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Mercury-DPM is a code for performing discrete particle 
simulations. That is to say, it simulates the motion of particles, 
or atoms, by applying forces and torques that stem either from 
external body forces, (e.g. gravity, magnetic fields, etc…) or from 
particle interactions. For granular particles, these are typically 
contact forces (elastic, viscous, frictional, plastic, cohesive), while 
for molecular simulations, forces typically stem from interaction 
potentials (e.g. Lennard-Jones). Often the method used in these 
packages is referred to as the discrete element method (DEM), 
which was originally designed for geotechnical applications. 
However, as Mercury-DPM is designed for simulating particles 
with emphasis on contact models, optimized contact detection 
for highly different particle sizes, and in-code coarse-graining (in 
contrast to post-processing), we prefer the more general name 
discrete particle simulation. The code was originally developed 
for granular chute flows, and has since been extended to many 
other granular applications, including the geophysical modeling of 
cinder cone creation. Despite its granular heritage it is designed in 
a flexible way so it can be adapted to include other features such as 
long-range interactions and non-spherical particles, etc.

Why a new simulation code?
There are many open-source particle simulation packages, so 
the question arises of why another? Mercury-DPM was originally 
started as a joint collaboration between the Multi-Scale Mechanics 
(MSM) and the Mathematics of Computational Science (MaCS) 
groups (before 2011 they were called the Numerical Analysis and 
Computational Mechanics) at the University of Twente in 2009. 
The idea was to develop a code that could be used alongside the 
existing MaCS group continuum solver hpGEM (http://wwwhome.
math.utwente.nl/~hpgemdev/) to approach problems using 
various multi-scale computational methods. Around the same time 
Vitaly Ogarko and Stefan Luding developed an advanced contact 
detection method: the hierarchical grid. This novel algorithm 
is quicker than existing methods for poly-dispersed flows (and 
still the same speed for mono-dispersed). So the idea of a new 
simulation code that had three core design aims was born:

1. It should be easy to use with minimal C++ knowledge.
2. It should be built around the new hierarchical grid detection 

method.
3. It should be able to generate accurate continuum fields that 

could be used with/alongside continuum solvers.

Actually, the name of the code emanates from the contact detection 
method: hierarchical grid  Hgrid  Hg  Mercury.

Features
Since it was first started it has evolved and gained many novel 
features. The main features include:
1. Of course, the hierarchical grid: The neighborhood search 

algorithm to effectively compute interaction forces, even for 
highly poly-dispersed particles.

2. Built-in coarse-graining statistical package: it has an in-built 
advanced statistics package to extract continuum fields such 
as density, velocity, structure and stress tensors, either during 
the computation or as a post-processing step. 

3. Access to continuum fields in real time: The code can be 
run in live statistics mode, which means it can respond to its 
current macroscopic state. An illustrative example of using this 
would be a pressure-release wall, i.e., a wall whose motion is 
determined by the macroscopic pressure created by particle 
collisions and moves such that its pressure (not position) is 
controlled.

4. Contact laws for granular materials: many granular contact 
force models are implemented, including elastic (linear or 
Hertzian), plastic, cohesive, sintering (temperature/pressure/
time-dependent), and frictional (sliding/rolling/torsion) forces.

5. Simple C++ implementation: Mercury-DPM consists of a 
series of C++ classes that are flexible, but easy to use. This 
allows the user to generate advanced applications with only a 
few lines of code.

6. Handlers: The code has handlers for particles, walls and 
boundaries. Thus, each object type has a common interface, 
even though individual objects can have completely different 
properties. This also makes it easier for the user to create new 
objects.

7. Complex walls: The code not only supports simple flat walls, 
but also axial-symmetric, polyhedral and helical screw walls 
are available. Additionally, due to the handler interface it is 
easy for more advanced users to define new types of walls 
themselves.

8. Specialized classes: Many specialized classes exist that reduce 
the amount of code required by the user to develop standard 
geometries and applications. Examples include chute flows, 
vertically vibrated walls and rotating drums.

