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Abstract:;

We give a comprehensive survey of published expariael, numerical and theoretical
work on the drag law correlations for fluidized beand flow through porous media,
together with an attempt of systematization. Rargjeglidity as well as limitations of
commonly used relations (i.e. the Ergun and Forichée relations for laminar and
inertial flows) are studied for a wide range ofgsities. The pressure gradient is linear in
superficial velocity,U for low Reynolds numbers, Re, referred to as Darlaw. Here,
we focus on the non-linear contribution of inetitathe transport of momentum at the
pore scale, and explain why there are differentlim@ar corrections on the market.

From our fully resolved finite element (FE) resplisr both ordered and random fibre
arrays,(i) the weak inertia correction to the linear Darchatien is third power irlJ, up

to small Re~1-5. When attempting to fit our datéhve particularly simple relatioiij) a
non-integer power law performs astonishingly wellta the moderate Re~30. However,
e.g. for randomly distributed array@ij) a quadratic correction performs quite well as
used in the Forchheimer (or Ergun) equation, framlsto moderate Re.

Finally, as main result, the macroscopic propertieporous media are related to their
microstructure (arrangement) and porosity. All fess(Re<30) up to astonishingly large
porosity, £&~0.9, to scale with Rei.e., the gap Reynolds number that is based en th
average second nearest neighbor distances. Thigrsal result is given as analytical
closure relation, which can readily be incorporated existing (non)commercial multi-
phase flow codes. The universal curve actuallybmmaftted with a non-integer power law
(better than ~1% deviation), but also allows tarteh critical Rg~1, below which the
third power holds and above which a correction ws#tcond power fits the data
considerably better.
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1. Introduction

The transport phenomena in porous media have Iheefocus and interest of numerous
studies for the past decades. This interest steansd wide range of applications in such
industries as chemical, mechanical, geologicaljreninental, petroleum, etc [1-5]. The
flow conditions encountered are broad enough toecav wide range of Reynolds
numbers (Re) and porosities. In practice, thredindisflow regimes are commonly
defined in literature in terms of Reynolds numi@rstationary Darcy or creeping flow,
(i) steady, laminar inertial flow and (iii) unstdachaotic/turbulent flow regimes. As an
example, creeping flows (i.eRe <« 1) may be encountered in ground water flows,
composites manufacturing and filtering, whereastiaeflows are found in applications
such as heat exchangers or packed bed chemicabneatlighly turbulent flow is
expected, e.g., in gas-fluidized beds. The flowmeg studied in this paper are limited to
regimes (i) and (ii). Several macroscopic paransesee often needed to complete coarse
grained models that are employed to describe spphcations. This has motivated the
research in the development of relationships teri®s macroscopic parameters, such as
permeability and inertial coefficients, for diffetekinds of porous media at various
porosities and flow regimes.

Most porous media are particulate, but some areposed of long particles/fibres and,
therefore, may be considered as fibrous media. Treyencountered in a variety of
modern technology applications, predominantly i@ thanufacturing of fibre-reinforced
composites, with extensive use in the aerospacauatodnobile industries.

With the recent progress in computational and nigaktools, one can now perform
detailed calculations of heavily loaded, fluid-pelg flows, based on two-fluid models
(TEM) and/or the discrete particle method (DPM)4B,However, these methods require
the knowledge of several constitutive laws (i.ee timterphase momentum-transfer
coefficient of the gas/fluid phase acting on thetipes/solid). Accurate drag laws are a
basic requirement in simulations based on DPM avi & be successfully used in the
design and optimization of industrial processeschSworrelations have a strong
dependence on the pore structure and pore-levaigdyywhich generally requires them

to be estimated experimentally or through the dsisting empirical relations.



At the macroscopic level and the limit of creepiltayv regimes, the pressure gradient
Op, and the flow rate have a linear relation, knowrbarcy’s law:

—Dp=EU : 1)
whereu andU are viscosity and superficial velocity, respediivdhe proportionality
constank, is called the permeability of the medium, whittosgly depends on porosity
and microstructure (e.g., fibre/particle shape an@dngement, void connectivity and
inhomogeneity of the medium). The effect of sevaratrostructural parameters on
macroscopic permeability was investigated for cedeand disordered fibrous media, see
Refs. [5-7] and references therein.

Darcy's law was originally obtained from experingef®] and later formalized using
upscaling [9], homogenization [10, 11] and volummeraging [12, 13] techniques. It has
been shown that Darcy's law actually representsnitimentum equation for Stokes flow
averaged over a representative volume element (Rivplying that it is valid only in
the creeping flow regime [14].

The effect of fluid inertia, on the other handaismore complex problem, lending itself to
numerical rather than analytical treatment. Actigsearch has been dedicated to derive
adequate corrections to the linear relationshiggn (1) from numerical, theoretical, and
experimental points of view. Koch and Ladd [15] a&fid et al. [16] simulated moderate
Reynolds number flows through periodic and randomaya of aligned cylinders and
spheres using the Lattice Boltzmann Method (LBM)ey showed that the inertial term
made a transition from linear to quadratic in randarrays. The inertial effect became
smaller at the volume fraction approaching closekipg due to increased drag forces
through the narrowing channels. The experimentatian proved this nonlinear relation
was carried out by Forchheimer [17], who indicatieat there exists a quadratic term of
the flow rate when the Reynolds number is suffitiehigh. While the LBM has been
successfully applied for the simulation of porousdma flow in the creeping regime [18-
20], its applicability for high Reynolds numbersshzeen the subject of more speculation
and debate due to selection of parameters, resoliand the necessity to reduce
compressibility effects [21, 22]. Andrade et al3]2demonstrated that, for a 2D

disordered porous structure at high porosity, tlegpient departure from the Darcy law



could be observed already in the steady, laminartial flow before arriving at
turbulent/chaotic regime.

To date, mainly empirical relations, such as byugrfR4], and their components, the
Carman-Kozeny (viscous term) and Burke-Plummet rijsle term) equations, have
proved to be quite useful [25, 26]. Liu et al [2I@vised a semi-empirical formula for the
pressure drop, which incorporates the tortuositg, durvature ratio and the variation of
the pore cross-sectional area. Jackson and Ja®jesojzducted a comprehensive review
of the literature on a variety of theoretical ma@dahd presented a large collection of
experimental data for both natural and syntheboofis media. A recent discrete particle
study by Bokkers et al. [29] showed that, with exgpo bubble formation in fluidized
beds, the drag relations derived from the lattic#tzBnann simulations of Hill et al. [16]
yielded better agreement with the experimental oagi®ns than the traditional Ergun
and Wen & Yu [30] correlations. While the lattefateon remains the most widely used
in chemical engineering, an accurate descriptiontiie interphase momentum transfer
has been a subject of debate. This has motivaeetetearch in the development of more
accurate relationships to describe the macroscopmentum transfer in terms of
microscopic pore-scale parameters.

