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Granular materials can be studied in a split-bottom ring shear cell geometry,
where they show wide shear bands under slow, quasi-static, large deforma-
tion. The contact models are at the basis of their interesting collective behavior
and flow-rheology as well the core ingredient for the discrete element method
(DEM). The contact mechanics used involves elasto-plastic, viscous, frictional,
and torque contributions.
From a single simulation only, by applying time- and (local)space-averaging,
and focusing on the regions of the system that experienced considerable defor-
mations, the critical-state yield stress (termination locus) can be obtained. It is
close to linear, for non-cohesive granular materials, and nonlinear with peculiar
pressure dependence, for adhesive powders – due to the nonlinear dependence
of the contact adhesion on the confining forces.

Introduction

Granular materials have various applications, involving geo-technique and -physics, industrial
design, mechanical- and process-engineering, as well as main challenges for physics and theo-
retical mechanics. Goal is to obtain (macroscopic) continuum constitutive relations that allow
to predict the collective flow behavior of many particles.

DEM simulations of simple element-tests allow microscopicinsight to physical experiments,
as they provide, e.g., information on forces and displacements at the grain scale. DEM allows
the specification of particle properties and interaction laws and then the numerical solution of
Newton’s equations of motion of all particles.

This paper briefly summarizes the contact laws involving elasto-plastic repulsive forces, viscous
dissipative forces, frictional forces, adhesion, and rolling-resistance.

From contacts to many-particle behavior

The behavior of particulate media can be simulated either with the discrete element method
(DEM) or with molecular dynamics (MD) [1–7]. MD was developed for numerical simulations
of atoms and molecules while DEM is more suitable for modeling geological materials and
industrial powders. We use the DEM approach, where the interaction forces between pairs
of particles involve both normal and tangential direction and the resultant torques (as well as
torques connected to rolling and torsion).

Since the exact calculation of the deformations of the particles is computationally too expensive,
we assume that the particles remain spherical and can interpenetrate each other. Then we relate
the normal interaction force to the overlapping length asfn = knδn, with a stiffnesskn and
the (interpenetration) overlapδn that stands for the contact-deformation. The tangential force
f t = ktδ

t is proportional to the tangential displacement of the contact points (due to both
rotations and sliding) with a stiffnesskt. The tangential force is limited by Coulomb’s law for
sliding f t ≤ µfn, i.e., for µ = 0 one has no tangential forces at all. To account for energy



dissipation, the normal and tangential degrees of freedom are also subject to viscous, velocity
dependent damping forces, for more details see [4; 8].

Adhesive Contact Model

For fine dry particles [9], not only friction is relevant, butalso adhesive/cohesive/attractive con-
tact forces, e.g., due to van der Waals forces. Due to the tinycontact area moderate forces can
lead to plastic yield and irreversible deformation of the material in the vicinity of the contact.
This complex behavior is modeled by introducing a variant ofthe linear hysteretic spring model,
as introduced in Refs. [4] and briefly explained in the following.

The adhesive, elasto-plastic (hysteretic) force is introduced by allowing the normal stiffnesskn

to depend on the history of the deformation. Given the plastic stiffnessk1 and the maximal
elastic stiffnessk2, the un- and re-loading stiffnessk∗ interpolates between these two extremes.
The stiffness for un-loading increases with the previous maximal overlap,δmax, reached. The
overlap when the unloading force reaches zero,δ0 = k∗−k1

k∗
δmax, resembles the permanent

plastic deformation and depends nonlinearly on the previous maximal forcefmax = k1δmax.

The negative forces reached by further unloading are attractive, adhesion forces, which also
increase nonlinearly with the previous maximal compression force experienced. The maximal
adhesion force is given byfmin = −kcδmin, with δmin = k∗−k1

k∗+kc

δmax.

