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Abstract. A shallow-layer model for granular flows down inclines is completed with a closure relation
for the macroscopic bed friction obtained from micro-scale, discrete particle simulations of steady flows
over geometrically rough bases with contact friction. Microscopic friction can be different between bulk
particles and with particles at the base, where the latter is systematically varied. When extending the
known friction closure relation to be a function of both bulk flow and bed properties, surprisingly, we find
that the macroscopic bed friction is only weakly dependent on the contact friction of the bed particles
and is predominantly determined by the properties of the flowing particles. Implications for constitutive
modelling and possible experiments to better understand the bulk rheology are discussed.

PACS. 47.57.Gc Complex fluids and colloidal systems: Granular flow – 45.70.Ht Granular systems:
Avalanches – 83.80.Fg Rheology: Granular solids

1 INTRODUCTION

Free-surface flows of granular material occur in many geo-
physical and engineering applications, such as rockslides,
avalanches, or production-line transport. They have been
studied extensively both experimentally and numerically.
The most direct way to simulate granular flows is by meth-
ods such as the Discrete Particle Method (DPM), which
computes the movement of individual particles based on
a model of the contact forces between the particles [7,21].
However, realistic flow situations often involve billions of
particles, and can only be modelled on a coarser level by
continuum solvers (or hybrid methods), in which the par-
ticulate flow is described by a small number of continuum
fields governed by the conservation of mass, momentum,
and often energy. For shallow flows, the mass and momen-
tum conservation equations can be further simplified by
averaging over the flow depth, yielding granular shallow-
layer equations (GSLE) [4,15,25]. In order to obtain a
closed system of equations, closure relations for the normal
stress differences, velocity shape factor, and macro basal
friction have to be provided in terms of the flow variables:
height, h, and the depth-averaged velocity, ū = (ū, v̄).
While closure models are usually developed to retain the
qualitative behaviour of the microscopic system, they of-
ten cannot describe the quantitative behaviour as the rela-
tions between the micro- and macroscopic quantities are
not well known. Here, we focus on one closure relation:

the effective macro-friction coefficient µ = µ(h, |ū|) and
its dependence on the bed friction.

Concerning nomenclature: in the literature, the word
friction is used for both the macroscopic frictional forces
felt by a large mass of material moving over a surface, as
well as the contact frictional force between two individ-
ual particles, i.e., the contact friction used in the DPM
simulation. Here, the macroscopic (shallow-layer) friction
will be denoted as µ, the particle-particle contact friction
between flowing particles as µf , and the contact friction
between flowing and base particles as µb.

The effective macro-friction coefficient, µ, determines
the range of inclinations and heights at which the flow
either arrests, reaches steady flow, or accelerates indefi-
nitely. The rougher the base, the larger the range of incli-
nations at which steady flow is reached. Basal roughness
can be realised in various ways. Goujon et al. [13], cre-
ated a rough base by glueing particles onto a flat surface.
The roughness was changed by varying the diameter ratio
between fixed basal and free flowing particles. They ob-
served a peak in the measured macro-friction coefficient at
a certain diameter ratio depending on the compactness of
the basal layer. In their work on enduring contacts, Louge
and Keast [20] modelled the base as a flat frictional in-
cline. Later, Louge [19] extended their theory to bumpy,
geometric rough, inclines. Silbert et al. [26,27] used DPM
to simulate chute flow over a base of disordered particles
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and obtained the closure relations as a function of flow
height and velocity.1

In our research we aim to obtain the closure relations
as a function of the basal properties, as well as bulk prop-
erties, by studying relatively small steady-state DPM sim-
ulations. The ultimate aim is to be able to perform contin-
uum GSLE simulations in complex geometries with spa-
tially and temporally evolving basal properties. First, we
developed a statistical method in [30] to extract the con-
tinuum fields from the microscopic degrees of freedom that
is also valid near the base of the flow. Then, an extensive
parameter study was undertaken in [31] to obtain the full
set of closure laws for the GSLE. Here, we study the clo-
sure relation for the macro-friction coefficient as a function
of the contact friction between basal and flowing particles,
µb.