Most of the previously obtained drag laws are ordiyd for 3D, spherical packed beds.
Although the drag relation for 2D fibrous materiglad 3D packed beds are quite
different (for instance in 2D the drag divergegha limit of close packing), our attempt
is to check the validity of those relations for 8istems. We establish the relationship
between microscopic and macroscopic propertiesitobds media by conducting a
systematic study using numerical simulations basethe finite element method (FEM).
In order to get a better understanding of the si&tle-art on non-Darcy flow, literature
concerning the theoretical basis of the Forchheieggeration and experimental work on
the identification of flow regimes is reviewed iec@ion 2. After presenting the numerical
method used to compute the permeability and inexiefficients, results are discussed in
Section 3. The steady state fluid flow across urgetional arrays of cylinders are
considered, for both ordered and disordered corditgans. Computations were carried
out with special attention to high accuracy (resoh) in order to investigate the

existence of the different regimes and the cormnedpg scaling laws. The effects of



several structural parameters, namely porositypordes and fibre-shape on the flow
behavior at various regimes are discussed in dtaé paper is concluded in Section 4

with a summary and outlook for future work.

2. Theoretical background

Flows in porous media can be studied at either ga@pic or macroscopic scales. For
the former scale the flow through individual porecomputed by solving the mass and
momentum equations (i.e., the Navier—Stokes (N$jg&on) numerically, whereas for
the latter a continuum description is usually addpbased on volume averaging of the
equations pertaining to microscopic scales. Thé&irdop of these two descriptions
constitutes the well known scaling-up problem, whigsually provides macroscopic
properties in terms of the permeability, i.e., Hi®lity of a porous material to transmit
fluids. Although the permeability can, in principlprovide quantitative correlations
between morphological features of pore geometryitndapacity to transmit liquid, its
values depend on many factors such as porositicatyfength scale of pores, grain size
distribution, shape, anisotropy and tortuosity ofegpconnections, see Refs. [5-7] and
references therein. Therefore, the permeabilityerde@ned either analytically or
empirically for porous media with complex structumevolves considerable uncertainty —
one can not determine microscopic properties aynfthe macroscopic permeability.

As mentioned before, Darcy’s law is the most widebgd empirical correlation for the
calculation of the pressure drop across a homogesnesotropic, unbounded and non-
deformable porous medium. It is strictly valid facompressible and isothermal Stokes
flow (Re = 0) of Newtonian fluids. However, it is usuallygigable in engineering
applications for Re& 1, defined byRe= poUl/ 14 wherel and p are the typical pore size
of the structure and density of the fluid, respati. Darcy’s law, since it lacks, among
other reasons, the flow inhomogeneity/variabiliig not valid at the interface of a porous
medium-solid or porous medium-free flow. Brinkm&a4 ] added a diffusion-type term to

the Darcy’s law, leading to

—Dp:%u—,uljzu . @)

! It can not account for the no-slip boundary cdnditt the solid boundary of the porous medium.



Brinkman’s equation is, like Darcy’s law, inertise& and hence valid only for creeping
flows. Recently, Auriault [32] discussed the valdiand limitations of Brinkman’s
equation for “classical” porous media, swarms @f [mncentration particles and fibrous
media at high porosities.

In the continuum approach one describes mass amdentam balance equations at
macroscopic scale, using a specific averaging phawee Therefore, the major difficulty
resides in an adequate determination of the avegadomain. Following a continuum
approach, Hassanizadeh and Gray [33] developed afsequations to describe the
macroscopic behavior of fluid flow through porousedia. Linearization of these
equations yields a Darcy equation at low velocities

Although the physical nature of the deviation fr@arcy’s law is still unclear and may
have several reasons (probably acting togethepjreal relationships allow correlating
the pressure drop and average fluid velocity inopsrmedia. To account for the non-
linear behavior of the flow in porous media, Foreinter [17] added a quadratic velocity
term to represent the microscopic inertial effectd corrected the Darcy equation into
the Forchheimer equation

—Dp:%U + BoU? ?3)

where the constan, is referred to as the non-Darcy coefficient whidte permeability,

is an empirical value that depends on the micrespaters of porous media. Similar to
Darcy’s law, Forchheimer’s law was originally pdated heuristically to account for the
experimental data. However, during the past dectiis has been an effort to derive it
from first principles. Some of the techniques used matched asymptotic expansions
[34], the capillary model [35], hybrid mixture thgd36] and volume averaging [12, 37,
38]. The physical justification of the quadraticture of the correction was supported
either by intuition or by dimensional analysis dhd analogous turbulent kinetic energy
loss in straight tubes [39]. Moutsopoulos et al0][4nvestigated phenomenological
relations for the Forchheimer equation experiméntand theoretically for both
homogeneous and heterogeneous media. Based on &oizetgpn approach, Chen et al.

[41] claim that the nonlinear filtration law is glratic. By generalizing the Forchheimer



equation, Ergun obtained the following empiricdatien for homogenous, packed beds
of randomly distributed spheres:
(1-2) w , (1-¢) pu?
-Op=A +B , 4
P g d? g d “)
whered is the average diameter of the particles in thealn ande is the porositS

After analysis of a large quantity of experimerdata, Ergun concluded that their best
representation could be obtained wih= 150 andB = 1.75. However, in subsequent
studies these values have been found to vary cenaéily with shape, porosity and Re
number [42, 43]. In particular, after testing theglih equation using many more data
than ever before, MacDonald et al. [42] found that 180, andB = 1.8 (smooth
particles) or 4.0 (rough particles) give the bésttb all of the involved data. Besides the
Ergun equation, there are correlations using thredimensional particle friction factor,
fp, through the following definition

-Opd

f,= 07 ()
By combining Egs. (5) and (3), the Forchheimer éiquacan be written as:
1 .
= -+, 6
» ~ ReK B (6)

where Re=pUd /u, K =K/d* and B =3d are the Reynolds number (based on
diameter d), the normalized permeability and the modified 4arcy coefficient,
respectively. The latter twoK™ and £, can be considered as the non-dimensional,

macroscopic viscous and inertial coefficients with beauty of a constant friction factor
in the inertial regime. Looking at the literatuveg found several definitions and relations
between friction factor and Re (or sometimes pmesguadient andJ) which makes it
difficult to make one-to-one comparison. Table inmarizes all theses definitions and
their relations.

