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Abstract: 
 

We give a comprehensive survey of published experimental, numerical and theoretical 
work on the drag law correlations for fluidized beds and flow through porous media, 
together with an attempt of systematization. Ranges of validity as well as limitations of 
commonly used relations (i.e. the Ergun and Forchheimer relations for laminar and 
inertial flows) are studied for a wide range of porosities. The pressure gradient is linear in 
superficial velocity, U for low Reynolds numbers, Re, referred to as Darcy’s law. Here, 
we focus on the non-linear contribution of inertia to the transport of momentum at the 
pore scale, and explain why there are different non-linear corrections on the market. 

From our fully resolved finite element (FE) results, for both ordered and random fibre 
arrays, (i) the weak inertia correction to the linear Darcy relation is third power in U, up 
to small Re~1-5. When attempting to fit our data with a particularly simple relation, (ii) a 
non-integer power law performs astonishingly well up to the moderate Re~30. However, 
e.g. for randomly distributed arrays, (iii) a quadratic correction performs quite well as 
used in the Forchheimer (or Ergun) equation, from small to moderate Re.  

Finally, as main result, the macroscopic properties of porous media are related to their 
microstructure (arrangement) and porosity. All results (Re<30) up to astonishingly large 
porosity, ε~0.9, to scale with Reg, i.e., the gap Reynolds number that is based on the 
average second nearest neighbor distances. This universal result is given as analytical 
closure relation, which can readily be incorporated into existing (non)commercial multi-
phase flow codes. The universal curve actually can be fitted with a non-integer power law 
(better than ~1% deviation), but also allows to define a critical Regc~1, below which the 
third power holds and above which a correction with second power fits the data 
considerably better. 
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1. Introduction 
 
The transport phenomena in porous media have been the focus and interest of numerous 

studies for the past decades. This interest stems from a wide range of applications in such 

industries as chemical, mechanical, geological, environmental, petroleum, etc [1-5]. The 

flow conditions encountered are broad enough to cover a wide range of Reynolds 

numbers (Re) and porosities. In practice, three distinct flow regimes are commonly 

defined in literature in terms of Reynolds number: (i) stationary Darcy or creeping flow, 

(ii) steady, laminar inertial flow and (iii) unsteady chaotic/turbulent flow regimes. As an 

example, creeping flows (i.e., Re≪1) may be encountered in ground water flows, 

composites manufacturing and filtering, whereas inertial flows are found in applications 

such as heat exchangers or packed bed chemical reactors. Highly turbulent flow is 

expected, e.g., in gas-fluidized beds. The flow regimes studied in this paper are limited to 

regimes (i) and (ii). Several macroscopic parameters are often needed to complete coarse 

grained models that are employed to describe such applications. This has motivated the 

research in the development of relationships to describe macroscopic parameters, such as 

permeability and inertial coefficients, for different kinds of porous media at various 

porosities and flow regimes. 

Most porous media are particulate, but some are composed of long particles/fibres and, 

therefore, may be considered as fibrous media. They are encountered in a variety of 

modern technology applications, predominantly in the manufacturing of fibre-reinforced 

composites, with extensive use in the aerospace and automobile industries. 

With the recent progress in computational and numerical tools, one can now perform 

detailed calculations of heavily loaded, fluid-particle flows, based on two-fluid models 

(TFM) and/or the discrete particle method (DPM) [3, 4]. However, these methods require 

the knowledge of several constitutive laws (i.e. the interphase momentum-transfer 

coefficient of the gas/fluid phase acting on the particles/solid). Accurate drag laws are a 

basic requirement in simulations based on DPM or TFM to be successfully used in the 

design and optimization of industrial processes. Such correlations have a strong 

dependence on the pore structure and pore-level physics, which generally requires them 

to be estimated experimentally or through the use of existing empirical relations.  
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At the macroscopic level and the limit of creeping flow regimes, the pressure gradient 

p∇ , and the flow rate have a linear relation, known as Darcy’s law: 

p U
K

µ−∇ =  ,                                                                                                                     (1) 

where µ and U are viscosity and superficial velocity, respectively. The proportionality 

constant K, is called the permeability of the medium, which strongly depends on porosity 

and microstructure (e.g., fibre/particle shape and arrangement, void connectivity and 

inhomogeneity of the medium). The effect of several microstructural parameters on 

macroscopic permeability was investigated for ordered and disordered fibrous media, see 

Refs. [5-7] and references therein.  