2 MATHEMATICAL BACKGROUND

2.1 Granular shallow-layer model

GSLE have proved to be a successful tool in predicting
both geological large-scale [6,8–10,32] and laboratory-scale
experiments [14–16,28] of granular chute flows. They have
been derived in many papers, starting with [25], but here
we use the form presented in [4,15].

We will consider the flow down a slope with incli-
nation θ, the x-axis downslope, y-axis across the slope
and the z-axis normal to the slope. In general, the free-
surface and base locations are given by z = s(x, y) and
z = b(x, y), respectively. Here, we will only consider flows
over rough flat surfaces where b can be taken as constant.
The height of the flow is h = s − b and velocity compo-
nents are u = (u, v, w)T . Depth-averaging the mass and
momentum balance equations and retaining only leading
and first order terms (in the ratio of height to length of
the flow) yields the depth-averaged shallow-granular equa-
tions, e.g., [15],

∂h
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∂
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where g is the gravitational acceleration, ū = (ū, v̄) the
depth-averaged velocity and the source terms are given by

Sx = gh cos θ

(

tan θ − µ
ū√

ū2 + v̄2

)

and

Sy = gh cos θ

(

−µ v̄√
ū2 + v̄2

)

.

1 After initial submission we became aware of [18] which
looks at layering effects in the same flow configurations.

This granular shallow-layer theory assumes that the flow
is incompressible, the stress is isotropic and the velocity
profile is uniform in depth. When these assumptions are
accepted the only remaining closure relation is µ. We note
that some of these assumptions can be relaxed by intro-
ducing closure relations for the mean density, the normal
stress differences, and the shape of the velocity profile.
This, however, is beyond the scope of this paper; we refer
the interested reader to [31].

2.2 Friction law for rough surfaces

The closure to eqs. (1) is achieved by determining the bed
macro-friction in terms of the flow variables, such that
µ = µ(h, |ū|). In the early models a constant friction co-
efficient was used [17,25], i.e., µ = tan δ, where δ is a
fixed basal frictional angle. For these models, steady uni-
form flow is only possible at a single inclination, δ, below
which the flow arrests, and above which the flow accel-
erates indefinitely. However, detailed experimental inves-
tigations [11,23,24] for the flow over rough uniform beds
showed that steady flow emerges at a range of inclinations,
θ1 < θ < θ2, where θ1 is the minimum angle required for
flow, and θ2 is the maximum angle at which steady uni-
form flow is possible. In [24], the measured height hstop(θ)
of stationary material left behind when a flowing layer has
been brought to rest, was fitted to

hstop(θ)

Ad
=

tan(θ2)− tan(θ)

tan(θ) − tan(θ1)
, θ1 < θ < θ2, (2)

where d is the particle diameter and A a characteristic
dimensionless scale over which the friction varies. Here, we
will investigate how the parameters A, θ1 and θ2 change as
a function of the contact friction between bed and flowing
particles.

For h > hstop, steady flow exists where the Froude
number, F = |ū|/

√
gh cos θ, is assumed to fit a linear func-

tion of the height,

F =
βh

hstop(θ)
− γ , θ1 < θ < θ2, (3)

where β and γ are constants independent of the chute
inclination and particle size.

