are data points and the dashed line corresponds
to the linear fit we use for the extrapolation.



168

assuming a linear increase of g(rij) towards the point rij = 2a. The extrapolation
is shown in Fig. C.1 for the case without long range forces and for the density
ν = 0.076. Thus, Eq. (4.11) provides g(2a = 0.001) = 1.219, which corresponds
to the horizontal line at g(rij) = 1.219. The extrapolation line is a linear fit on
the data in the distance range rij/2a ∈ [1 : 1.4], where the increase of g(rij) is
steepest. However, the extrapolation still does not provide an intersection at the
nominal value, but the intersection point is significantly increased as compared
to the maximum of g(rij) shown.
Taking additionally into account the fact that, in case of soft spheres, an overlap
of two colliding particles can occur, there is a small probability to find a neigh-
bor particle also at a distance rij < 2a. This provides for non-vanishing values
in the bin(s) to the left of rij = 2a. E.g., the line connecting the data points
steeply decreases for rij < 2a+ 1

2
∆rij and indicates a non-vanishing contribution

at rij = 2a − 1
2
∆rij . If we would deal with hard sphere systems, the probabil-

ity to find neighbors at rij < 2a will be zero. So, for our purposes, we have to
add the small probability fraction to the bin at 2a + 1

2
∆rij. This will lead to

an increased peak probability and the peak would come once more closer to the
predicted value g0(2a) = 1.219.
In sections 4.3.5 and 4.4.4 we are interested in determining the ratio g(2a)/g0(2a)
in order to obtain a correction factor for the dissipation rate due to the effective
energy barrier. For this reason, we also extract values for g(2a)/g0(2a) from the
figures 4.6 and 4.15, respectively. We will remark, that the extraction is carried
out by the extrapolation method presented here.
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