Darcy's law was originally obtained from experiments [8] and later formalized using 

upscaling [9], homogenization [10, 11] and volume averaging [12, 13] techniques. It has 

been shown that Darcy's law actually represents the momentum equation for Stokes flow 

averaged over a representative volume element (RVE), implying that it is valid only in 

the creeping flow regime [14].  

The effect of fluid inertia, on the other hand, is a more complex problem, lending itself to 

numerical rather than analytical treatment. Active research has been dedicated to derive 

adequate corrections to the linear relationship in Eq. (1) from numerical, theoretical, and 

experimental points of view. Koch and Ladd [15] and Hill et al. [16] simulated moderate 

Reynolds number flows through periodic and random arrays of aligned cylinders and 

spheres using the Lattice Boltzmann Method (LBM). They showed that the inertial term 

made a transition from linear to quadratic in random arrays. The inertial effect became 

smaller at the volume fraction approaching close packing due to increased drag forces 

through the narrowing channels. The experimentation that proved this nonlinear relation 

was carried out by Forchheimer [17], who indicated that there exists a quadratic term of 

the flow rate when the Reynolds number is sufficiently high. While the LBM has been 

successfully applied for the simulation of porous media flow in the creeping regime [18-

20], its applicability for high Reynolds numbers has been the subject of more speculation 

and debate due to selection of parameters, resolution and the necessity to reduce 

compressibility effects [21, 22]. Andrade et al. [23] demonstrated that, for a 2D 

disordered porous structure at high porosity, the incipient departure from the Darcy law 
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could be observed already in the steady, laminar inertial flow before arriving at 

turbulent/chaotic regime.  

To date, mainly empirical relations, such as by Ergun [24], and their components, the 

Carman-Kozeny (viscous term) and Burke-Plummet (inertial term) equations, have 

proved to be quite useful [25, 26]. Liu et al [27] devised a semi-empirical formula for the 

pressure drop, which incorporates the tortuosity, the curvature ratio and the variation of 

the pore cross-sectional area. Jackson and James [28] conducted a comprehensive review 

of the literature on a variety of theoretical models and presented a large collection of 

experimental data for both natural and synthetic fibrous media. A recent discrete particle 

study by Bokkers et al. [29] showed that, with respect to bubble formation in fluidized 

beds, the drag relations derived from the lattice-Boltzmann simulations of Hill et al. [16] 

yielded better agreement with the experimental observations than the traditional Ergun 

and Wen & Yu [30] correlations. While the latter relation remains the most widely used 

in chemical engineering, an accurate description for the interphase momentum transfer 

has been a subject of debate. This has motivated the research in the development of more 

accurate relationships to describe the macroscopic momentum transfer in terms of 

microscopic pore-scale parameters.  

Most of the previously obtained drag laws are only valid for 3D, spherical packed beds.  

Although the drag relation for 2D fibrous materials and 3D packed beds are quite 

different (for instance in 2D the drag diverges in the limit of close packing), our attempt 

is to check the validity of those relations for 2D systems. We establish the relationship 

between microscopic and macroscopic properties of fibrous media by conducting a 

systematic study using numerical simulations based on the finite element method (FEM). 