From eqs. (2) and (3) we can derive a relation between
the inclination θ and the flow variables F and h. For steady
flow over a uniform bed, the momentum eqs. (1) reduce
to µ = tan θ, and by combining this with (2) and (3) we
obtain the friction law

µ(h, F ) = tan(θ1) +
tan(θ2)− tan(θ1)

βh/(Ad(F + γ)) + 1
. (4)

Even though (4) is derived for steady-flow conditions it is
expected to hold, in an asymptotic sense, for unsteady sit-
uations; therefore, we can attempt to use it as the closure
relation for (1).
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Fig. 1. Overview of DPM simulations for µf = µb = 0.5, with
markers denoting the different states: arrested (solid-symbols),
steady (open-symbols), and accelerating (∗). The demarcation
line is fitted to hstop see eq. (2) (solid line). Circular symbols
concern increasing number of particles and square symbols de-
creasing. The grey line shows results using the Hertzian contact
model; whereas, the dot-dashed line shows the results using the
plastic model.

3 PROBLEM DESCRIPTION

3.1 Contact description

We perform simulations of a collection of mono-dispersed
spherical granular particles of diameter d and density ρp;
each particle i has a position ri, velocity vi and angular
velocity ωi. We assume that particles are soft and each
contact area is relatively small and, hence, can be treated
as point-like. The relative distance is rij = |ri − rj|, the
unit normal n̂ij = (ri − rj)/rij and the relative velocity
vij = vi−vj. Two particles are in contact if their overlap,
δnij = max(0, d − rij), is positive. The normal and tan-
gential relative velocities at the contact point are given
by

vn
ij = (vij · n̂ij)n̂ij , (5a)

vt
ij = vij − vn

ij +
d− δnij

2
n̂ij × (ωi + ωj). (5b)

The total force on particle i is a combination of the
contact forces fn

ij + f t
ij between two particles i, j in con-

tact and external forces, which for this investigation will
be limited to gravity,mg. For interactions the normal, fn

ij ,

and tangential, f t
ij , forces have to be modelled. Initially we

will consider three different interactions: spring-dashpot,
Hertzian and plastic. For each model, when the tangential-
to-normal force ratio becomes larger than a contact fric-
tion coefficient, µc, the tangential force yields and the par-
ticles slide, and we truncate the magnitude of the tan-
gential force as necessary to satisfy |f t

ij | ≤ µc|fn
ij |. Here

µc = µf for contacts between two flowing particles and
µb for contacts between flow and basal particles. We in-
tegrate the resulting force and torque relations in time
using Velocity-Verlet and forward Euler [1] with a time
step ∆t = tc/50, where tc is the collision time [21]. We

distinguish between free flowing and fixed bed particles.
The fixed bed particles are modelled as having an infi-
nite mass and are unaffected by body and contact forces:
they do not move. This leaves two distinct types of colli-
sion: flow-flow, and flow-base. Model parameters for each
of these collision types are changed independently and are
distinguished by a subscript f for flow-flow, b for flow-base
collision parameters, respectively.

For the spring-dashpot case [7,21,31] the normal, fn
ij(sd),

and tangential, f t
ij(sd), forces are modelled with linear

elastic and linear dissipative contributions, hence

fn
ij(sd) = knδnijn̂ij − γnvn

ij , f
t
ij(sd) = −ktδtij − γtvt

ij , (6)

with spring constants kn, kt and damping coefficients γn,
γt. The elastic tangential displacement. δtij , is defined to
be zero at the initial time of contact, and its rate of change
is given by

d

dt
δtij = vt

ij − r−1
ij (δtij · vij)nij . (7)

In eq. (7), the first term is the relative tangential velocity
at the contact point, and the second term ensures that δtij
remains normal to nij , see [31] for details.

For the Hertzian case we modify the interaction force
with

f
n/t
ij(Hertz) =

√

δnij/df
n/t
ij(sd), (8)

see e.g., [26]. Finally, for the plastic case we modify the
normal force using the (hysteretic) elastic-plastic form of
Walton and Braun e.g. [21,29]; therefore, in the normal
direction a different spring constant is taken for loading
and unloading/reloading of the contact and no dash-pot
is used i.e.,

fn
ij(p) =











kn1 δ
n
ijn̂ij if kn2 δ

e
ij ≥ k1δ

n
ij

kn2 δ
e
ijn̂ij if kn1 δ

n
ij > kn2 δ

e
ij > 0

0 if 0 ≥ kn2 δ
e
ij

, (9a)