In Table 2, the available modifications of Erguatpuation and their range of validity are

listed as function of the particle Re numbRe, = Re( *¢). Therefore, most equations

have the typical porosity terrﬁl— 5)/53, for low Re, with various different constants

2 Comparing Egs. (3) and (4), one can relate thampetersA, B, and & toK andp.



and strongly varying further terms [42, 60, 62-64,69] representing the effect of wall,
shape, etc. A few of the equations have non-licearections also in the first term [54,
59, 66], and the last class are sums of severakmowf Re used to fit into available
experimental/numerical data [52, 53, 6&].more complete list of correlations for the
viscous term, i.e. at low Re numbers, of 2D fibrousterials can be found in Ref. [5].
Recently, Barree and Conway [44] conducted expearisnguggesting that Forchheimer’s
equation is only valid over a limited range of \e®s. Derivations using volume
averaging was undertaken by Ruth and Ma [12], amitaker [38]. However, Ruth and
Ma [12] explain that microscopic inertial effecteeaneglected in volume- averaging
technigues and therefore cannot be used to deriwvacaoscopic law. They point out that
the Forchheimer equation is not unique, and anybeuraf polynomials could be used to
describe nonlinear behavior due to inertia in rammihar flow. This is confirmed in
Bourgeat et al. [45], where the nonlinear filtratiaw is obtained as an infinite series in
integer powers of the local Reynolds number. Meeently, Balhoff et al. [46] used the
method of homogenization to develop a general motyal filtration law for low
Reynolds numbers. In MaruSic—Paloka and Mikelic],[4fie existence, uniqueness and
regularity of general non-local filtration law wasgorously established in the
homogenization limit when the pore size tends to.ze

Table 1: Various definitions and relations betwé&etion factors and Re (or pressure
gradient and superficial velocity)

Friction factor — Re (or pressure

gradient -U) relation Comment

-Op~U Linear Darcy’s law for creeping flow, Eq. (1)

Brinkman’s equation for creeping flow at high

2
~Op~U-0U porosities, Eq. (2)
“Op~U+U? Forchheimer (Ergun) equation, quadratic correction
Darcy’s law, Eq. (3)
-Op~U+U? Cubic correction to Darcy’s law at small Re, EQ. (7
f ~ —Op/U? ~Re*+ g Particle friction factor as function of R& is the

inertial, porosity dependent parameter, see Table 2

Non-integer,A, power law fit, used in this paper, E
(8). a' is the viscous, porosity dependent term

—-—

f=f Re~-Op/Ml ~a + Ré

Isolated inertial term used for scaling the data in

b ~f-a-Reg Appendix D, Rgis “gap” Re number




One of the important observations from Wodié andyl[d8], Mei and Auriault [11], and
Rasoloarijaona and Auriault [49] was that for astrigpic porous medium, the quadratic

terms cancel and one has a cubic filtration lavegily

+) Re, (7)

op=HusYPy =
K H

0 .
ReK
where y is a porosity dependent dimensionless paramelés.dbservation is confirmed

analytically and numerically in [50] and for periodwo-dimensional arrays of cylinders
arranged in a regular pattern in [51]. In most sa#iee cubic law is only valid at very low
velocities (Re < 1, where Darcy’s law is approxiehatvalid anyway), and the quadratic
Forchheimer equation appears applicable at highmderate velocities (1<Re<10).
Nonetheless, these findings are significant becthesgsuggest that any power law with
integer power, like in the Forchheimer equationymat be universal and only valid in a
limited range of velocities and porosities.

Despite extensive previous work, our understandihghe physical reasons for non-
Darcy flow is incomplete. To better understand tmecroscopic origin of these
correlations, we conduct a set of FE simulation®oth ordered and disordered arrays of

cylinders in a wide range of Reynolds numbers @nrtext section.

Table 2: Available modifications of the Ergun edoatin terms of the particle friction

oud

factor, f | and the particle Reynolds numbRe, = Re( +¢) = =y Unless
explicitly stated, the relations are valid for 3ldsordered systems.
Author f, Range of validity
1-¢) 150
Ergun [24 —+ 175 <0.
gun [24] (53 j{Rep J £<08
MacDonald (1—5} 180, B =1.8, smooth particles
etal. [42] e )| Re, B =4, rough particles
Rose [52] 1000Re,'+ 60Re,*°+12 Mean value ofRe, [ 14(
Rose and -1 -05 < < (
Rizk (53] 1000Re; +125Re;% +14 1000< Re < 600
(1-£)*
Hicks [54] 6.8~ Re;‘l2 500< Re, <60000
£




PAY: _ \1166
TaIEgn;]ldge ;io L f ) + 421 35) Re,"° 01<Re, <10°
. € £
Lee and 5(1235 (1- E)zj(2932Re;1+ 156Re;"+ 01) o
Ogawa [56]| 2" ¢ 1<Re, <1
n= 0352+ 0.1s + 0275¢?
Kurt[zr;]et al (ﬁ (L- g)zj(lee;u 6Re;%*+ 028) 0.1<Re, <4000
£
a(1000Rg"+ 6ORE®+ 1k
Montillet et oz 10< Re, <2500,
al. [58] = 0_06](1-35 j(Rj D: bed diameter
£ d
.. . -0.4733
O{jd'[gg]et 69.785{%]( Re (%} g7j 675<Re, <7772
: 1-¢)\( D 5
Ozahi et al. ( = j(gj(%w Re- 66.487Rg+ 0.15)  800<Re, <8000,
[60] D: bed diameter
G;?”‘Egi]et (173Re+ 03341-£))e™** In fluidized suspensions
2F
1801 ¢) £<06, Re, >— 3
Benyahia et Re £° +OF;(1-¢) " R(L-¢)
al. [62] P - 116(1-¢)
F, =00673+ 02101 -¢)+0023% | fx - 011+00005E
Molerus 1-¢ 18 49. 4. 0.6
63] ( < j[(1_£+ p 5jRep + pe 3 £<0.7
Kovécs [64] (1_35 ][ﬂ + 2_4J 10< R, () < 10(
E Re,
1- 255 - .
Eﬁgﬁf[gg]d ( 53‘9}{50_7 = Re, +2} In fluidized suspensions
Foscolo et 1-¢ 17.3 +0.336 Laminar and turbulent
al. [66] £*® )| Re (1-g) regimes,¢ >0.4
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2d

1- 150 M=1+——,
HMehta and ( 3€jM Y +1.75 3D(1-¢)
awley [67] ¢ Re, D: bed diameter
— 2
(1 ng(i+52/(l—(l—€)2/3) },
Du Plessis € € Packed bed of spherica]
[68] A= 41£? particles
(1_ 5)2/3 (1_(1_ 5)1/3) ( 1_( 1_ E) 2/3)
(1—5 KA, B Spheres:
Reichelt e )l Re, ") K, =154, k= 1.5k, = 0.8t
[69] 5 1 Cylinders:
A”:1+3(D/d)(1—£) = 7 | Ki=190, k= 2, k= 0.7
(kl(d/ D) + kz) D: bed diameter
Square and triangular
i fibre arrays, with
Martin et al. . JK d 0.8<&£< 0.9¢and
[70] be RepT(l_E) JK 3<Re, < 16( Then, m
andb are fitting
parameters.
Papath ( ) Square and hexagonal
apathanass d? 1-¢)d fibre arrays, with
iou et al. Re K(1=2) K(1-e) +0'087\/R 0.3<£< 0.6 and
[26] i ¢
0<Re, < 40(
1D, 2D and 3D ordered
fibrous media in the range
Tamayol et d? N (a+be)™ d of 0.35<¢< 0.9t and
al. [71] Re, K (1-¢) JK 0.01< Re < 4001 The

a, bandc are fitting
parameters.
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Koch et al.
[15]

@ RL +k, Re,

() %"'Cz

(a) For both periodic and
random fiber arrays at
Re<1;k; andk; are
porosity dependent
parameters.

