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Abstract: The challenge of dealing with cohesive powders during storage, handling and transport are 
widely known in the process and pharmaceutical industries. Simulations with the discrete element method 
(DEM) provide further insight into the local microstructure of bulk materials. In this work, the DEM 
approach is presented to investigate the flow behavior of granular systems subjected to different modes of 
deformations. When uniaxial compression is applied of frictionless, polydisperse spheres above jamming 
(transition from fluid-like state to solid-like state), the evolution of coordination number (average number 
of contacts per particle) and pressure as functions of the volume fraction are, astonishingly, identical to 
results obtained for purely isotropic compression. Analytical predictions for the evolution of pressure and 
coordination number under isotropic strain can thus be separated from different deformation modes, as 
applied in this study. After two different modes of volume-conserving deviatoric shear, the results still 
compare quite well with results for purely isotropic compression. The difference between the two 
deviatoric modes and uniaxial deformation is examined with respect to the anisotropic stress response as a 
function of deviatoric strain.   

1. Introduction 

Dense granular materials are complex systems, which show unique material properties, different from 

classical fluids or solids. This involves phenomena like dilatancy, shear band formation, history dependence, 

jamming, and yield stress, among others. A full understanding of the flow and deformation behavior, 

especially for fine, cohesive powders, still remains a challenging problem.  

It has been shown [1] that isotropic and deviatoric deformation modes are pure modes, while the uniaxial 

deformation test derives from the superposition of an isotropic and a deviatoric test. In this work, various 

deformations paths for aggregates of polydisperse packings of non-frictional particles are modeled using 

the DEM simulation approach. The evolution of coordination number, deviatoric stress, and pressure 

(isotropic stress) are reported as functions of isotropic and deviatoric strain for different deformation modes 

and material parameters in Ref. [8].  

2. Simulation procedure 

The Discrete Element Method (DEM) [3] can be used to perform simulations in a triaxial box. One great 

advantage of the triaxial box is the possibility of realizing different deformation modes with a single test 

experiment (element test) applying direct control of stress or strain [1]. For the sake of simplicity, the contact 

model used in this work is the linear visco-elastic normal force  

                                                                                          �� = �� + ��	                                                                         (1) 

     where � is the spring stiffness,� the contact viscosity parameter, � the overlap between particles and 

�	 the relative velocity in the normal direction. In order to reduce dynamical effects and shorten relaxation 

times, an artificial background viscous dissipation force �
 = −�
�� proportional to the moving particle i 

with velocity �� is added, resembling the damping due to a background medium. 



2.1 Simulation parameters 

Simulation parameters are the system size � = 9261 (= 21�) particles, density � = 2000 [kg/m
3
], elastic 

stiffness kn = 10
5
 [kg/s

2
], particle damping coefficient γ = 1 [kg/s], and background dissipation γb = 0.1 [kg/s]. 

Ref. [4] provides a description of these artificial units and how they could be rescaled to fit values obtained 

from experiments. It should also be noted that the system has average particles radius <r> = 1 [mm], with 

polydispersity quantified by the width � = ���� ����⁄ = 3 of a uniform distribution. 

2.2 Initial configuration 

The boundary conditions of the triaxial cell are periodic walls and are strain controlled. The initial 

configuration is such that particles were randomly generated in a 3D box and isotropically compressed to a 

target volume fraction � = 0.673 above the volume fraction. From there, the isotropic compression stage is 

continued as the conditioning or preparation stage for various volume fractions, before the initiation of the 

uniaxial and deviatoric tests, as schematically shown in Fig. 1. 

 

Fig. 1: Volume fraction vs time during the isotropic preparation, relaxation and further isotropic compression and decompression 

stages. Cyan color represents various initial configurations for the deviatoric deformation. 

(a) Uniaxial deformation 

Uniaxial compression is subsequently initiated at the end of the isotropic stage, after allowing for sufficient 

relaxation of the isotropic system, with diagonal strain matrix elements ε"(0,0,1) where positive values 

mean compression. The volume fraction increases with time during uniaxial compression to a maximum of �%&' =0.82 and is followed by decompression back to the original � . 

(b) Deviatoric deformation  

After the isotropic preparation deviatoric (volume conserving) tests are performed. We choose two different 

ways of deforming the system. One case is with (diagonal) strain tensor (elements), ε()(−1,0,1), where 

only 2 sides are moving.  ε() is the strain-magnitude and the diagonal elements set the type and direction 

of triaxial strain. In this case, one wall moves outside as much as the other wall moves inside, with the third 

wall fixed. The second deviatoric deformation mode is described by the strain matrix ε(�(−1/2, −1/2,1). 

All the three walls move with one wall twice as much as the other two. Several other configurations can be 

chosen to perform deviatoric deformation, but we are mainly interested in these two fundamental modes. 

We perform slow deformations to allow the system to relax and hence be in the quasi-static regime.  

2.3 Evolution of Coordination Number  

Jamming occurs at the isostatic point [2, 5]. The contacts of dynamic rattlers (that do not contribute to the 

force network) are transient because the repulsive contact forces will push them away from the 



mechanically stable backbone [2]. We define frictionless particles with less than 4 contacts as rattlers. This 

leads to the following definition: 

�+ ≔NC≥4: Number of particles with at least 4 contacts,  -+ ≔ -C≥4: Total number of contacts of �+ particles 

.∗ ≔ 0121  : Corrected Coordination number 

The plot with variation of .∗ can be seen in Fig. 2. We observe that .∗ follows a power law with volume 

fraction 

                                                                         C∗(�) ≔ C +  C4 5 ��6 − 178                                                                (2) 

     where C = 6,  C4 ≈ 8.164 and α ≈ 0.57 are the fitted parameters and �6  ≈ 0.665.  