9. Species: Particles and walls each have a unique species, which 
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is hidden for basic use of the code; however, this feature can be 
enabled by a single function call. Different particle properties 
for each species and different interaction forces for each pair 
of species can then be defined, allowing the simulation of 
mixtures.

10. Self-test suite and demos: Mercury-DPM comes with a large 
(over 100) self-tests and demo codes. These serve two 
purposes: 1) they allow us to constantly test both new and old 
features so we can keep bugs to a minimum; 2) they serve as 
tutorials, for new users, of how to do different tasks.

11. Simple restarting: every time a code is run (and at intervals 
during the computation) restart files are generated. Codes 
can be restarted without recompilation simply by calling the 
executable again with the restart file name as an argument. Also 
the restart files are complete in the sense that they contain all 
the information about the problem. In this way, small changes 
can be made (e.g. with the individual particle density or the 
coefficient of restitution) and the simulation can be rerun 
without the need for recompilation of the code.

12. Visualization: The particles output can be visualized easily 
using the free package VMD (visual molecular dynamics, 
http://www.ks.uiuc.edu/Research/vmd/).

13. Parallel: Currently a parallel-distributed version of the code 
is under development using MPI and this version should be 
publicly available shortly.

Simple C++ implementation and handlers
Mercury-DPM is a very versatile, object-oriented C++ code, 
which means new applications can be developed rapidly and easily. 
It has been tested for several Linux distributions and Mac OS. It 
consists of a core (kernel) that contains a series of C++ classes 
onto which users can quickly build to develop their own application 
(driver). The base class, Mercury3D, is flexible and contains the 
basic functionality to define a simulation. Using this class, the 
users specify the particulars of their simulations (initial positions, 
inflow, outflow, walls, interaction parameters, etc.) in a single driver 
file, which calls the kernel to perform the simulation. In addition to 
the flexible base class many higher-level, more powerful classes 
exist, which are tailored for common problems. A typical example 
would be the class Chute. This automatically defines a bottom that 
can be smooth or rough (of which we have three different types), an 
inflow boundary, outflow conditions, sidewalls, etc. and gives the 
user new access functions to perform standard tasks; for example: 
set_ChuteAngle (which automatics rotates the gravity vector), and 
set_InflowHeight (which changes the height of the particle layer 
at the entry to the chute). These common functions allow the 
simple setup of chute flow problems in just a few lines of code. 
Many other high-level classes exist and a full up-to-date list can 
be obtained from the website, http://www2.msm.ctw.utwente.nl/
MercuryDPM. As the code is fully object-oriented, many of the 
classes build on each other adding extra levels of functionality. 
An example would be the class ChuteWithHopper, which replaces 
the inflow conditions in the original Chute class with a more 
complicated hopper construction. In addition, it adds new access 
functions, which allow the hopper properties to be set. Due to the 
object-oriented nature of the code it is easy for users to change a 
driver code from one class to a similar one. For example to change 

a Chute problem to a ChuteWithHopper problem all the user has 
to do is change the class he includes at the top of the code and 
replace the access functions like set_InflowHeight to the hopper 
equivalent i.e. set_HopperWidth, set_HopperHeight, etc. All the 
code defining the geometry and dealing with particle properties 
does not have to be changed and has exactly the same interface.

Another key feature of the Mercury-DPM design is the idea of 
handlers. There are three handlers in Mercury-DPM: Particle, Wall 
and Boundary. Handlers mean that all items of the same basic 
type are stored in one place. This has several nice advantages the 
primary being the flexibility, i.e., each particle, wall, etc., can have 
completely different properties but as long as the basic properties 
are defined the code can deal with the item. The user does not 
have to look after the walls, particles and boundaries themselves; 
they only have to create them. For example, to add a new particle 
to the simulation the user defines the properties of the new particle 
and passes them on to the ParticleHandler, then the code does the 
rest. The user does not need to know anything about other particles 
that have previously been created. The handler can also be queried 
via its access function to obtain information like the number of 
particles currently in the simulation, the smallest particle, etc. 

Applications
Here we will illustrate some of the features of Mercury-DPM via 
applications that have already been developed in the package.

