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Abstract

The band structure of a two-dimensional granular crystal composed

of silicone rubber and polytetrafluoroethylene (PTFE) cylinders

is investigated numerically. This system was previously shown to

undergo a pattern transformation with uniaxial compression [Göncü

et al. Soft Matter 7, 2321 (2011)]. The dispersion relations of the

crystal are computed at different levels of deformation to demonstrate

the tunability of the band structure which is strongly affected by the

pattern transformation which induces new band gaps. Replacement of

PTFE particles with rubber ones reveals that the change of the band

structure is essentially governed by pattern transformation rather

than particles’ mechanical properties.

c©2012 Acoustical Society of America

PACS Numbers: 43.20.Mv, 43.40.At, 43.35.Gk
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1. Introduction

Wave propagation in materials with periodic microstructures1 has been studied exten-

sively in the context of photonic and more recently phononic crystals2. The attenuation of

electromagnetic, acoustic or elastic waves in certain frequency ranges known as band gaps is

an important feature of these materials which allows to use them as wave guides or filters3,4.

Recent research has focused on the ability to control and tune the band gaps in phononic

crystals. Several authors have reported5–7 the modification and tuning of the band structure

of phononic crystals with external fields. On the other hand, 1D granular crystals (i.e.

periodic chains of particles) attracted increasing attention due to their non-linear dynamics

arising from tensionless contacts and non-linear interactions between particles. Their non-

linear response can be tuned by changing the initial compression of the chain8–10, leading

to the design of tunable acoustic lenses11 and phononic band gap materials12. Moreover,

theoretical studies13 point out the possibility to control the band gaps of a periodic 2D

granular crystal by introducing new periodicities in addition to existing ones.

Here, we investigate numerically the propagation of elastic waves in a 2D bi-disperse

granular crystal composed of large (and soft) silicone rubber and small (and stiff) polyte-

trafluoroethylene (PTFE) cylinders14. In the undeformed crystal, particles are placed on

two embedded square lattices (Fig. 1(a)). When the system is uniaxially compressed parti-

cles rearrange into a new periodic pattern14 as illustrated in Fig. 1(b). We will show that

the pattern transformation triggered by deformation can be effectively used to tune and

transform the band gaps of the structure. The crystal under consideration consists of 5 mm

radius silicone rubber and 2.5 mm radius PTFE particles. Material properties of silicone

rubber are characterized by density ρr = 1.05× 103 kg/m3, Young’s modulus Er = 360 kPa,

shear modulus Gr = 120 kPa and longitudinal speed of sound cl0r = 77.1 m/s, while for
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PTFE one has ρt = 2.15× 103 kg/m3, Et = 1 GPa, Gt = 336.2 MPa, and cl0t = 1350 m/s.

2. Modeling

Particles are modeled as 2D disks in a way similar to soft-particle Molecular Dynamics

(MD)15. The forces in the normal contact direction are described by a non-linear contact

force law as function of the geometric overlap δ (see Figures 1(c) and (d)) :

f(δ) = k1δ + k2δ
α. (1)

The parameters k1, k2 and α depend on the radii and mechanical properties of the particles

in contact and their numerical values (listed in Table 1) are determined by fitting Eq. (1)

to force-displacement data obtained from Finite Element Method (FEM) simulations of

various contacts. For the sake of simplicity, tangential contact forces are modeled with a

linear spring of stiffness kt. Since a parametric study reveals that the magnitude of the

tangential stiffness does not have a significant effect on the pattern transformation, here

we assume kt/kn = 0.1481 based on an estimate by Luding16, with the linearized normal

stiffness, kn, defined below.

The propagation of elastic waves in infinite periodic lattices has been studied using tech-

niques based on structural mechanics and FEM17–19. Following this approach two contacting

particles p and q can be viewed as a finite element20 with the nodes located at the particle

centers. Their interaction is then characterized by a stiffness matrix Kpq which relates the

displacements and orientations (Fig. 1(c))Upq = [up
x u

p
y θ

p uq
x u

q
y θ

q]T to the forces and torques

acting on the particle centers Fpq = [f p
x f

p
y τ

p f q
x f

q
y τ

q]T such that Fpq = KpqUpq in the local

coordinate system of the contact defined by the normal n̂ and tangent ŝ, see Fig. 1(c). For

a contact characterized by linear stiffnesses kn and kt in normal and tangential direction,
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Göncü, JASA-EL

respectively, Kpq is given by20:

Kpq =
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, (2)

where Rp and Rq are the radii of the particles. Note that, since we consider small ampli-

tude perturbations of statically compressed particles with initial overlap δ0, Eq. (1) can be

linearized as

f(δ) ≈ f(δ0) + kn(δ − δ0), (3)

where kn = df/dδ|δ=δ0
is the linearized contact stiffness.

To compute the dispersion relation we consider an infinite crystal and solve the equations

of motion for its periodic unit cell, disregarding effects due to finite systems with walls.