(b) For random arrays at
Re>5 (similar to Ergun
relation);c; andc; are

porosity dependent
parameters.

Tanino and
Nepf [72]

Randomly distributed,
rigid, emergent circular
cylinders in the range of

0.65<¢< 0.€and
70< Re, < 685( (similar
to Ergun relation). The

a, anda, are porosity

dependent fitting
parameters.

3. Numerical results

This section is dedicated to the finite element)(lBBsed model simulations of both

ordered and disordered fibre arrays at variousgioes and flow regimes. Alternative to

the FE method like the lattice Boltzmann method N)Ran also deal with complex pore

geometries and boundary conditions in the inen&dime, but are discussed and

compared elsewhere [22]. The results on the fnctactor (both the viscous and inertial

components) as function of porosity, structurepshatc., are presented and discussed.

3.1. Ordered structure

We start the analysis with the case of a 2D regprodic array of cylinders,

perpendicular to the flow direction, as shown img.FiL. These models rely on the

assumption that the porous media is periodic and tan be divided into unit cells that

are then also representative volume elements (RMIEg friction factor is then

determined by modeling the flow through these, noriess, idealized cells.

12



O
Flow :jirf:?iom O O O O O
O

() (b)

Figure 1: The geometry of the unit cells used &rgguare and (b) hexagonal
configurations.

3.1.1 Computational method and boundary conditions
The FE software ANSY5%is used to calculate the superficial velocity,from the results

of our computer simulations a$ :%J' udA, whereA, As andu are the total area of the
A

unit cell, area of the fluid and intrinsic fluid leeity, respectively. On the flow domain,
the steady state NS equations combined with théinzoty equations were discretised
into an unstructured, triangular element. They w#ren solved using segregated,
sequential solution algorithm. The developed megriitom assembly of linear triangular
elements are then solved based on a Gaussian a&fiomnalgorithm. Some more
technical details are given in Refs. [5-7]. The msige effect is examined by comparing
the simulation results for different resolutionst@ not shown here). At the left and right
pressure- and at the top and bottom periodic-bayndanditions are applied. No-slip
boundary conditions, i.e., zero velocity are applom the surface of the particles/fibres.
Computations were performed for Reynolds numb&€s® < Re< 3( and porosity
0.3<£< 0.9, assuming that the stationary solution is stilygbally valid in the upper

range of this Reynolds numbers.
3.1.2 Generalized Forchheimer equation

The validity of the Forchheimer equation for ordergructures (namely square and

hexagonal configuration) is studied in this sectidrgeneralized non-dimensional form

13



of the Forchheimer Eq. (3) can be derived by patig a power law and multiplying the
friction factor by Re, so that:

A
—f':%+y(%j E%+yRé‘ ®)
where f =d?0p/(uU) = f Re andU”™ = p/(pd) are, by definition, modified friction
factor and scaled velocity, respectively. The ndized permeabilityK =K /d* and
non-dimensional inertial coefficientd and y, in general, depend on the porosity and
structure of the medium. The powdr represents the deviation from Darcy’'s regime
( f =const), so that the non-linear correction can be isdl&tg studying—f -1/K’ (as

done in the Appendix C). In case #f=1, Eq. (8) reduces to the Ergun equation (Eq. (4)
or (6)) with K’ :53/(150( 1—5)2) and y=1.75(1-£) /*. Similarly, for A =2, Eq. (8)

reduces to Eq. (7) withy=y . More discussion on the dependence of normalized

permeability, K on porosity and pore-structure for (dis)orderdxidis medium is given
in [5, 6] and references therein. In the followivge rather focus on the influence of
micro-structural parameters on the inertial coedfitcs A and y, while 1K’ is the low-
Re permeability that only depends on porosity.

Fig. 2(a) shows the variation of the modified foct factor as function of normalized
velocity, U/U" =Re, for square (red) and hexagonal (blue) configaretifor three
different porosities. The solid lines representhilest least square fit to the FE data using
Eq. (8) with the power as free parameter, whilelitaek dashed line (only one shown at
£ = 0.6) represents a fit to the cubic deviatidr=(2) from the Darcy regime, which is
pretty perfect (99.99% agreement) for Re<3, buingly overestimates the results for
larger Re. As mere examples, the hexagonal stestts = 0.6, 0.7, 0.8 correspond to
1/K = 91.5584, 35.3612, 12.3190, apd = 0.06993, 0.05330, 0.04297, respectively.
Note that for all fits, first the constant, low Regime is fitted and then the nonlinear
correction. Since the cubic correction-terin=2) — even though perfectly fine for small
Re (see Appendix C) — is not a good predictionldoger Re, we will discuss fits with

non-integef values since they are good approximations up &8Be
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As expected, by increasing the porosity, the nozedl permeabilityK , increases, i.e.
for higher pressure gradients the flow regime clkarfgpom Darcy (horizontal line) into
inertial (nonlinear) regime. For square configwas the transition starts at lower
velocities (i.e. Re10) compared to the hexagonal configuration. Nb&g tn Darcy’'s
regime, the flow is symmetric about both horizorgatl vertical axis (not shown here).
However, in the inertial regime, due to the noredin contribution of inertia to the
transport of momentum, the symmetry about vertisas (normal to the flow direction)
will break (see section 3.1.4 below, Fig. 5) whiie flow is still stationary.

Fig. 2(b) shows the variations of inertial coeftiats (i.e.A and y) in Eq. (8) as function
of porosity for both square and hexagonal confiyons. \We observe that the powér

is (i) larger than unity and varying betwedr A <2 and (ii) not only depends on
porosity but also on structure/arrangements ofptiréicles/fibres. By increasing porosity
(i.e. for more dilute systems) the power decreasesapproaches the value of unity (i.e.
the original quadratic Forchheimer correction, B3)). Square arrays have larger values
of A compared to hexagonal arrays implying that thesiteon to inertial regime starts
earlier and sharper (see Fig. 2(a)). On the contthe pre-factory (in the inset) seems
to be independent of structure and linearly dee®aby increasing porosity as
yDO.8( 1- 5). In the appendix A, the quality of the proposedveolaw fit (Eq. (8)) is
compared with the quadratid 1) and cubic @ =2) fits at different porosity for both

square and hexagonal configurations.
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Figure 2 (a): Variation of the modified frictiond®r as function of the normalized
velocity (or Re) for square (red) and hexagonaléptonfigurations (solid lines show
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the best least square fit to Eq. (8) and the bitdhed lines show the best quadratic

(A =1) and cubic @ = 2) fits in the range 010 < Re< 3(), symbols show the
analytical/numerical data from literature; (b) ln&rcoefficientsA and y as in Eq. (8)

plotted against porosity.

3.1.3 Effect of staggered cell angle
In this subsection, the effect of the staggered a@egle, @ on the inertial term is

discussed. The staggered angle is defined betveediagonal of the unit-cell and flow-
direction (horizontal), as shown in Fig. 3(a). bidaion to the special cases=45" and

a =60, i.e., square and hexagonal packings, respectisdyeral other angles are
studied.