Poly-dispersed segregation in a rotating drum 
(S. Gonzalez, S. Luding, A.R. Thornton)
One of the most fascinating properties of granular matter is the 
ability of appropriately driven mixtures to separate into their 
individual components, despite the apparent lack of energetic or 
entropic advantages of a segregated state. This often produces 
brilliant patterns that give rise to a number of interesting problems 
in nature and difficult challenges for the powder compressing. 
The segregation of a binary mixture contained in a partially filled, 
horizontal, rotating drum is an extensively studied problem of this 
class; one with obvious industrial importance. One of its most 
beautiful characteristics occurs when it segregates in the radial 
direction, producing a core rich in small particles surrounded by 
an outer layer of mainly big particles, and depending on the angular 
velocity, rich patterns of segregation. Despite the great number 
of studies involving two-components systems, poly-disperse 
systems remain mainly unexplored, although they are more the 
rule than the exception in nature. The importance of these systems 
for industry is obvious; from a theoretical and computational point 
of view, they present various and difficult challenges.

One of the key reasons why poly-dispersed flow has not been 
investigated in the past is the computational cost. Traditionally, 
particle simulation codes use a linked list system for contact 
detection. This method has a complexity of order N for mono-
dispersed flows, where N is the total number of particles. 
This means that if you double the number of particles the total 
computational time doubles. However, for poly-dispersed flows 
this nice scaling is lost and in the extreme limit of one very large 
particle and the rest containing small particles, the complexity 
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becomes order N2. Yet due the hierarchical grid contact detection 
algorithm that forms Mercury-DPM’s heart this problem is still 
order N within Mercury-DPM. This is why highly poly-dispersed 
and wide-size distributions can be easily tackled for the first time, 
in an open source environment. 

Our simulations consist of spherical particles with different size 
distributions. Fixing particles to the surface of a given geometry 
makes the walls of the rotating tumblers. An easier way is to define 
finite walls; this is done in the driver. Turning the angle of gravity 
simulates the rotation of the tumbler. This makes the simulation 
with finite walls easier, and since the speed of rotation is quite low, 
the approximation is valid. For higher speeds, centrifugal forces 
have to be considered or the walls moved (which is possible 
within Mercury-DPM). Figure 1 shows an example of one of these 
poly-dispersed simulations. In this simulation every particle is 
of a different size, with a uniform volume distribution. The color 
represents the size of the particles with red the smallest and blue 
the largest. The ratio of the smallest to largest particle is ten to one 
in this simulation. The image is taken after two revolutions of the 
drum, and a strong segregation pattern can be observed with the 
small particles located in the center of the drum. 

Granular flow through a contraction 
(D. Tunuguntla, A.R. Thornton, T. Weinhart, 
O. Bokhove)
As a stepping-stone towards analyzing complex granular 
flows in industry, we analyzed flow in an inclined channel 
with a contraction. In order to simulate steady-state flow 
through the contraction, the flow should be in steady state 
when entering the contraction. Regular inflow conditions 
such as the insertion of particles at the boundary or 
through a hopper would require us to simulate a large 
stretch of flow before the contraction to obtain steady flow 
at the beginning of the contraction. In order to reduce the 

computational costs to a minimum, a new special type of inflow 
has been designed that produces steady uniform flow directly at 
the contraction entrance. This is done using a small periodic box 
in the inflow regions, the downstream wall of which both mirrors 
and transmits the particles into the main chute. That is, each time 
a particle moves through the downstream periodic wall, a copy 
is created which ignores the periodic walls and thus flows into 
the contraction. This inflow type was named maser, as it acts as 
a material laser, creating a steady uniform inflow of particles. 
Meaning that a small cheap steady-state periodic-box simulation 
can be used to seed the much larger simulation through the 
contraction. Details of this kind of inflow will be presented in a 
later publication. An illustration of this inflow is shown in Figure 
2, here the flow is visualized in VMD (visual molecular dynamics, 
http://www.ks.uiuc.edu/Research/vmd/); Mercury-DPM contains 
wrappers to view its output in this package.