f t
ij(p) = f t

ij(sd) = −ktδtij − γtvt
ij , (9b)

with δeij = δnij − δmax
ij (1− kn1 /k

n
2 ) and, δmax

ij = max δnij
is the maximum overlap during the contact. Unlike [21,
29] we take kn2 to be constant, so that the normal coef-

ficient of restitution is given by ǫn =
√

kn2 /k
n
1 . However

for enduring contacts the dissipation is smaller than in
the spring-dashpot case, since oscillations on the unload-
ing/reloading (kn2 ) branch do not dissipate energy. This
leads to less total dissipation, which could be responsible
for the small differences observed between the plastic and
the spring-dashpot contact model (see sec. 4.1 for more
discussion). For a more detailed review of contact laws, in
general, we refer the reader to [21].

In the following simulations, parameters are nondimen-
sionalised such that the flow particle diameter d = 1,
mass m = 1 and the magnitude of gravity g = 1. For
the spring-dashpot and Hertzian cases, the normal spring
and damping constants are kn = 2 · 105 and γn = 50. The
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tangential spring and damping constants are kt = (2/7)kn

and γt = γn. This means that in the spring-dashpot case:
the frequency of normal and tangential contact oscillation
and the normal and tangential dissipation are equal; the
contact duration is tc = 0.005; and, the normal coefficient
of restitution is ǫn = 0.88. These parameters are identical
to those used by Silbert et al. [26] except that a dissipa-
tion in the tangential direction, γt, was added to better
dampen rotational degrees of freedom in arresting flow.

In the Hertzian case the same values as in the spring-
dashpot case were used for kn, kt, γt and γn; but, due to
the the nonlinearity in the Hertzian contact model the co-
efficient of restitution becomes velocity dependent. For a
typical simulation velocity of 1.06 the coefficient of resti-
tution, ǫn, is around 0.98.

For the plastic case the kn2 was taken to be the same
as the kn in the spring-dashpot case and kn1 = kn2 /ǫ

2
n was

chosen such that the normal coefficients of restitution are
identical in both cases.

We performed a detailed study of the effect of chang-
ing the contact model for the case µb = µf , see fig. 1.
The effect of changing the contact model was minor with
the only noticeable difference being for low inclinations,
θ, where in the Hertzian case the hstop curve diverges
to infinity at an angle around 2◦ higher; a more detailed
discussion of the effects of the contact law can be found
in section 4.1. In the absence of tangential forces a nar-
row Pouliquen style hstop curve is still generated; however,
the angles are considerably lower than those observed in
experiments (data not shown). The simple linear spring-
dashpot model has the major advantage that we can be
sure that non-linearities and interesting phenomena we ob-
serve are not due to the contact model, but are fundamen-
tal to the flow configuration and rheology. For this reason,
and the fact that changing to a more complex interaction
model does not change the phenomena, we will use this
contact model to undertake a detailed investigation of the
effect of changing µb on the macroscopic friction, µ. In
this study, the friction between bed and flowing particles,
µb, is varied between µb = 0 and ∞; whereas, µf is fixed
at 0.5.

3.2 Chute geometry

The chute is periodic and of size 20d × 10d in the x × y-
directions, with inclination θ. The base is created by per-
forming a 12 particle deep simulation, across a flat sur-
face, relaxing the system and then taking a 1.7 particle
deep cross-section to use as a rough bottom; for details
see [31].