Fig. 3(b) shows the variation of the modified fiect factor as function of normalized
velocity for different staggered angles, at the constant porosity=0.7. Similar to the
normalized permeability, the inertial coefficieptis weakly dependent on the staggered
angle in the range d80° <a < 6. However, A increases (almost) linearly frovh (01

at a=70 to A2 at a=20. For a =70° and higher (but lower than the maximum
achievablea,_, :tan‘l(ﬂ/( 2 1—5))) 0 80), the flow mainly follows a straight line

with large superficial velocity and consequentlygka values of permeability and the
transition starts at higher scaled velocities (Reh the other hand, @ =20 and lower

(but larger than the minimum allowable limit,;,, =tan™( A 1-¢) /7z) 0 12), the flow

is more tortuous and consequently it has lower pability. At this range, the transition

into non-Darcy regimes starts already at smallpedicial velocities.
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Figure 3: (a) staggered angte and (b) modified friction factor as function ofrntalized
velocity for differenta at porositye =0.7. The solid blue lines show the best least
square fit in Eq. (8) in the range d0™ < Re< 3(.

3.1.4 Effect of particle shape

In order to study the effect of particle/fibre shapn the macroscopic permeability and
inertial coefficients, the normalization is donettwrespect to the obstacle length,
which is defined as

L, = 4 area / circumference, with:
L, =d (for circles), L, = c (for squares), anid, = 4rab/A_ (for ellipses) 9)

whered, ¢, a andb=a/2 are the diameter of the circle, the side-lergftthe square, the
major (horizontal) and minor (vertical) lengthstbé ellipse, respectively, aril is the
circumference of the ellipse.

By applying the same procedure as in the previesi®, the normalized permeability
and inertial coefficients are calculated for diffiet shapes on a square configuration.
Fig. 4 shows the modified friction factor as fuoctiof the normalized velocity for
different shapes. The circular shape has the loaedthorizontal ellipses the highest
normalized permeability. The reason is that, at $hene porosity, ellipses are more

stretched in the flow direction and therefore thidfcan flow more easily on a straight
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line through the wider channels. However, at highopities this effect diminishes (data
not shown). Note that, due to the narrower chantie¢éslocal maximal velocity is higher

for circular shapes, given the same porosity anesqure gradient. However, the
superficial (average) velocities for ellipses amgér, leading to higher permeability, than
other shapes. For the same reason, the transititretinertial regime happens earlier for
squares, whereas it occurs at higher velocitiesefijpses. The values of the inertial

coefficients A, y and the viscous (normalized permeabilly) term, obtained by least

square fitting to Eq. (8), are listed in Table BeTpowerA is not much affected by the

shape (maximum variation less than ~10%), howdwersquares, the pre-factor is ~5

times larger than for ellipses at low porositiesr @Qumerical results show that, similar to

the normalized permeability, the effect of shape tba inertial parameters is less

pronounced at high porositie(s”>0.9), not shown here. Establishing a common drag

law based on the aspect ratio, sphericity or athape parameters is still a challenge for
future study.

To better understand and explain the flow charetierin the inertial regime, the
patterns of the streamlines for different shaped @@ vortices generated behind the
obstacle are shown in Fig. 5. The non-Darcy efeciurs because microscopic inertial
effects alter the velocity and pressure fieldsthA same porosity =0.7 and Reynolds
number Re10, we observe that for the square shape we hewegstr vortices (i.e. those
that contribute more to the energy loss) compaoeithé ellipses in which the wake (or
flow separation) zones behind the obstacle iseffetl and stretched. These vortices
increase in size as the velocity increases andtealy become unsteady and local
turbulence occurs. At fixed porosity and pressueslignt, the flow for ellipses is — even
though faster in average — less “turbulent” and ctimer.

Note that the flow pattern is stationary and symioetiong the horizontal symmetry axis
and non-symmetric relative to the vertical axese Hibove example implies that the
tortuosity (flow path) is one of the key factorsdetermining the viscous and non-Darcy

coefficients (see section 3.2.3 for more details).
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Figure 4: Plot of modified friction factor versusrmalized velocity for different shapes
at porositye =0.7. The solid lines show the best least square #dn(8) in the range of
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Table 3: The values of the inertial coefficients ) and viscous (normalized
permeability K [5]) term, obtained by least square fitting of therB&Lilts into the Eq.
(8) in the range 010 < Re< 3(, for different shapes and various porosities.

Shape Circle Ellipse Square

Porosity, & 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

K'=K/L2p [5] |0.025|0.077| 0.319| 0.065| 0.147| 0.486| 0.031| 0.091| 0.375

A 1.544| 1.561| 1.338| 1.343| 1.436| 1.111| 1.281| 1.342| 1.129

4 0.211| 0.113] 0.082| 0.072| 0.058| 0.056| 0.355| 0.168| 0.113
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ratioa/b=2 at the constant porosity=0.7and Re:10. The color shows the magnitude of
the horizontal velocity.

3.2 Structural disorder

Because of the complexity of pore-space geometassical numerical methods for
solving flows through porous media are typicallgtreted to ordered and small or
periodic domains. However, many realistic porouslimeare (i) confined with walls, (ii)

are not truly two-dimensional, and (iii) possiblgntain a degree of randomness (or
disorder) at larger length scale that is not adedyaepresented in too small periodic
boundary cells. In this section we focus on (i)campromise, and investigate the effect
of disorder on both viscous and inertial coeffiteeim a moderately large system with

N=800 particles/fibres within a channel with walls.

3.2.1 Computational domain and methodology

Fig. 6 shows a 2D representationN#800 randomly distributed fibres, generated by a
Monte Carlo (MC) procedure [73], oriented normalthe flow direction at porosity
£=0.6 with minimum inter fibre distancedmin=0.09d or dimensionless

A, =90,,/d=0.05. Similar to Chen and Papathanasiou [73], and Ytizelcal. [5], a

minimal distance is needed in 2D to avoid compleleckage. The microstructural
parameters, namely the system size, method of ggmer homogeneity and isotropy of

the structure and their influence on macroscopimpability have been discussed in [6].
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At the left and right of the system pressure isaset at the top and bottom walls as well
as at the surface of the particles/fibres no-stipralary conditions are applied. Fibres are
assumed to be very long so that a 2D solution eaapplied. A typical fine, unstructured
and triangular FE mesh is also shown in Fig. 6. fipecal range of number of elements
is varying from 510° to some 10 depending on the porosity regime. The lower the
porosity the more elements are needed in ordeedolve the flow in the many narrow
channels between the neighboring fibres. Our nuwakrresults show that in all
simulations we need at least ~10 rows of elemeptavden neighboring particles to
correctly capture the fluid behavior and obtain cwerging solution. Details of the
comparison of different resolutions are provided Appendix B. To obtain good
statistical accuracy, the permeability values amettial coefficients were fitted to data

averaged over 10 realizations of packings genetatgte random MC procedure.
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Figure 6: Fibre distributions generated by a Mddéelo procedure, withi=800
unidirectional cylinders, normal to the flow direet, with minimum inter fibre distance
omin=0.05 at porositys =0.6. The zoom shows the fine, unstructured, tuasrg-E
mesh.