Mercury-DPM contains an implementation of arbitrary convex 
polyhedral walls. These walls have been carefully designed to 
ensure that the collision with each face, edge, or corner of the 
wall is treated correctly. The main difficulty here is to determine 
the nearest face, edge or corner, and the normal direction of each 
collision. In a particle-face collision, the normal always equals 
the face normal; whereas, the normal of an edge-particle collision 
depends on the position of the particle with respect to the edge; 
finally, the collision with a corner is equivalent to colliding with an 
infinite mass particle.
Figure 3 shows a simulation of the granular flow through a 
contraction formed by two polyhedral walls. Once the particles 
flowing down the channel enter the contraction, jumps/shocks 

Fig. 1 - Poly-dispersed segregation in a rotating drum. Colour denotes particle size

Fig. 2 - Illustration of the Mercury inflow maser. Colours indicate particle speed, with 
blue low and red high speed. Lines indicate the modified periodic boundaries. 

Fig. 3 - 380,420 particles flowing through a contraction. Colours indicate particle speed. 
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in depth and velocity profiles are observed. The interaction of the 
particles with the sidewalls of the contracting channel can be seen 
in Figure 3, where the colour denotes the speed. The blue region 
illustrates the jump in the velocity profile of the flow. 

Granular jet impacting of an inclined plane 
(R.H.A. Fransen, A.R. Thornton, S. Luding, T. Weinhart)
Here, we simulate a granular jet impacting an inclined plane 
using Mercury-DPM. This problem was first investigated both 
experimentally and via the continuum approach by Johnson and 
Gray.

The novelties in the implementation are 
the construction of inflow conditions 
through a funnel and the modeling of 
a rough surface. Finally, the depth-
averaged height and velocity are 
extracted from the simulation using our 
coarse-graining toolbox. 

To obtain a jet of particles, a funnel is 
created using fixed particles placed onto 
a conical shape. Particles are inserted 
into the top third of the funnel whenever 
a free space is detected, see Figure 4 top left. The roughness of the 
funnel wall is necessary to create a velocity profile that keeps the 
developing jet from spreading.

To obtain the strong frictional effects observed in experiments, the 
plane needs to be rough as well. Therefore, a disordered layer of 
fixed particles is created. To prevent particles from falling through, 
a planar wall is placed below the fixed particles. Using the frictional 
rough walls allows us to observe similar profiles of the impact and 
fast-flowing zones as in the experiments, see bottom left and right 
in Figure 4.

Particles are removed from the simulation when they reach the end 
of the plate. This leads to a low pressure at the outflow, which can 
affect the flow on the plate. In Mercury-DPM the user can define 
a removal condition. If this is set to be a few cm below the plate, 

that is, when the particles are in a free flowing jet, off the end of 
the plate, it has been shown not to have an affect on the main flow. 

One of the major novel features of Mercury-DPM is its coarse-
graining toolbox, which constructs a continuous macroscopic field 
from the discrete particle data. This toolbox can be both run as 
either a post-processing step or live during the simulation. Careful 
attention has been paid to the boundary areas, and this package is 
even able to produce continuum fields within one particle diameter 
of a boundary. Examples of the results of the course-graining 
package for the jet problem are shown in Figure 5.

In order to obtain the height of the flow we assume that the density 
of the flow is constant over height, and that the flow is steady and 
uniform enough to have a lithostatic stress profile, see Figure 5. 
Thus, the height can be defined using the depth-averaged stress 
and density as plotted in Figure 5. Once the height is known, a 
depth-averaged velocity and the Froude number can be defined. 
A Froude number larger than unity denotes supercritical flow, 
otherwise the flow is subcritical. This allows us to determine the 
location of the shock (black line in right panel of Figure 3). 

Screw feeder and conveyor 
(D. Krijgsman)
The final feature of Mercury-DPM we will illustrate in detail is 
the helical screw. This highlights the flexibility of the versatile 
handlers, they are common in many industrial apparatuses. The 
difficulty of these simulations lies in the interaction between the 

screw and the particles. The approach that is used 
in most similar particle simulation packages is to 
triangulate the screw and do collision detection 
between the particles and small segments of the 
screw. The major disadvantage of this method is 
that for accuracy the single screw element has to 
be divided into a large number of triangles. All 
possible combinations of these triangles with the 
particles have to be checked for contacts, resulting 
in high computational costs. To circumvent this, 
in Mercury-DPM the screw is modeled as a single 
parametric surface.

