About contacts of adhesive, elasto-plastic, frictional powders
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Granular materials can be studied in a split-bottom ringasloell geometry,
where they show wide shear bands under slow, quasi-statige ldeforma-
tion. The contact models are at the basis of their intergsiolective behavior
and flow-rheology as well the core ingredient for the diseiedement method
(DEM). The contact mechanics used involves elasto-plagscous, frictional,
and torque contributions.

From a single simulation only, by applying time- and (locsppce-averaging,
and focusing on the regions of the system that experiencesiderable defor-
mations, the critical-state yield stress (terminatioruk)acan be obtained. It is
close to linear, for non-cohesive granular materials, amdinear with peculiar
pressure dependence, for adhesive powders — due to theeamtiependence
of the contact adhesion on the confining forces.

I ntroduction

Granular materials have various applications, involvieg-technique and -physics, industrial
design, mechanical- and process-engineering, as well esanallenges for physics and theo-
retical mechanics. Goal is to obtain (macroscopic) contimconstitutive relations that allow
to predict the collective flow behavior of many particles.

DEM simulations of simple element-tests allow microscapisight to physical experiments,
as they provide, e.g., information on forces and displacesnat the grain scale. DEM allows
the specification of particle properties and interactiomsland then the numerical solution of
Newton’s equations of motion of all particles.

This paper briefly summarizes the contact laws involvingtelgplastic repulsive forces, viscous
dissipative forces, frictional forces, adhesion, andmghresistance.

From contacts to many-particle behavior

The behavior of particulate media can be simulated eithén thie discrete element method
(DEM) or with molecular dynamics (MD) [1-7]. MD was develapbtr numerical simulations
of atoms and molecules while DEM is more suitable for modglyeological materials and
industrial powders. We use the DEM approach, where thedati®n forces between pairs
of particles involve both normal and tangential directiowd ahe resultant torques (as well as
torques connected to rolling and torsion).

Since the exact calculation of the deformations of the glagiis computationally too expensive,
we assume that the particles remain spherical and can émetate each other. Then we relate
the normal interaction force to the overlapping lengthfas= k6", with a stiffnessk,, and

the (interpenetration) overlaf® that stands for the contact-deformation. The tangentigefo

ft = k0t is proportional to the tangential displacement of the otinpmints (due to both
rotations and sliding) with a stiffnegs. The tangential force is limited by Coulomb’s law for
sliding f* < uf™, i.e., forp = 0 one has no tangential forces at all. To account for energy



dissipation, the normal and tangential degrees of freedenalao subject to viscous, velocity
dependent damping forces, for more details see [4; 8].

Adhesive Contact Model

For fine dry particles [9], not only friction is relevant, kalso adhesive/cohesive/attractive con-
tact forces, e.g., due to van der Waals forces. Due to thectinjact area moderate forces can
lead to plastic yield and irreversible deformation of thetenial in the vicinity of the contact.
This complex behavior is modeled by introducing a variartheflinear hysteretic spring model,
as introduced in Refs. [4] and briefly explained in the foliogy

The adhesive, elasto-plastic (hysteretic) force is intoedl by allowing the normal stiffnegs,

to depend on the history of the deformation. Given the pastiffnessk; and the maximal

elastic stiffness:,, the un- and re-loading stiffnes interpolates between these two extremes.

The stiffness for un-loading increases with the previgyxk!mal overlap,dmax, reached. The
—R]

overlap when the unloading force reaches zé~= " dmax, resembles the permanent

plastic deformation and depends nonlinearly on the previnaximal forcef.x = k10max-
The negative forces reached by further unloading are &tteacadhesion forces, which also
increase nonlinearly with the previous maximal compres$iwce experienced. The maximal

adhesion force is given bfuin = —kcOmin, With dmin = 5 Omax.

Three physical phenomena elasticity/stiffness, pldgtiahd adhesion are thus quantified by
three material parameteks, k1, andk,, respectively. Plasticity disappears far= k, and ad-
hesion vanishes fdr. = 0. As discussed in detail in Ref. [4], for practical reasond since ex-
tremely high forces will lead to qualitatively differentmiact behavior anyway, a maximal force
free overlapd; = 2¢raias/(a1 + a2), was defined (with an empirical parametgr = 0.05),
above whichk* does notincrease anymore [4] and is set to the maximal veilidg > 05) = k.
This visco-elastic, reversible branch is referred to awitlbranch” in the following (with vis-
cous dissipation active still). It is an over-simplificatiof the large-deformation regime and has
some physical meaning related to multiple contacts, comtedting, and extreme deformations,
however, this is not discussed further for the sake of byesée Ref. [10] for detalils.

Parameters and scaling

Note that the contact model is reasonable for fine powdersM@ (scaled) parameters given
below. Before scaling, however, the parameters are anpistiad we just use spherical particles
with densityp = 2000 kg/m? = 2 g/cn?, an average size afy = 1.1 mm, and the width of the
homogeneous size-distribution (Withhi, /amax = 1/2)is1 — A =1 — {(a)?/{a®) = 0.18922.