Fig. 7(a) shows the variation of the modified fioct factor as function of the normalized
velocity, U/U™ for disordered configurations at various porositiéAs expected,

increasing the porosity leads to an increased niretapermeabilityK . For Re<3, like

22



in the ordered hexagonal situations, the normalfdetion factor is perfectly fitted by a
cubic correction, e.g., for porosities 0.6, 0.7, ®ne has K = 158.8418, 49.40725,
12.74905, andy, = 0.6569, 0.5369, 0.2592, respectively. Thus the ifiead friction
factor is considerably larger for low porosity imetrandom configurations, while the
correction quadratic factoh€2) y, is about an order of magnitude larger, implying tha
the inertial effects occur at much smaller Re nusladready. The relative deviation at
Re=1 for the above porosities is 0.004, 0.01 ar@®,0respectively. Thus at Re<<1
Darcy’s law holds, yet for Re~1 stationary eddiésa@d zones that do not participate in
the overall mass-flux) exist mainly due to the getm of the pores. The gradual
deviation from Darcy’'s law is due to the dynamiowth of pre-existing eddies within
the micro-scale flow field and separation of flow pores where flow diverged. Small
deviation between our FE and LB results of Koch &t [15] at creeping flow regime
might be due to the difference in minimum interéildistance, resolutions, number of
fibers or boundary (periodic/wall) conditions.

Since the quadratic fit deteriorates for Re>0.%&,again perform the nonlinear fits to
our data up to about Re~30, see Fig. 7(b), wherevdiniations of the inertial coefficients
(A and y) in Eg. (8) are shown as function of porosity. BEserve that fore > 0.45,
unlike for the ordered arrays and similar to theyufr equation, the powed is
approximately constant and close to unity, wheris pre-factory decreases with
increasing porosity. However, at very low porositiés <0.45),4 increases ¥
decreases) with decreasing porosity and approattieeexpected valuesA(d2) for

hexagonal arrays, corresponding to the appearafcerdered zones. Due to the
(artificial) gap between fibres/discs, each diss aa effective diameted™ = d(1+ Amm)
greater than its actual value, With this effective diameter, it is possible tefide an
effective porosity £ =1-(1-¢)(1+4,,,)°. Inserting A,,, =0.05 and £=0.45, the
effective transition porosity from disorder to ordarrangements is estimated as
£ [00.392. Note that this value is still far above the ramdalose packing limit

£, 00.16 [74], or the minimum hexagonal latticg,, [10.0931, and still above the

freezing pointe, [10.309 [75] or melting pointe, 00.284 [75]. In fact it indicates that
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even small (partial) ordering in the system carstitally affect the transport properties,
namely permeability [6] and inertial coefficientsporous media. The comparison of the
quality of the proposed power law fit (Eg. (8)) Wwithe quadratic A =1) and cubic
(A =2) fits at different porosities are given in the apgix A.

In appendix D, we present a universal scaling laalid at all porosities, based on
different definitions of Re and friction factor. ik shown that the inertial effect can be
better explained as two distinct regimes: (i) cudmerection at Re<1 and (ii) quadratic fit

at Re>1, with almost the same accuracy as the pegppower law.
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Figure 7: (a) Variation of modified friction factas function of normalized velocity for
disordered media at various porositickhe solid lines show the best least square fit in

Eq. (8) in the range df0™ < Re< 3( (b) Inertial parameters as function of porosity.

As mentioned before, most of the available cori@tat have the similar viscous porosity
dependence as the Ergun equation with varying aotsg,, , where our data lead to a
range of 150<¢, < 30C [76], see next section. Here we are curious toclkchbe
guantitative validity of the inertial component aothe Ergun equation, i.e.
y=1.75( 1—5) /2. To this end, we fit our FE results into Eq. (8s@aming constant
A =1 (i.e. quadratic correction) for porosities> 0.45, i.e. random/disorder co-existence
arrangements. Fig. 8 shows the comparison betweemertial coefficienty, obtained

from our FE simulations (blue squares) and fromuBlg equation (red line) at various

% Note that the numerical values in Koch & Ladd [1#re presented in the form of
fo, =F /(,uU) (F is mean drag per unit length), as function of Resteady state, the

average drag force multiplied by the cylinder numtbensity, &, is equal to the applied
pressure gradient, i.élp=¢&F. Combining this relation with the definition ofidtion

factor in our paper, i.e. Eq. (8), leadsto=(4(1~¢) /m) f,, .
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porosities. Astonishingly, the excellent agreemehtthese curves demonstrates the
validity of the inertial component of the Ergun’quation, originally obtained for 3D

spherical beds, also for 2D disordered fibrous medi
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Figure 8: Variation of inertial coefficieny, obtained from FE simulations (blue squares)
and from Ergun equation (red line) at various piviesfrom disordered configurations.

3.2.2 Different definitions of the Reynolds number

In analyzing flow through porous media, the supeéfivelocity and pressure drop are
typically correlated through the particle frictiderctor, f,, which appears as a function of
Reynolds number, Re, see Eq. (6). Looking at tleealiure, several Reynolds numbers
for porous media are defined, namely

reference flow Reynolds numberRe= pUd /u (20)

particle Reynolds number: Re, = pUd /((1-£) ) (11)
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modified Reynolds number: Re, = pU\/E lu 12}

interstitial Reynolds number:  Re = oUd /(u) (13)

Recently, based on the lubrication effect of theova channels, we found a power law
relationship between the permeability values ole@ifrom fluid flow simulations and

the mean value of"2nearest neighbor surface-to-surface fibre distce normalized

with the fibre diameters [6]. Therefore, anothecmostructural definition could be the

“gap” Reynolds number aRe, =oUA //JE(Agap /d) Re, where (Agap/d) s a
function of porosity [6]. In Appendix D we use thigfinition to get a universal friction
factor-Rg relation valid at almost all porosities. By incsg® the porosity and at the
limit of very dilute regime (i.e -1 or d - 0), by intuition, the Reynolds number
should increase and approach its maximum limityRér the duct flow (i.e. flow
between parallel plates). The definitions presentedeq. (10) and (13) incorrectly
approach zero values in this limit. On the otherdhdahe definition in Eq. (12) contains
the macroscopic permeability which, in generahnsunknown quantity- a priori- on the
microscopic level. This has motivated us to rewis# definition of the Reynolds number
in terms of some measurable quantities of the (mandsystems such that a proper trend
is recovered also in dilute regimes. A useful, meatsle quantity that is frequently used
in modeling of porous/fibrous structures is the faydic diameterD,. When one has

obstacles like fibres (or particles) instead odigfint pores, the hydraulic diameter can be

defined as:
D, = 4V _ 4 _ witha = part.lcle surface  §,  _ - | (14)
S (1-¢)a (1-¢) particle volume ( &)V d

with the total volume of the unit ceN, the total wetted surfac§,, the specific surface
area,a,. Note that the hydraulic diameter, in this wayexpressed as a function of the
measurable quantities porosity and specific surtaea. The above value &f is for
circles (cylinders) — for spheres one has6/d. Therefore the relation between
normalized hydraulic diamet&/d and porosity for fibres will reduce to:

D £

q e

(15)
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Using the hydraulic diameter as the characteristigth, we define the pore Reynolds

number as

Re, =oUD, /u, (16)
and combine it with Eq. (15) which leads to

Re, =pUde [(u(1-¢)), (17)

For the case of flow between parallel plates ($laty), separated by distandg, the

hydraulic diameter isD, =2h, and the superficial velocity) is related to the pressure

gradient as
2
U=-1%p. (18)
12u

_ AR3
Combing Eq. (18) and (16) leads to the maximum REmnumberRe, , = 6'025 Op.