In Mercury-DPM the screw is treated as ‘just another 
wall’ so all the user has to do is to create a screw 
and pass this screw to the WallHandler. The code 
automatically deals with the collision detection and 

Fig. 4 - Top left shows the flow in the hopper, bottom left the impact region, middle schematic of the original 
experiment, right the top view of the full particle simulation (~500k particles). Black particles indicate fixed 
particles; all other colours indicate speed, with blue low and red high speed.

Fig. 5 - Course grained macroscopic fields created using Mercury-DPM’s coarse-graining toolbox. Left shows the height of 
the flow in millimetres and right the local Froude number of the flow. The white lines indicate velocity streamlines; the black line 
indicates the location of a hydraulic jump/shock.
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Fig. 7 - Snapshot of the screw feeder simulation coloured by particle velocity. The screw 
pushes the particles out of the box into the tube. Colours indicate particle speed.

even rotation of the screw, if the user calls the move method. The 
screw is defined by a length, a maximum radius, the total number 
of twists, and a blade thickness. The mathematics of the definition 
of the surface will be omitted here, but they can be found in the full 
documentation of the code.

To check for collisions between a particle and the screw we have 
to find the point on the screw with minimum distance to the 
particle. This minimum is not analytically defined and Newton’s 
method is used to quickly iterate to it. We then use this minimum 
to check if the screw and particle are in contact. Again, full details 
of this process can be found in the documentation of the code. 
The important points are: this process is invisible to the user; it is 
quicker than the triangulation method (if more than a hand full of 
triangles are used); it is more accurate, even in the limit of a large 
number of triangles; and, this method has no artificial numerical 
constants i.e. the number of triangles used for approximation of 
the actual screw.

Two standard industrial applications are used to illustrate the 
screw: Figure 6 shows an example of a screw conveyor, in this 
case, as the screw turns and particles are transported along its 
length, i.e., from left to right. In industry, screw conveyors are often 
used to transport particles to the next processing step. Figure 7 
shows a screw feeder simulation, where the screw is positioned in 
a box, with a circular tube attached at the front end. The purpose of 
the feeder is to push the particles from the container into the tube 
to possibly feed another machine. Industrial apparatus simulations 
are able to provide detailed information on the flow inside the 
machine, which are difficult to obtain from experiments. With this 
detailed information one is able to investigate the optimization of 
these processes.

Parallel Mercury-DPM 
(A. te Voortwis)
As the number of particles in a system increases it becomes 
unavoidable to solve the problem in a parallel manner. Therefore a 
parallel version of Mercury-DPM is currently under development. 
The implementation consists of a spatial domain decomposition 
in which the simulation domain is split up into several smaller 

domains, each of which is simulated in a separate process, such 
that each process can be seen as a ‘standalone’ simulation. 
This approach allows for the parallel implementation to be very 
transparent; it is simply a layer between the driver-codes and the 
kernel. The necessary communication (i.e. particles moving from 
one domain to another) between the different domains is done 
through the MPI protocol, and the communication overhead is 
minimized by ensuring that, in general, domains only communicate 
with their direct neighbors. 

This approach ensures the proper scaling of the performance 
with an increasing number of processors. The bottleneck in this 
implementation would be the output of the result data, since this 
traditionally requires the sending of all data to a single process 
which writes the output. To overcome this issue, the HDF5 binary 
file-format is used for the file output because the library of this file-
format allows each process to write its data in parallel, minimizing 
the overhead. The combination of the flexible spatial domain 
decomposition and the parallel file-output ensures that Mercury-
DPM scales very well from an average desktop PC up to large scale 
parallel high performance computer systems. With the introduction 
of the new HDF5 format, also the serial code has to undergo some 
significant changes. For this reason, the launch of the parallel 
version is due for the next major release of Mercury- DPM.