In order to get a better understanding of the state-of-the-art on non-Darcy flow, literature 

concerning the theoretical basis of the Forchheimer equation and experimental work on 

the identification of flow regimes is reviewed in Section 2. After presenting the numerical 

method used to compute the permeability and inertial coefficients, results are discussed in 

Section 3. The steady state fluid flow across uni-directional arrays of cylinders are 

considered, for both ordered and disordered configurations. Computations were carried 

out with special attention to high accuracy (resolution) in order to investigate the 

existence of the different regimes and the corresponding scaling laws. The effects of 
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several structural parameters, namely porosity, disorder and fibre-shape on the flow 

behavior at various regimes are discussed in detail. The paper is concluded in Section 4 

with a summary and outlook for future work. 

 

2. Theoretical background 
 
Flows in porous media can be studied at either microscopic or macroscopic scales. For 

the former scale the flow through individual pores is computed by solving the mass and 

momentum equations (i.e., the Navier–Stokes (NS) equation) numerically, whereas for 

the latter a continuum description is usually adopted based on volume averaging of the 

equations pertaining to microscopic scales. The linking of these two descriptions 

constitutes the well known scaling-up problem, which usually provides macroscopic 

properties in terms of the permeability, i.e., the ability of a porous material to transmit 

fluids. Although the permeability can, in principle, provide quantitative correlations 

between morphological features of pore geometry and its capacity to transmit liquid, its 

values depend on many factors such as porosity, typical length scale of pores, grain size 

distribution, shape, anisotropy and tortuosity of pore connections, see Refs. [5-7] and 

references therein. Therefore, the permeability determined either analytically or 

empirically for porous media with complex structures involves considerable uncertainty – 

one can not determine microscopic properties only from the macroscopic permeability.  

As mentioned before, Darcy’s law is the most widely used empirical correlation for the 

calculation of the pressure drop across a homogeneous, isotropic, unbounded and non-

deformable porous medium. It is strictly valid for incompressible and isothermal Stokes 

flow (Re = 0) of Newtonian fluids. However, it is usually applicable in engineering 

applications for Re < 1, defined by µρ /Re Ul=  where l and ρ  are the typical pore size 

of the structure and density of the fluid, respectively. Darcy’s law, since it lacks, among 

other reasons, the flow inhomogeneity/variability1, is not valid at the interface of a porous 

medium-solid or porous medium-free flow. Brinkman [31] added a diffusion-type term to 

the Darcy’s law, leading to 

2p U U
K

µ µ−∇ = − ∇  .                                                                                                        (2) 

                                                 
1 It can not account for the no-slip boundary condition at the solid boundary of the porous medium. 
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Brinkman’s equation is, like Darcy’s law, inertia-free and hence valid only for creeping 

flows. Recently, Auriault [32] discussed the validity and limitations of Brinkman’s 

equation for “classical” porous media, swarms of low concentration particles and fibrous 

media at high porosities. 

In the continuum approach one describes mass and momentum balance equations at 

macroscopic scale, using a specific averaging procedure. Therefore, the major difficulty 

resides in an adequate determination of the averaging domain. Following a continuum 

approach, Hassanizadeh and Gray [33] developed a set of equations to describe the 

macroscopic behavior of fluid flow through porous media. Linearization of these 

equations yields a Darcy equation at low velocities.  

Although the physical nature of the deviation from Darcy’s law is still unclear and may 

have several reasons (probably acting together), empirical relationships allow correlating 

the pressure drop and average fluid velocity in porous media. To account for the non-

linear behavior of the flow in porous media, Forchheimer [17] added a quadratic velocity 

term to represent the microscopic inertial effect, and corrected the Darcy equation into 

the Forchheimer equation 

2p U U
K

µ βρ−∇ = +  ,                                                                                                        (3) 

where the constant, β is referred to as the non-Darcy coefficient which, like permeability, 

is an empirical value that depends on the micro-parameters of porous media. Similar to 

Darcy’s law, Forchheimer’s law was originally postulated heuristically to account for the 

experimental data. However, during the past decades there has been an effort to derive it 

from first principles. Some of the techniques used are matched asymptotic expansions 

[34], the capillary model [35], hybrid mixture theory [36] and volume averaging [12, 37, 

38]. The physical justification of the quadratic nature of the correction was supported 

either by intuition or by dimensional analysis and the analogous turbulent kinetic energy 

loss in straight tubes [39]. Moutsopoulos et al. [40] investigated phenomenological 

relations for the Forchheimer equation experimentally and theoretically for both 

homogeneous and heterogeneous media. Based on homogenization approach, Chen et al. 