U
Fig. 9 shows the variation of different definition§ Reynolds numbers as function of

porosity at relatively low, constant pressure geatillp=0.000% [Pa/m]. The non-

Darcy behavior (i.e. high Re numbers) become ingmbrdue to the combination of high
porosity and large pressure gradient. As it is sd®nincreasing the porosity the
Reynolds numbers (for all the definitions) increasel the flow approaches the inertial
regimes even at such a small applied pressure egriaddowever, Re (reference Re
number) and Re(interstitial Re number) will decrease at poresitic >0.95 and

asymptotically goes to zero. Whereas, the parfRggnolds number (Reand the pore

_ k3
Reynolds numberRe, ) increases and approaches the maxinRe,, = Gizhs Op O 66

2

(though it is a sharp increase froRe, [10.03zate=0.99t0 Re, L6€ate=1). We
observed that th&e, is nicely fitted to the exponential function withe power ~12.5

for the wide range of porosities <0.9. Our numerical results show that this scaling
remains valid also at larger applied pressure gradi(data not shown here). For the

range ofe <0.8, the variation ofRe;, is similar to Rgand Re, /Re is almost constant
equal to ~1/6.In Appendix D we useRe, or Re to get a universal friction factor, valid

for all porosities for random configurations.
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Figure 9: Variation of different definitions of Reglds number as function of porosity at
constant pressure gradieip = 0.000% [Pa/m] for random configurations.

3.2.3 Effect of inertia on viscous terms (K '): Carman-K ozeny (CK) equation

The earliest and most widely applied approach & porous media literature, for
predicting the permeability in Stokes regimes, Imge capillary models [77] such as the
one that leads to the Carman-Kozeny (CK) equatfidre approach is based on the
analogy between Poiseuille flow through pipes awodepchannels. By applying the
eD?
32u

and combine it with Darcy’s law, Eq. (1), the notized permeability is obtained as

Poiseuille equation in terms of the hydraulic diteneD, =&d/(1-¢) asU =~ Op

3
K- & o1
d Y (1_ ‘9)
whereyck is the empirically measured CK factor which représ both the shape factor

and the deviation of flow direction from that irdact. It is approximated agx=180 for
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random packed beds of spherical particles [77] ®rira Ergun equation (Eq. (4))
wck=150. Reported values of the CK factor for fibrousdia are varying between 80 and
320 [78, 79]. The same range wfx has been obtained from the theoretical results of
Sangani and Acrivos [80].

The principal limitation of the CK equation is tfeet that all geometrical features of the
medium are lumped into the CK factor. Even thougienapts have been made to
introduce microstructural features of the systerto ithe CK equation by suitably
modifying the mean hydraulic radius, it is fairgay that, at this stage, microstructural
features can be included only semi-empirically tigto experimental determination of
wck- An initial attempt was made by Carman [77] whasidered the effect of flow path
(tortuosity) onyck. Writing the CK factor in terms of its componentsmely the pore
shape facto® and tortuosity.¢/L

Ve =¢(5) (20)

The tortuosityL¢/L is the average effective streamline lengithscaled by system length,
L. In the original CK equation, for 3D random sphatibeds, it was assumed that the

tortuosity is constant_{/L :\/E) and®=90, which gives us the CK factor ask =180.
However, in a recent study [76] we showed that fforous media in the creeping
(viscous) regime the tortuosity is not constant dedends on porosity. The effects of
several microstructural parameters (namely parstiepe, orientation, staggered angle
etc) on tortuosity in creeping flow regimes haveestigated elsewhere [5, 76]. From our
numerical simulations, we extract the average lergjt several streamlines (using 8
streamlines that divide the total mass in-flux iBt@aones, thus avoiding the center and
the edges). By taking the average length of thiess,| the tortuosity can be obtained,
while by taking the standard deviation of the desteeamlines, the homogeneity of the
flow can be judged. The tortuosity is plotted iig.FLO as function of normalized velocity
at different porosities. Similar to the modifiedctron factor, the tortuosity is just a
function of porosity at creeping flow regimes (lzomtal line). However, by turning into
inertial regimes, it decreases by increasing tbe ftate implying that the fluid flows

mainly on a straight line and become less tortuous.
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4. Summary and conclusions

The paper started with an extensive review of ghleld experimental, numerical and
theoretical work on the drag law correlations midized beds and porous media with
special attention to the intermediate-Re numbengriial) regime. Deviation from

Darcy’'s law, for Newtonian, incompressible, staéionflow in homogeneous porous
media, was then investigated numerically using FEW&. refer to Darcy’s law as linear
(in superficial velocity) while different nonline&orrections for larger Re can be found
on the market — from quadratic, intermediate toicuBomputations were performed on
model 2D systems with regularly and randomly dstied, rigid, uniform

cylinders/fibres, oriented perpendicular to the flow direction. The effect sdveral

microstructural parameters (namely the shape andtste/arrangement of the fibres) on

the macroscopic permeability (viscous drag) andtielecoefficients was investigated
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first, before we turned to random configurationscgiinders. Major conclusions emerge

from the numerical results and can be listed des.

For ordered and periodic structures:

For small Re<3 (threshold varying with porositgape, etc.), a cubic correction
in velocity (A =2 is the power law for the dimensionless frictiomtéa) works
perfectly well, with deviations stronger/earlierr ftarger porosities — given
constant pressure drop.

Based on the generalized, non-dimensional fornm@fRorchheimer equation, for
larger Re<30, the nonlinear correction to the Dah@g law is a power law with
powers 1< A <2 depending on the porosity and the structure @ciare or
hexagonal arrays), and with power decreasing frobiccat low porosity towards
guadratic at high porosity.

The viscous and inertial coefficients are not maffected (maximum variation
10%) by the staggered unit cell angie,in the range oB0° <a < 6. However,
A increases (almost) linearly frothO1 at a =70° to A 02 ata =20°.

The shape of the particles has a strong effectath iscous and inertial drag

coefficients, especially for porosities lower tregproximately 0.9.