Three physical phenomena elasticity/stiffness, plasticity and adhesion are thus quantified by
three material parametersk2, k1, andkc, respectively. Plasticity disappears fork1 = k2 and ad-
hesion vanishes forkc = 0. As discussed in detail in Ref. [4], for practical reasons and since ex-
tremely high forces will lead to qualitatively different contact behavior anyway, a maximal force
free overlapδf = 2φfa1a2/(a1 + a2), was defined (with an empirical parameterφf = 0.05),
above whichk∗ does not increase anymore [4] and is set to the maximal valuek∗(δ0 > δf ) = k2.
This visco-elastic, reversible branch is referred to as “limit branch” in the following (with vis-
cous dissipation active still). It is an over-simplification of the large-deformation regime and has
some physical meaning related to multiple contacts, contact-melting, and extreme deformations,
however, this is not discussed further for the sake of brevity, see Ref. [10] for details.

Parameters and scaling

Note that the contact model is reasonable for fine powders [9], with (scaled) parameters given
below. Before scaling, however, the parameters are arbitrary and we just use spherical particles
with densityρ = 2000 kg/m3 = 2 g/cm3, an average size ofa0 = 1.1 mm, and the width of the
homogeneous size-distribution (withamin/amax = 1/2) is 1 −A = 1 − 〈a〉2/〈a2〉 = 0.18922.

The un-scaled stiffness parameters of the model are the maximal normal stiffnessk2 = 500 N/m,
the plastic stiffnessk1/k2 = 1/5, and the tangential stiffnesskt/k2 = 1/25. The normal and
tangential viscosities areγn = 0.002 kg s−1 andγt/γn = 1/4. Note that friction is chosen
artificially small,µ = 0.01, in order to be able to focus on the effect of contact adhesiononly.
The above values represent arbitrary numbers as used in the DEM code and, e.g., corresponding
to arbitrary mass-, length-, and time-units. However, as shown in Ref. [4], the dimensional
numbers can be re-scaled, e.g., choosing the unitsmu = 1mg = 10−6 kg, xu = 10mm =
10−2 m, andtu = 1µs= 10−6 s, so that the dimensional model parameters translate toρ =
2000 kg/m3 (unchanged),a0 = 11µm, k2 = 5.108 N/m, andγn = 2.10−3 kg s−1 (unchanged),
while the parameter ratios and other dimensionless numbersremain unaffected. In particular this
order of particle size, for dry powders, is expected to display adhesive properties as implemented
in the model [4; 7; 9].

Contact model for two particles

Even though this paper concerns quasi-static contacts, thecontact model is best visualized by
plotting the contact force against overlap during the collision of two particles, see Fig. 1. At



the beginning of a collision, the force increases along thek1 branch. Even for large relative
velocity, vrel = 0.2 m/s, the force does not reach thek2 branch, but it follows thek1 branch up
to quite high values, and then returns on thek∗ branch during unloading – wherek∗ interpolates
betweenk1 andk2 – until it reaches the negativekc branch, which is followed during unloading
until the end of the contact.
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Figure 1: Contact force plotted against overlap for pair-collisions with relative velocity,vrel,
as given in the panel, for two particles of average radiusa = a0. The green and red lines and
symbols represent data for the model with (v=1) and without (v=0) normal viscosity, respec-
tively. The three straight lines represent the plastic branch, with slopek1, the adhesive branch,
with slope−kc, wherekc/k2 = 1/5 is used here, and the limit-branch with slopek2 that goes
throughδf = a0φf at zero force.

Model system geometry

The geometry of the sample for the macroscopic shear test in the split-bottom cell is described
in detail in Refs. [5; 6; 11–13]. Simulations typically run for more than50 s with a rotation
ratefo = 0.01 s−1 of the outer cylinder, with angular velocityΩo = 2πfo. For the average
of the displacement, only larger times are taken into account so that the system is examined in
quasi-steady state flow conditions – disregarding the transient behavior at the onset of shear.
Quasi-steady states include the possibility of very long-time relaxation effects, which can not
be caught by our relatively short simulations [11].