The height of the flow is determined by the number of
bulk flowing particles,N , which are initially randomly dis-
tributed with a low packing fraction of about ρ/ρp = 0.3.
From this state the particles accelerate and compact to a
height of approximately, N/200, giving the chute enough
kinetic energy to initialise flow. A screen shot of a system
in steady state is given in fig. 2.

z

g

y
x

Fig. 2. DPM simulation for 3500 particles, in a chute incli-
nation at θ = 24◦ and the basal contact friction, µb = 0.5, at
time t = 2000; gravity direction g as indicated. The domain
is periodic in the x- and y-directions. In the plane normal to
the z-direction, fixed (black) particles form a rough base while
the surface is unconstrained. Colours indicate speed, which in-
crease from slow (blue) at the bottom to faster (orange) to-
wards the free-surface.

3.3 Statistics

To obtain macroscopic fields, we use the coarse-graining
statistical methods as described in [2,12], extended to in-
corporate external boundary forces [30]. For this statistical
method a coarse-graining function that spatially smears
the discrete data has to be defined; we use a Gaussian of
width, or variance, d/4. The height of the flow is defined
to be the distance between the point where the downwards
normal stress σzz vanishes and where it reaches its maxi-
mum value. In order to avoid the effects of coarse graining,
the linear bulk stress profile between 2% and 98% of its
maximum is linearly extrapolated to define the base and
surface locations (see [31] for details).

We perform two types of simulation: hstop and dy-
namic. For the dynamic simulations the flow is assumed to
be steady at t = 2000 if the kinetic energy shows no drift
over the interval 1500 < t < 2000. To obtain depth pro-
files of the macroscopic fields in steady state, an average
is taken over t ∈ [2000, 2100] and the x and y directions.

The hstop simulations determine the demarcation line
between arrested and steady flow with good accuracy (the
hstop curve), via the following algorithm: starting with
N = 1200 flow particles and inclination θ = 24◦, the an-
gle was increased in steps of 1◦ until a flowing state was
reached. If the flow arrested, the number of particles was
increased by 400 or else the angle decreased by 1/2◦ (cir-
cles in fig 1). Flow was defined to be arrested when the
ratio between the kinetic energy and the elastic energy
stored in the contact, Ekin/Eela, fell below 10−5 before
t = 500 was reached, otherwise the flow was determined
as flowing. In contrast to [31], we also determined the de-
marcation line for thin flows (for the spring-dashpot model
only): starting with N = 800 and θ = 21◦, the angle was
increased by 1/2◦, if the flow arrested; otherwise the num-
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θ1 θ2 A β γ

Spring-dashpot†
17.7 32.8 3.36 0.196 0.40

(without low h)
Spring-dashpot 17.6 34.4 3.16 0.217 0.0699

Plastic 18.3 37.9 1.91 0.244 0.145
Hertzian 19.7 88.2 0.0134 0.321 0.318

Table 1. Table showing the measured values of θ1, θ2, A, β and
γ for the case µb = µf for all three contact models considered.
†Data taken from [31], where the flows with heights for which
N/200 ≈ h/d is less than 5 were not included in the hstop

curves.

h/hstop
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Hertzian
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Fig. 3. Froude number F = ū/
√
gh versus height scaled by

the stopping height, hstop for µb = µf and all three considered
contact models.

ber of particles was decreased by 10% until N < 200 was
reached (squares in fig 1).

From the experiments of Pouliquen [23], steady gran-
ular flow over a rough base is known to exist for a range
of heights and inclinations, θstop(h) < θ < θacc, where
θstop(h) denotes the inverse function of hstop(θ). From the
hstop simulations we obtain inclination intervals at var-
ious heights and height intervals at various inclinations
between which the actual demarcation line lies, see fig. 1.
The demarcating curve was then fitted to eq. (2) by min-
imising the distance of the fit to these intervals. Note,
these simulations are shorter than the dynamic simula-
tions, due to the large number of simulations required to
obtain high resolution hstop curves.