[41] claim that the nonlinear filtration law is quadratic. By generalizing the Forchheimer 
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equation, Ergun obtained the following empirical relation for homogenous, packed beds 

of randomly distributed spheres:  

( ) ( )2 2

3 2 3

1 1U U
p A B

d d

ε εµ ρ
ε ε
− −

−∇ = +   ,                                                                        (4) 

where d is the average diameter of the particles in the domain and ε  is the porosity2.  

After analysis of a large quantity of experimental data, Ergun concluded that their best 

representation could be obtained with A = 150 and B = 1.75. However, in subsequent 

studies these values have been found to vary considerably with shape, porosity and Re 

number [42, 43]. In particular, after testing the Ergun equation using many more data 

than ever before, MacDonald et al. [42] found that A = 180, and B = 1.8 (smooth 

particles) or 4.0 (rough particles) give the best fits to all of the involved data. Besides the 

Ergun equation, there are correlations using the non-dimensional particle friction factor, 

fp, through the following definition 

2p

pd
f

Uρ
−∇= .                                                                                                                       (5) 

By combining Eqs. (5) and (3), the Forchheimer equation can be written as: 

'
'

1

Repf
K

β= + ,                                                                                                                (6) 

where Re /Udρ µ= , ' 2/K K d=  and ' dβ β=  are the Reynolds number (based on 

diameter d), the normalized permeability and the modified non-Darcy coefficient, 

respectively. The latter two, 'K  and 'β , can be considered as the non-dimensional, 

macroscopic viscous and inertial coefficients with the beauty of a constant friction factor 

in the inertial regime. Looking at the literature, we found several definitions and relations 

between friction factor and Re (or sometimes pressure gradient and U) which makes it 

difficult to make one-to-one comparison. Table 1 summarizes all theses definitions and 

their relations. 

In Table 2, the available modifications of Ergun’s equation and their range of validity are 

listed as function of the particle Re number, ( )Re Re/ 1p ε= − . Therefore, most equations 

have the typical porosity term,( ) 31 /ε ε− , for low Re, with various different constants 

                                                 
2 Comparing Eqs. (3) and (4), one can relate the parameters A, B, and ε  to K and β. 
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and strongly varying further terms [42, 60, 62-64, 67-69] representing the effect of wall, 

shape, etc. A few of the equations have non-linear corrections also in the first term [54, 

59, 66], and the last class are sums of several powers of Re used to fit into available 

experimental/numerical data [52, 53, 61]. A more complete list of correlations for the 

viscous term, i.e. at low Re numbers, of 2D fibrous materials can be found in Ref. [5]. 

Recently, Barree and Conway [44] conducted experiments suggesting that Forchheimer’s 

equation is only valid over a limited range of velocities. Derivations using volume 

averaging was undertaken by Ruth and Ma [12], and Whitaker [38]. However, Ruth and 

Ma [12] explain that microscopic inertial effects are neglected in volume- averaging 

techniques and therefore cannot be used to derive a macroscopic law. They point out that 

the Forchheimer equation is not unique, and any number of polynomials could be used to 

describe nonlinear behavior due to inertia in non-laminar flow. This is confirmed in 

Bourgeat et al. [45], where the nonlinear filtration law is obtained as an infinite series in 

integer powers of the local Reynolds number. More recently, Balhoff et al. [46] used the 

method of homogenization to develop a general polynomial filtration law for low 

Reynolds numbers. In Marušic–Paloka and Mikelic [47], the existence, uniqueness and 

regularity of general non-local filtration law was rigorously established in the 

homogenization limit when the pore size tends to zero.  