For disordered (random) structures:

For moderate Re, the nonlinear correction to Dadmag law is well

approximated, to first order, by a quadratic temvelocity (i.e. withA =1). The

inertial pre-factory =1.75( 1~ €) /e* turns out to be very similar to the one used

in the Ergun equation, originally derived for 3Dhspcal packed beds in the
range of& >0.45 and Re<30. A nonlinear function fits better inchglalso the
very small Re data, but best performs a cubic ctoe up to a critical Re-
number, Rg and the same with a quadratic correction abae R

With decreasing porosity a structural transitioonir disordered to ordered
packing occurs (for our preparation method) andrbeial coefficients approach
values closer to those for the hexagonal lattice.

The tortuosity (flow path) not only depends on ploeosity and the pore structure

but also on the fluid velocity (flow regime). Aestdy state and not fully turbulent
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flows, by increasing the porosity or flow rate, tth@wv becomes faster and less
tortuous.

* A microstructural definition of the Reynolds nump&e,, is based on the mean
value of the averaged®nearest neighbor surface-to-surface fibre distadce .

The “gap” Reynolds numbeRe, = pUA /i, is employed to get the universal

gap/
friction factor as function of Revalid for all Re studied here and in an
astonishingly wide range of porosities up to e¥ef.9. After scaling/collapsing
all data, both the non-linear fit with non-integewer (4 01.15) and the two-

regime approach fit the data for Re<30 very well.

Although disorder was investigated in two dimensjahese results provide insights and
indicate that similar conclusions might be extended3D realistic random porous
structures. Further work can now be planned oroémoigic and heterogeneous media and

also the study of the fully turbulent regime.
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Appendix A.

Comparison of the fit quality for ordered/disord&m®nfigurations

The quality of the proposed power law fit for thedified friction factor, Eq. (8), can be

evaluated by the relative erroy, defined as:

A,z‘l_ ﬁ&

fFEM

(A.1)
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The variation of y as function ofU /U" =Re using quadratic (blue), cubic (red) and

proposed power law fits (black), for (a) square @rchexagonal configurations is shown
in Fig. AL1. The power law fits best to our FE résuwlith maximum discrepancy less than
1%, when the fits are performed in the full rangeaxwailable data up to Re<30. (Note
that the cubic fit performs even better, if notfpet, but only up to Re<3 (varying with
porosity)).

The quality factor,y for random configuration is shown in Fig. A2. Qamy to the case
of ordered arrays, the quadratic and power lawhiitge approximately the same accuracy
(maximum discrepancy less than 2%). However, byedesing the porosity the quadratic

correction becomes less accurate.
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Figure Al: The quality of the quadratic, cubic gmmdposed power law fit (Eq. (8)) in the
range of10™ < Re< 3( for (a) square and (b) hexagonal configuratiordifégrent

porosities.
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Figure A2: The quality of the quadratic, cubic gandposed power law fit (Eq. (8)) in the
range of10”° < Re< 3( for random arrangements at various porosities.
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Appendix B.
Mesh sensitivity analysis for random arrangements

Due to the difference in scale between domain aim gap size between neighboring
fibres, this typically requires local mesh refinerhd-or different porosities, flow through
random fibre arrangements (Fig. 6) was simulatedifigrent mesh resolutions (humber
of elementsNe). The dependence of the solution in terms of #ieutated friction factor
at (a) denseg =0.4, and (b) diluteg =0.8, systems is shown in Fig. B1. The numerical
results show that not only the inertial term (melements are required to reach higher
Re numbers), but also the viscous term (normaljzeaineability K') depends on the
resolution, Ne. By increasing the porosity (dilute system) ledsments would be

sufficient to get a convergent solution.
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Figure B1: The variation of friction factor as fuiom of Reynolds numbeRe=U /U” at
porosity (ay = 0.4 and (b)& = 0.8 for different resolution (number of elementsg).N

Appendix C.

An alternative cubi¢ =2) correction fit for the friction factor

The following empirical fit is based on correctiohthe creep regime (constariit for

Re< Re) with a cubic term 4 =2) and fitting the inertial deviation with another
correction term,m(Re) for Re> Re. The Re, is the critical Re number in which the

deviation starts. For the case of creeping regineehas the cubic correction fdr as
.1 :
~f —?(1+y2K R€), (C.1)

and with the correction éRe> Re as
.1 :
—f :?(1+ ¥,K'Ré)m( Rg. (C.2)

For the special case of random configuratiog at0.4, the numerical fitted values are
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K =5.998% 10* ,y, = 1.1816, Re 4.
{ 2 R c3)

m(Re)=1-g(Re Rg)" ,a= 48 10
Fig. C1 shows the variation of friction factor amétion of Ret)/U" together with the
proposed fits in Egs. (C.1), (C.2) and non-intggawrer law in Eq. (8). The agreement is
perfect (better than 99.9%) féte< Re using the first correction (Eq. (C.1)) and extends

with the same quality up to Re~20 with Eq. (C.2hisTindicates that another type of
correction is needed in order to improve the piaaticfor larger Re. Therefore, there is
not a single integer power law correction. Howewee, stop this approach here as the
non-integer power law (Eg. (8)) is already a gopdraximation (maximum discrepancy

less than 1%) in wide rage of Re<30.
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Figure C1: The variation of friction factor as ftilon of Reynolds number
Re=U /" for random configuration at porosity=0.4. The dashed and solid lines
represent the cubic correction € 2) fits in Egs. (C.1), (C.2) and non-integer povaex |
in EqQ. (8), respectively. The inset shows the dquaif the proposed fits.
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Appendix D.

Towards unifying friction factor using differentfd@tions of Re numbers

In this appendix we present unified relations foe friction factor as function of Rer

Re, , valid at a wide range of porosities for randonmfigurations. The non-linear

correction in Eq. (8) can be isolated by studyifhg=-f K -1, i.e. subtracting the

viscous term, as
A A A
f =yK RefDh = yK’ (ﬁj R or f =yK Re; = yK [%} R€. (D.1)

Note that by replacing Re witRe, or Re, the values of the fitting powet would not
change. Fig. D1 shows the variationfofas function of (2Re, and (b) Re at various

porosities for the case of random configurationsing the alternative definitions of
Reynolds numbers, i.e. Reahe values of " at different porosities collapse on a single
curve up to astonishingly large porosig;0.9. The weak inertial regime seems to be
cubic (A =2), whereas the higher inertial regime fits better quadratic 4 =1)
correction. Note that the non-integer power law.(8]), with A [01.15, see the black
line in Fig. D1(b), is also fit to our data congiag the whole range of Re. Our numerical
results show that one can not get such a scalsoyfat ordered (i.e. square or hexagonal)
configurations (data not shown here).
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Figure D1: The variation of friction factor as fuion of (a) hydraulic Reynolds number,
Re, and (b) gap Reynolds number,gR¢ various porosities for random configurations.

The inset shows the zoom. The solid lines shovb#se fitted cubic and quadratic

corrections at weak and high inertial regimes, eetpely.
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