4 RESULTS

4.1 Effect of the contact model

It can be seen from fig. 1 that changing the contact model
does not have a large effect on the shape of the h/hstop

curve; however, it does significantly change the fitting pa-
rameters, see table 1. It can be seen that θ1 is reasonably
stable, which is expected, as it is related to the angle of
repose of the material [5]; whereas, θ2, which is an ex-
trapolated angle, is more poorly defined. Small changes in

z/h

u
/
√
g
d µb = 0

µb = 1/64

µb = 1/32

µb = 1/8

µb = 1/2

µb =∞

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
1
2
3
4
5
6
7
8
9

10

❅
❅
❅
❅❅❘

µb increasing

Fig. 4. Flow velocity profile for thick flow with N = 6000
(H = 30), inclination θ = 24◦ and bed micro-friction µb =
0, 1/1024, 1/2,∞. The flow velocity roughly observes a Bagnold
profile (u(z) = 5/3ū(1− (1−z/h)3/2)), except near the surface
and the base.

the data can lead to large changes in the values obtained
for A and θ2. This is highlighted by the first two rows in
table 1, where fits are computed, for the spring-dashpot
case, with and without the h/d ≈ N/200 ≤ 5 data. In-
cluding this data increases θ2 and decreases A, which is
a similar effect to changing the interaction model from
spring-dashpot to plastic. Changing to the Hertzian con-
tact model follows the same trend, but with a much larger
effect on θ2 and A. The sensitivity of A and θ2 to small
changes in the data is discussed in more detail in section
4.3.

From fig. 3 it is clear that for all three contact models
there is a linear relationship between the Froude number
and the scaled height, h/hstop; however, the gradient of
this curve does depend on the details of the contact model.
The trend is that the gradient, β, decreases in line with
the total dissipation inherent in the contact model, i.e.,
a more dissipative contact model leads to a lower value of
β.

The key results of this section are: changing the contact
model does not affect the linear scaling of Froude number
against h/hstop and does not change the shape of the hstop

curve; however, it does affect the details of the fits. The
Pouliquen law is universal with respect to the contact law
used in the DPM simulations.

4.2 Frictional dependence in the depth profiles

For all simulations we observe nearly constant density
profiles, and linear stress profiles for σzz and σxz, with
depth. These satisfy the mass and momentum balances
for steady uniform flow. Additionally, we do find a small
normal stress anisotropy, i.e., σxx 6= σzz . Fig. 4 shows a
selection of velocity profiles. We observe a Bagnold profile
as predicted in [3] for thick collisional flows. A small devi-
ation from the Bagnold profile is observed at the surface,
where the profile becomes linear and near the base where
the shear rate decreases. For µb < 1/2, the flow shows
a slip velocity at the base, a characteristic of smoother
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Fig. 5. Demarcation lines hstop(θ;µ
b) between retarding and

steady flows for various values of µb. The demarcation line is
fitted to eq. (2). Note, the line µb = 1/2 and µb = ∞ nearly
coincide.
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Fig. 6. Dependence of A, θ1 and θ2 on the contact friction
coefficient between base and flowing particles, µb. Please note
the labels on the x-axis: the plot is not log-linear.

bases. In [31] it was shown that both the bulk density and
the shape of the velocity profile depend on the inclination
and height of the flow.

4.3 The steady flow regime

The hstop simulations yield a family of demarcation curves
between arrested and steady states, hstop(θ;µ

b), which can
all be fitted to the Pouliquen hstop curve (2). The fits to
these curves are shown in fig. 5; the fitting parameters
θ1(µ

b), θ2(µ
b) and A(µb) can be found in fig. 6. The value

of θ1 shows little sensitivity to µb, which is to be expected
as θ1 is strongly related to the angle of repose of the mate-
rial [5], which is not a function of the base configuration.
For, 0 ≤ µb ≤ 1/4, θ2 increases as µb as increases; whereas
A is approximately constant, resulting in arrested flows for
larger inclination angles, θ, as is clearly illustrated in fig. 5.
The sensitivity of the fitting was measured by perturbing
the height value of all the data points randomly by 10%
and recalculating the fit. This was done 100 times and the