 

Table 1: Various definitions and relations between friction factors and Re (or pressure 
gradient and superficial velocity, U) 

Friction factor – Re (or pressure 
gradient – U) relation 

Comment 

~p U−∇  Linear Darcy’s law for creeping flow, Eq. (1) 

2~p U U−∇ − ∇  
Brinkman’s equation for creeping flow at high 

porosities, Eq. (2) 
2~p U U−∇ +  

Forchheimer (Ergun) equation, quadratic correction to 
Darcy’s law, Eq. (3) 

3~p U U−∇ +  Cubic correction to Darcy’s law at small Re, Eq. (7) 

2 1 '~ / ~ Repf p U β−−∇ +  Particle friction factor as function of Re. 'β  is the 
inertial, porosity dependent parameter, see Table 2 

' 'Re ~ / ~ Repf f p U λα≡ −∇ +  
Non-integer, λ , power law fit, used in this paper, Eq. 

(8). 'α  is the viscous, porosity dependent term 
* ' '~ ~ Regf f

λ
α−  

Isolated inertial term used for scaling the data in 
Appendix D, Reg is “gap” Re number 
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One of the important observations from Wodié and Levy [48], Mei and Auriault [11], and 

Rasoloarijaona and Auriault [49] was that for an isotropic porous medium, the quadratic 

terms cancel and one has a cubic filtration law given by 

* 2
3p U U

K

µ γ ρ
µ

−∇ = +       *
'

1
Re

Repf
K

γ⇒ = + ,                                                           (7) 

where *γ  is a porosity dependent dimensionless parameter. This observation is confirmed 

analytically and numerically in [50] and for periodic two-dimensional arrays of cylinders 

arranged in a regular pattern in [51]. In most cases, the cubic law is only valid at very low 

velocities (Re < 1, where Darcy’s law is approximately valid anyway), and the quadratic 

Forchheimer equation appears applicable at higher, moderate velocities (1<Re<10). 

Nonetheless, these findings are significant because they suggest that any power law with 

integer power, like in the Forchheimer equation, may not be universal and only valid in a 

limited range of velocities and porosities.  

Despite extensive previous work, our understanding of the physical reasons for non-

Darcy flow is incomplete. To better understand the microscopic origin of these 

correlations, we conduct a set of FE simulations on both ordered and disordered arrays of 

cylinders in a wide range of Reynolds numbers in the next section.  

 

Table 2: Available modifications of the Ergun equation in terms of the particle friction 

factor, pf  and the particle Reynolds number ( ) ( )Re Re/ 1
1p

Udρε
ε µ

= − =
−

.  Unless 

explicitly stated, the relations are valid for 3D, disordered systems. 

Author pf  Range of validity 

Ergun [24] 












+







 −
75.1

Re

1501
3

pε
ε

 8.0<ε  

MacDonald 
et al. [42] 

'
3

1 180

Rep

B
ε

ε
 −  +     

 
' 1.8,B =  smooth particles 

' 4,B =  rough particles 

Rose [52] 12Re60Re1000 5.01 ++ −−
pp  Mean value of Re 140p ≅  

Rose and 
Rizk [53] 

14Re125Re1000 5.01 ++ −−
pp  1000 Re 6000p< <  

Hicks [54] ( ) 2.0
3

2.1

Re
1

8.6 −−
pε

ε
 60000Re500 << p  
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Tallmadge 
[55] 

( ) ( ) 6/1
3

166.1

3

2

Re
12.41

Re

150 −−+−
p

p ε
ε

ε
ε

 510Re1.0 << p  

Lee and 
Ogawa [56] 

( ) ( )
2

12

3

275.01.0352.0

1.0Re56.1Re32.291
5.12

2

1

εε

ε
ε

++=

++






 − −−

n

n
pp  510Re1 << p  

Kürten et al. 
[57] 

( ) ( )28.0Re6Re211
4

25 5.012

3
++







 − −−
ppε

ε
 4000Re1.0 << p  

Montillet et 
al. [58] 