The un-scaled stiffness parameters of the model are thenmaérbrmal stiffnesg, = 500 N/m,
the plastic stiffnesg;/k2 = 1/5, and the tangential stiffneds/k» = 1/25. The normal and
tangential viscosities arg, = 0.002kgs ! and~;/vy, = 1/4. Note that friction is chosen
artificially small, . = 0.01, in order to be able to focus on the effect of contact adhesion
The above values represent arbitrary numbers as used irENeddde and, e.g., corresponding
to arbitrary mass-, length-, and time-units. However, aswshin Ref. [4], the dimensional
numbers can be re-scaled, e.g., choosing the umjts= 1mg = 10-°kg, z, = 10mm =
10~2m, andt, = 1pus= 106s, so that the dimensional model parameters translate=o
2000 kg/m? (unchanged)qo = 11 um, ko = 5.108 N/m, andy,, = 2.10~3kgs~! (unchanged),
while the parameter ratios and other dimensionless numéerain unaffected. In particular this
order of particle size, for dry powders, is expected to digpldhesive properties as implemented
in the model [4; 7; 9].

Contact model for two particles

Even though this paper concerns quasi-static contactgaiact model is best visualized by
plotting the contact force against overlap during the swh of two particles, see Fig. 1. At



the beginning of a collision, the force increases alongithéranch. Even for large relative
velocity, v.; = 0.2m/s, the force does not reach thebranch, but it follows theé:; branch up
to quite high values, and then returns on fidoranch during unloading — wheké interpolates
betweenk; andks — until it reaches the negative branch, which is followed during unloading
until the end of the contact.
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Figure 1: Contact force plotted against overlap for pallisions with relative velocity,v;,
as given in the panel, for two particles of average radius ag. The green and red lines and
symbols represent data for the model with (v=1) and withegD] normal viscosity, respec-
tively. The three straight lines represent the plastic thamwith slopek;, the adhesive branch,
with slope—#k., wherek./ke = 1/5 is used here, and the limit-branch with slopgethat goes
throughé; = ag¢ at zero force.

Model system geometry

The geometry of the sample for the macroscopic shear teseirglit-bottom cell is described
in detail in Refs. [5; 6; 11-13]. Simulations typically ruarfmore thans0s with a rotation
rate f, = 0.01s~! of the outer cylinder, with angular velocitp, = 2 f,. For the average
of the displacement, only larger times are taken into acceaoithat the system is examined in
guasi-steady state flow conditions — disregarding the igah$®ehavior at the onset of shear.
Quasi-steady states include the possibility of very ldngetrelaxation effects, which can not
be caught by our relatively short simulations [11].

The effect of adhesion on the shear band

Without cohesion the shear band is narrower than with cohesiall shear-bands being rather
wide close to the free surface. Very strong cohesion makestiear-band move so rapidly
inwards that it is localized (and thus narrow). Specificalhe volume fraction decays from

v =~ 0.66 without cohesion to values as small:asz 0.61 for the strongest adhesion (in the
center of the shear-band). Interestingly, in contrast edbnsity, the coordination number
slightly increases with increasing adhesion strengtltesaiosed contacts are less easily opened
in the presence of attractive forces. The contact numbesigemne., the trace of the fabric
tensor, see Refs. [5; 6] is only slightly decreasing withesibn strength, whereas it was strongly
decreasing with increasing coefficient of friction [6].

Comparing the cases with different degrees of adhesiverpess we conclude that the shear-
band localisation depends strongly on adhesion.



Conclusions

Simulations of a split-bottom Couette ring shear cell witii granular materials show perfect
gualitative and good quantitative agreement with expanisieThe effect of friction was stud-
ied recently, so that here the effect of contact adhesionexasiined, after the elasto-plastic,
adhesive contact model was introduced.

The termination locus, i.e., the maximal shear str¢ss|, in critical-state flow, also called
critical-state yield stress, when plotted against pressuor those parts of the system that have
experienced considerable shear (displacement) — is alimest in the absence of adhesion,
corresponding to a linear Mohr-Coulomb type critical-stine (termination locus) with slope
wy, = tan A, increasing with microscopic contact friction. A stronghfinearity of the termina-
tion locus emerges as a consequence of the strong adheasigs tbat increase nonlinearly with
the confining pressure: Attractive forces are very weakdar pressure and increase consider-
ably for larger pressure in the presence of strong contdetsadn. Saturation is observed, since
the contact adhesion force cannot grow beyond a certaistble (by construction). Therefore,
due to this nonlinearity, the definition of a macroscopicesibn (shear stress at zero normal
stress) becomes questionable for low pressure levelss bue@aningful at higher confining pres-
sure.
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