µb

γ β

0 2−10 2−7 2−6 2−5 2−4 1/8 1/4 1/2 1 ∞
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Fig. 7. Dependence of β and γ obtained via a fit to (10) on the
contact friction coefficient between base and flowing particles
µb. Please note the labels on the x-axis: the plot is not log-
linear. Error bars show 95% confidence intervals.

standard deviation is used in fig. 5 to indicate the error.
This 10% perturbation changed on average θ1 by 1.9%, θ2
by 4.9% and A by 29.5%, showing that the parameter A is
very sensitive to small changes in the data. As θ1 is related
to the angle of repose it is expect that its value should be
robust to small perturbation in the data. The sensitivity
in θ2 arises from the fact that this is an extrapolated, not
interpolated, angle; therefore, small changes to the data,
especially for large µb, where the curve hstop(θ) is very
shallow for high inclinations, can cause large changes in
its value. The dimensionless scale A does not have a direct
effect on the macroscopic friction µ, it affects µ in combi-
nation with β and γ, see (11). Small changes in the data
have a large effect on both A and γ, but only a small com-
bined effect on the macroscopic friction µ. This suggests
that A and γ are not good parameters to characterise the
friction and a better set of parameters with more physical
meaning could be found. See the discussion in section 4.4
for more details.

4.4 A general friction law

In order to obtain a function for the GSLE bed macro-
friction, we used the approach of Pouliquen [23] who found
that for rough bases the Froude number is a linear function
of h/hstop(θ). Our first approach was to fit the Froude
number to h/hstop(θ;µ

b); however, it was found that a
better collapse is obtained if the Froude number is fitted
with the hstop curve for the case where the flowing and
base particles are identical, i.e., µf = µb such that

F =β(µb)
h

hstop(θ;µf )
− γ(µb),

θstop(h;µ
b) ≤ θ ≤ θacc(µ

b), (10)

for all steady flows. In other words, when plotting h/hstop

versus the Froude number, F , hstop(θ;µ
f ) was used in-

stead of hstop(θ;µ
b) because it gives a better collapse and
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is defined for all inclinations for which steady flow exists.
The proportionality constant, β, and offset, γ, for the fit to
(10) are shown in fig. 7. The gradient β appears to be al-
most independent of µb; however γ has a weak dependence
slowly increasing with µb. Thus, the friction coefficient of
the depth-averaged eqs. (1) is given by

µ(h, F ;µb) = tan(θ̂1) +
tan(θ̂2)− tan(θ̂1)

β(µb)h

Âd(F+γ(µb))
+ 1

,

θstop(h;µ
b) ≤ tan−1 µ ≤ θacc(µ

b), (11)

where the ‘hat’ denotes dependence on µf only, e.g., θ̂1=
θ1(µ

f ), etc. The values obtained for the parameters are
given in figs. 6 and 7. The key results are that the only
dependence of the macro-friction, µ, on the bed contact
friction, µb, is through the coefficient γ, i.e., eq. (11) is
valid for all steady flows, for beds with varying basal micro
friction, and only the offset γ is a function of µb, all other
parameters are determined by µf . A detailed investigation
of how A, θ1 and θ2 depend on other parameters has been
undertaken in [31].

The values of β and γ reported here differ from the
values reported in [31] for the case µb = µf = 1/2. The
source of this discrepancy lies in the higher resolution hstop

curve produced here and the sensitivity of A and θ2. The
higher resolution datasets changed the hstop fit; however,
this has the opposite effect on the values obtained for β
and γ resulting in virtually no change in the macroscopic
friction coefficient, µ. This and the sensitivity of A and γ
implies that A, θ2 , β and γ may not be the best way to
characterise the macroscopic friction, µ.