 

Fig. 2: Comparison of C* with the numerical data (red) and the proposed fit (green), Eq. (2). The blue dots represent the 

asymptotic values of C* for various different volume fractions after large strain deviatoric deformation. 

One interesting observation is that the coordination number, shown in Fig. 2, also is described by isotropic 

and uniaxial data – at the end of deviatoric simulations with different initial volume fractions (since volume 

is conserved under pure shear deformation). This suggests that the coordination number evolution equation 

proposed in Eq. (2), is independent of the deviatoric part of deformation (when particles are frictionless).  

2.4 Evolution of pressure  

The non-dimensional pressure [2] can be defined as: 

                                                                                  ? = 2〈�〉3� B�(C)                                                                                (3) 

     where  B�(C) is the trace of the averaged stress tensor and 〈�〉 is the mean radius of the spheres.  

The non-dimensional pressure – strain relation is [2]: 

                                                                        ? = ? �.�D (−EF)G1 − �H(−EF)I                                                       (4) 

     where ? , �Hare the fit parameters, . = .∗(1 − JK) is the coordination number (JK is the rattler 

fraction [2]) and EF is the true logarithmic volume change integral of LF = L�� of the system. Fig. 3 shows 

the total pressure as a function of the volume fraction for the Uniaxial, Isotropic and Deviatoric 

deformation modes. When the non-dimensional pressure is plotted versus the volume fraction, the 

deviatoric data (blue dots) also almost collapse with the two other deformation modes with slight deviations 

possibly due to dilatancy or small dynamic effects [8].  



 

Fig. 3: Non-dimensional pressure plotted against volume fraction for the UNIaxial, ISOtropic and DEViatoric deformation 

modes. 

For all cases (isotropic, uniaxial and deviatoric), the coefficients ? ≈ 0.039, �H ≈ 0.011 and�D ≈ 0.665 

fit our data well with errors of less than one percent, while the deviatoric data are off by 1-2% only. 

2.5 Deviatoric stress 

The average isotropic stress (pressure) is defined here as: 

                                                                     ? = C'' + CMM + CNN3 = 13 B�(C)                                                              (5) 

     where C'', CMM and CNN  are the diagonal elements of the stress tensor. Several definitions are 

available in literature [6] to define the deviatoric stress. We propose the most objective form to calculate the 

shear stresses [7] for the 3D box that accounts for triaxial deformation: 

                                        COPQ = R(C'' − CMM)) + (CMM − CNN)) + (CNN − C''))
2                                                 (6) 

We can also define the deviatoric strain in a similar way as:  

                                      EOPQ = R(E'' − EMM)) + (EMM − ENN)) + (ENN − E''))
2                                                     (7) 

 where E'', EMM  and ENN are the diagonal elements of the strain matrix. We use the factor 2 in the 

denominator of Eqs. (6) and (7) following the definition of the second stress invariant, even though 

different factors have been proposed in literature [6], which result in a change in the maximum anisotropy 

values obtained. The deviatoric stress COPQ quanitfies the (stress) anisotropy between the 

compression/de-compression and inactive directions. The response for our two different deviatoric 

simulations is shown in Fig. 4(a) and Fig. 4(b). The deviatoric stress has been normalized with the average 

isotropic stress ? from Eq. (5). Results for different volume fractions between � =  0.666 to � = 0.82 are 

shown. 

For the deviatoric deformation modes D2 and D3, the stresses grow with applied deviatoric strain until an 

asymptotic behaviour (maximum stress anisotropy) is reached. This is in agreement with the constitutive 

model for volume conserving deformations in the biaxial box proposed in [1, 7] and studied elsewhere [8]. 

Interestingly, the evolution of the stress-ratios is very similar for the different deformation modes. Also, the 

slope of the normalized deviatoric stress function against deviatoric strain reduces as the volume fraction is 

increased, unlike the classical shear modulus G, which increases with volume fraction [8], as consistent with 

findings from macroscopic experiments with shear testers [9].  



             

Fig. 4(a): Evolution of deviatoric stress as a function of deviatoric strain for deviatoric mode D2 with strain matrix EO)(−1,0,1). Fig. 

4(b): Plot of deviatoric stress as a function of deviatoric strain for deviatoric mode D3 with strain matrix EO)(−1/2, −1/2,1).  

3. Conclusions 

We have presented simulation results from strain controlled uniaxial compression and deviatoric (pure shear) 

deformation of frictionless polydisperse spheres. An important result in this study is the agreement obtained 

between the data for all deformations modes with the analytical predictions for purely volumetric strain [2]. 

When the non-dimensional pressure is plotted against the volume fraction, the data collapse on a unique law, 

irrespective of the applied deformation mode, purely isotropic, uniaxial and deviatoric (D2 & D3). This 

suggests an advantage of the ‘cheaper’ uniaxial (and deviatoric) deformation modes over the hard to realize 

isotropic deformation. Three walls have to be moved simultaneously in the isotropic case, while less 

movement is required in the other modes for the same amount of deformation. Symmetry in the two 

non-mobile directions for UNI and D3 modes is confirmed. For further work, more realistic contact models 

able to take into account friction and cohesion, need to be implemented. 
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