The effect of adhesion on the shear band

Without cohesion the shear band is narrower than with cohesion – all shear-bands being rather
wide close to the free surface. Very strong cohesion makes the shear-band move so rapidly
inwards that it is localized (and thus narrow). Specifically, the volume fraction decays from
ν ≈ 0.66 without cohesion to values as small asν ≈ 0.61 for the strongest adhesion (in the
center of the shear-band). Interestingly, in contrast to the density, the coordination number
slightly increases with increasing adhesion strength, since closed contacts are less easily opened
in the presence of attractive forces. The contact number density, i.e., the trace of the fabric
tensor, see Refs. [5; 6] is only slightly decreasing with adhesion strength, whereas it was strongly
decreasing with increasing coefficient of friction [6].

Comparing the cases with different degrees of adhesive parameters we conclude that the shear-
band localisation depends strongly on adhesion.



Conclusions

Simulations of a split-bottom Couette ring shear cell with dry granular materials show perfect
qualitative and good quantitative agreement with experiments. The effect of friction was stud-
ied recently, so that here the effect of contact adhesion wasexamined, after the elasto-plastic,
adhesive contact model was introduced.

The termination locus, i.e., the maximal shear stress,|τ∗| in critical-state flow, also called
critical-state yield stress, when plotted against pressure – for those parts of the system that have
experienced considerable shear (displacement) – is almostlinear in the absence of adhesion,
corresponding to a linear Mohr-Coulomb type critical-state line (termination locus) with slope
µ∗

m = tan ∆, increasing with microscopic contact friction. A strong nonlinearity of the termina-
tion locus emerges as a consequence of the strong adhesive forces that increase nonlinearly with
the confining pressure: Attractive forces are very weak for low pressure and increase consider-
ably for larger pressure in the presence of strong contact adhesion. Saturation is observed, since
the contact adhesion force cannot grow beyond a certain threshold (by construction). Therefore,
due to this nonlinearity, the definition of a macroscopic cohesion (shear stress at zero normal
stress) becomes questionable for low pressure levels, but is meaningful at higher confining pres-
sure.

References

[1] P. A. Vermeer, S. Diebels, W. Ehlers, H. J. Herrmann, S. Luding, and E. Ramm, editors.
Continuous and Discontinuous Modelling of Cohesive Frictional Materials, Berlin, 2001.
Springer. Lecture Notes in Physics 568.

[2] M. Lätzel, S. Luding, and H. J. Herrmann. Macroscopic material properties from
quasi-static, microscopic simulations of a two-dimensional shear-cell.Granular Matter,
2(3):123–135, 2000. e-print cond-mat/0003180.

[3] S. Luding. Micro-macro transition for anisotropic, frictional granular packings.Int. J. Sol.
Struct., 41:5821–5836, 2004.

[4] S. Luding. Cohesive frictional powders: Contact modelsfor tension. Granular Matter,
10:235–246, 2008.

[5] S. Luding. Constitutive relations for the shear band evolution in granular matter under
large strain.Particuology, 6(6):501–505, 2008.

[6] S. Luding. The effect of friction on wide shear bands.Particulate Science and Technology,
26(1):33–42, 2008.

[7] S. Luding and F. Alonso-Marroquin. The critical-state yield stress (termination locus) of
adhesive powders from a single numerical experiment.Granular Matter, 13:109–119,
2011.

[8] S. Luding. Collisions & contacts between two particles.In H. J. Herrmann, J.-P. Hovi,
and S. Luding, editors,Physics of dry granular media - NATO ASI Series E350, page 285,
Dordrecht, 1998. Kluwer Academic Publishers.

[9] J. Tomas. Fundamentals of cohesive powder consolidation and flow. Granular Matter,
6(2/3):75–86, 2004.

[10] S. Luding, K. Manetsberger, and J. Muellers. A discretemodel for long time sintering.
Journal of the Mechanics and Physics of Solids, 53(2):455–491, 2005.

[11] J. A. Dijksman and M. van Hecke. Granular flows in split-bottom geometries.Soft Matter,
6:2901–2907, 2010.

[12] D. Fenistein, J. W. van de Meent, and M. van Hecke. Universal and wide shear zones in
granular bulk flow.Phys. Rev. Lett., 92:094301, 2004. e-print cond-mat/0310409.

[13] D. Fenistein and M. van Hecke. Kinematics – wide shear zones in granular bulk flow.
Nature, 425(6955):256, 2003.