5 CONCLUSIONS

An extensive parameter study of steady uniform flows was
undertaken by varying height h, inclination θ and the
basal contact friction µb. At small inclinations, the flow
quickly retards and a static pile is formed; at large incli-
nations, the flow continued to accelerate; between these
two regimes there was a range of inclinations at which
steady flows were observed, see fig. 1. Depth profiles for
density, velocity and stress were measured using coarse-
grained macroscopic fields [30,31]. The assumptions of
depth-averaged theory are found to be valid for steady
uniform flow: the density is almost constant in depth, and
the downward normal and shear stress balances the gravi-
tational forces acting on the flow (both local and in depth-
averaged form).

A closure relation for the macroscopic basal friction in
a shallow-granular flow model, over a geometrically rough
bed, was obtained using DPM simulations, as a function
of the basal and flowing particle properties. This law can
be used in shallow continuum models with spatially and
temporally evolving surface and mean velocity properties.
Many geophysical and industrial problems involve situa-
tions where the basal roughness is not uniform and in the

future it will be possible to use the presented macro fric-
tion closure relation to perform large-scale computations
(e.g., [22]) of granular flows using GSLE.

The effect of the contact law in the DPM was in-
vestigated: Hertzian, hysteretic plastic and linear spring-
dashpot were all considered. Changing the contact law did
change the fit; however, even for the non-linear Hertzian
contact model the Pouliquen flow rule remained valid (as
long as some dissipation is present). The trend was the
lower the dissipation inherent in the contact model the
higher θ2 and β, and the lower A.

The results of the DPM simulations did not vary sig-
nificantly with the contact friction at the bed. For small
values of µb < 1/4 the demarcation curves hstop(θ;µ

b),
θacc(µ

b) between arrested, steady and accelerating flows
shifted to the left, see fig. 5, implying a lower macro-
friction coefficient, µ. It should be noted that the fits do
slightly cross near θ1; however, this is a fitting error and
the raw data does not intersect. For µb < 1/2, the flow
developed a small slip velocity at the base, see fig. 4.

The bed friction, µ = tan θ, was expressed as a func-
tion of height and flow velocity, cf. eq. (11). This was done
using the approach of Pouliquen [23] for varying contact
friction at the bed. It was found that the fit for A and γ,
and to a lesser degree β and θ2, are very sensitive to details
of the datasets and by extending the range of flows simu-
lated the values change. However, in the friction law, eq.
(4), the changes in each parameter almost cancel, result-
ing in only a minor change in the predicted macro friction
coefficient, µ. This suggests that these parameters are not
the best way to parameterise the basal friction and a bet-
ter set of variables with different physical interpretation
may exist.

The friction law developed here is strictly only valid
for steady flows of mono-dispersed particles for the estab-
lished inclination range θstop(h;µ

b) ≤ tan−1 µ ≤ θacc(µ
b).

However, it is anticipated, that it will still hold for slightly
poly-dispersed particles, slowly varying basal properties,
and across a wider range of angles. The exact range of
applicability of the closure law still has to be determined
and this will form the theme of future work.

Both the results presented here and in [31], where the
geometric basal roughness (size of basal particles) was
changed, show that the flow rule for the case where bed
and flow particles are the same gives the best linear col-
lapse of Froude number against hstop. Therefore, for the
macroscopic friction coefficient, µ, we propose a new hy-
pothesis: the only dependence of µ on the base properties
is through the relationship of the Froude number against
hstop(θ;µ

f ), i.e., β and γ. In other words, the macroscopic
friction coefficient, µ, is mainly determined by the prop-
erties of the flowing (bulk) material, which is surprising,
since µ is a macroscopic property of the interface/wall. On
the other hand, maybe the clear dependence of µ on the
bulk-properties is due to the shallow-layer approach for
which a height average over the bulk is intrinsic? Hence,
the Pouliquen law (3) may still give insight for flows over
smooth surfaces, where at the moment it is thought to be
of limited applicability. This has implications for consti-
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tutive modelling and suggests a new set of experiments
where different basal materials are considered.
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