If you are interested in Mercury-DPM?
Hopefully, by now you are interested in trying out Mercury-DPM 
for yourself. If you would like more information about the code, it 
can be found on the Mercury-DPM website http://www2.msm.ctw.
utwente.nl/MercuryDPM. Alternatively, you can obtain updates and 
information about the code by joining the mailing list. To do so, 
simply send an e-mail to listserv@lists.utwente.nl with subject: 
subscribe and Body: MERCURY-USER <your full name>. This 
is a low volume mailing list and typically you will receive no more 
than one e-mail a month. The code itself is available for a public 
svn repository and details of how to obtain and install it can also be 
found on the website.

Mercury-DPM was originally started as a research code at the 
University of Twente, to meet a local need for a tool that was not 
available in existing simulation codes. Since then it has grown 
and gained a few tens of external users, until now purely by word 
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Fig. 6 - Snapshot of the screw conveyor simulation coloured by particle velocity. This 
transports the particles trough the tube. Colours indicate particle speed.
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of mouth. Therefore, we have decided to make an official public 
release of the code, which will coincide with the publication of 
this article.

The Mercury-DPM release philosophy and 
guarantees to users 
Mercury-DPM is an actively developed open-source scientific 
research tool, which works on a kernel and driver pattern. Some 
of the authors have used these types of packages before and have 
often run into the problem to spend time developing the driver, 
and then a new version of the kernel comes out and nothing works 
anymore. Then you have to spend time rewriting your driver to get 
back to a square one.
We are already quite happy with our interfaces in Mercury-DPM 
and expect them to change very little in the future. However, we 
will also give the following two guarantees. Any driver code written 
for version 1.x will work in each version 1 and 2 kernels. New 
interfaces and modifications to interfaces will initially be introduced 
in parallel to the old interfaces. The use of an old interface will 
throw a warning to the users that the interface is to be withdrawn 
in the next major kernel update and will explain how to convert to 
the new improved interface. Secondly, there will not be more than 
one major kernel update per year. This means that any driver code 
written in the current version of the kernel is guaranteed to work in 
all new versions for the next two years, at least. Moreover, if after 
every major kernel update, i.e. once a year, you spend a little time 
responding to the warning your code generates, it will always work 
in the future version of the Mercury-DPM kernel. 

Mercury-DPM is still actively developed, and we have many grand 
plans for future features and extensions. These include added 
smooth particle hydrodynamics, direct coupling with continuum 
solvers, a graphics interface to aid ease of use, etc. Finally, if 
Mercury-DPM does not have a certain feature you need, we are 
always open to collaborate and to add such a feature. Actually, 
some of our current features arose in exactly this fashion; for 
example, the helical rotating screw wall. 
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LA DEFORMAZIONE 
PLASTICA DELL’ACCIAIO: 
I PRODOTTI LUNGHI
EnginSoft ospiterà a Bergamo il 13 Marzo p.v., presso il proprio 
Competence Center all’interno del Kilometro Rosso, una tappa 
del Corso Itinerante organizzato da AIM – Associazione Italiana 
di Metallurgia, a tema: “La deformazione plastica dell’acciaio: i 
prodotti Lunghi”.
L’iniziativa tecnico-formativa dell’Associazione si articolerà in 6 
appuntamenti a partire dal 6 Marzo p.v. ed è strutturata in una 
parte teorica, sui principi metallurgici di deformazione plastica 
dell’acciaio, e una pratica che contempla processi e macchinari.
Il ruolo degli ingegneri di EnginSoft, specialisti in simulazione 
virtuale, sarà fondamentale nell’illustrare ai corsisti avanzate 
soluzioni tecnologiche CAE dedicate alla laminazione dell’acciaio.
Marcello Gabrielli e Andrea Pallara, in veste di tutor, 
presenteranno, con il supporto di AFV Beltrame, con casi 
concreti, l’approccio al problema di laminazione attraverso la 
simulazione di questo processo metallurgico al fine di affinare 
la progettazione dei manufatti così ottenuti ottimizzandone il 
disegno e il relativo ciclo di produzione.

Per informazioni: Segreteria AIM
Tel.02.76021132; e-mail: info.aim@aimnet.it
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