Free harmonic oscillations are assumed and periodic boundary conditions are applied using

Bloch’s theorem17,19. The final form of the equation of motion is of a generalized eigenvalue

problem:
[

−ω2M+K
]

U = 0, (4)

where ω is the radial frequency of the oscillations. M and U are the mass matrix and

displacement vector of the unit cell, respectively and the global stiffness matrix K is assem-

bled from the contributions of individual contacts according to the classical finite element

assembly procedure. Note that although this approach assumes a fixed contact network

and sliding between particles (i.e. friction) is neglected, it is still valid for this study since

small amplitude perturbations superimposed to a given (finite) state of deformation are

considered.
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3. Results

The dispersion diagrams for the 2D granular crystal at different levels of macroscopic

nominal strain are provided in Fig. 2, clearly revealing the transformation of the band gaps

with deformation. In the undeformed configuration the periodic unit cell of the crystal

consists of a pair of rubber and PTFE particles arranged on a square lattice (Fig. 2(d)) and

the structure possesses a phononic band gap for nondimensional frequencies 0.590 < ω̃ <

0.823, where ω̃ = ωA/(2πcl0r ) with A = (||t1||+ ||t2||)/2, t1 and t2 being the lattice vectors.

At 15% compression the new pattern starts to emerge and the crystal has a unit cell

composed of two pairs of rubber and PTFE particles (Fig. 2(e)). The structural transfor-

mation alters the dispersion relation of the crystal. Remarkably, a new band gap is open

and the structure has now two band gaps at 0.141 < ω̃ < 0.419 and 0.712 < ω̃ < 0.778 (Fig.

2(b)).

The transformation is complete when the PTFE particles touch (Fig. 2(f)). Figure 2(c)

shows the corresponding band structure of the patterned crystal at 25% compression. The

stiff contacts between PTFE particles leads to transmission and band gaps at much higher

frequencies. At this level of deformation the structure is characterized by three band gaps

in the intervals 0.142 < ω̃ < 0.545, 0.885 < ω̃ < 3.557 (partially shown in Fig. 2(c)) and

3.557 < ω̃ < 19.417 (not shown in Fig. 2(c)).

Our previous study suggested that the qualitative nature of the pattern transformation

mainly depends on the size ratio of the particles14. The characteristic pattern was observed

to form only when the size ratio χ = Rsmall/Rlarge of the small and large particles is in the

range
√
2 − 1 ≤ χ ≤ 0.637 and the transformation was found to be practically reversible

around χ ≈ 0.5. Both FEM and MD simulations showed that the material properties of the

particles do not play an essential role in the pattern transformation14. To investigate the
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effect of the material properties on the band gaps, we consider a crystal made entirely of

rubber, replacing the 2.5 mm radius PTFE particles with rubber ones of the same size. The

dispersion curves of the structure in the undeformed configuration and at 25% compression

after pattern transformation are shown in Figs. 3(a) and 3(b), respectively, showing that

the band structure is not affected qualitatively by the replacement. However, (i) the band

structure is lowered due to the softer particles (Fig. 3(a)), and is significantly lowered at large

strains (Fig. 3(b)) due to the absence of stiff contacts, (ii) the band gap of the undeformed

rubber-rubber crystal (Fig. 3(a)) is wider than before (Fig. 2(a)), and (iii) in the deformed

state of the soft structure, an additional narrow band gap is present at low frequencies.

Finally, we investigate the effect of the tangential stiffness of the contacts on the band

structure by varying the ratio kt/kn in the crystal composed of rubber-rubber particles, since

the tangential stiffness depends on the material properties of the particles and can change

when the crystal is further processed (e.g. by sintering21). Increasing tangential stiffness

kt leads to higher frequencies, but does not influence the pattern transformation. Focusing

on the phononic properties, Figs. 3(c) and 3(d) show that both width and frequency of the

band gaps increase with increasing tangential stiffness.

4. Discussion and conclusion

In conclusion, we have shown that the band structure of a 2D bi-disperse soft granular

crystal composed of large and small particles placed on two embedded square lattices can be

modified considerably by deformation. The structural transformation triggered by compres-

sion leads to the opening of new band gaps. When translated to real frequencies the band

gap marked with I in Fig. 3(b) falls between 5015.8 Hz and 5706.5 Hz, which indicates that

the crystal could be used as a tunable filter in the audible range, which makes such crystals
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promising candidates for applications in acoustics, when tunable band gap materials are

needed. In this study we focused on the dispersion relations of infinite regularly patterned

granular crystals neglecting damping. Nevertheless, band gaps have been also detected in

finite size, viscous systems18. Therefore we expect our results to hold also for the finite size,

dissipative versions of the granular crystals studied here.
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14 F. Göncü, S. Willshaw, J. Shim, J. Cusack, S. Luding, T. Mullin, and K. Bertoldi,

“Deformation induced pattern transformation in a soft granular crystal”, Soft Matter 7,

9
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Table 1. Numerical values of contact force parameters k1, k2 and α for pairs of silicone

rubber (SR) and PTFE particles.

k1 [N/mm] k2 [N/mmα] α

SRa – SRa 1.3459 0.1264 2.9793

SRa – PTFEb 2.5197 0.2217 3.3028

PTFEb – PTFEb 3468 1706.9 2.8147

SRa – SRb 1.3992 0.4921 3.1357

SRb – SRb 1.1018 0.4372 2.3877

aR = 5 mm
bR = 2.5 mm
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Fig. 3 Dispersion relation of a soft granular crystal made of rubber particles in the

(a) undeformed and (b) patterned state (at 25% compression) with kt/kn =

0.1481. Evolution of the band gaps in the (c) undeformed and (d) patterned

(band gaps marked by I, II and III in Fig. 3(b)) soft granular crystal as

function of the stiffness ratio kt/kn. . . . . . . . . . . . . . . . . . . . . . . 15

12
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Fig. 1.
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