( )1 0.5

0.2

3

1000Re 60Re 12

1
0.061

p p

D

d

α

εα
ε

− −+ +

−  =   
  

 
2500Re10 << p , 

D: bed diameter 

Özdinç et 
al. [59] 

0.4733

769.785 Rep
d d

L L
ε

−
    

    
    

 7772Re675 << p  

Ozahi et al. 
[60] 

( )5 1
3

1
3 10 Re 66.487 Re 0.1539p p

D

d

ε
ε

− −−   × − +  
  

 

8000Re800 << p , 

D: bed diameter 

Gibilaro et 
al. [61] 

( )( ) 8.41 1336.0Re3.17 −− −+ εεp  In fluidized suspensions 

Benyahia et 
al. [62] 

( ) ( )ε
ε

ε −+−
19

Re

1180
33

F
p

 

( ) 5
3 0232.01212.00673.0 −+−+= εεF  

6.0<ε , ( )ε−
>

1

2
Re

1

3

F

F
p , 

( )ε−+= 16.11
1 00051.011.0 eF

 

Molerus 
[63] 

1
2 2

1 18 49.5 0.69
Re

1 p

ε
ε ε ε ε

− −   + +    −    
 0.7ε <  

Kovács [64] 3

1 144
2.4

Rep

ε
ε

 −  +     
 ( )10 Re 1 100p ε< − <  

Kadlec and 
Knight [65] ( )3 0.7

1 255
2

1 Rep

ε
ε ε ε

 −  +   −  
 In fluidized suspensions  

Foscolo et 
al. [66] ( )4.8

1 17.3
0.336

Re 1p

ε
ε ε

 −  +   −  
 Laminar and turbulent 

regimes, 0.4ε >  
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Mehta and 
Hawley [67] 3

1 150
1.75

Rep

M M
ε

ε
 −  +       

 ( )
2

1
3 1

d
M

D ε
= +

−
, 

D: bed diameter 

Du Plessis 
[68] 

( )( )22/32
3

1
/ 1 1

Rep

Aε ε ε
ε

 −  + − −     
, 

( ) ( )( ) ( )( )
2

2/3 1/3 2/3

41

1 1 1 1 1
A

ε
ε ε ε

=
− − − − −

 

Packed bed of spherical 
particles  

Reichelt 
[69] 

 ( )( ) ( )( )

2
1

3

22

1 2

1
,

Re

2 1
1 ,

3 / 1 /

w
w

p

w w

K A
B

A B
D d k d D k

ε
ε

ε

 −  +     

= + =
− +

 

Spheres: 

1 1 2154, 1.5, 0.88K k k= = =
Cylinders: 

1 1 2190, 2, 0.77K k k= = =  

D: bed diameter 

Martin et al. 
[70] ( )Re 1

m

n
p

K d
b

d K
ε ε−  

−  
 

 

Square and triangular 
fibre arrays, with 
0.8 0.99ε< <  and 

3 Re 160p< < . The n, m 

and b are fitting 
parameters. 

Papathanass
iou et al. 

[26] ( )
( )2 1

0.08
Re 1p

dd

K K

ε
ε ε

−
+

−
 

Square and hexagonal 
fibre arrays, with 
0.3 0.6ε< <  and 
0 Re 400p< <  

Tamayol et 
al. [71] ( )

( ) 1/2

Re 1

c

p

a b dd

K K

ε
ε

−+
+

−
 

1D, 2D and 3D ordered 
fibrous media in the range 

of 0.35 0.95ε< <  and 
0.01 Re 4000p< < . The 

a, b and c are fitting 
parameters. 
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Koch et al. 
[15] 

      (a)           1
2 Re

Re p
p

k
k+  

 

(b)            1
2Rep

c
c+              

(a) For both periodic and 
random fiber arrays at 

Re<1; k1 and k2 are 
porosity dependent 

parameters. 
(b) For random arrays at 
Re>5 (similar to Ergun 
relation); c1 and c2 are 

porosity dependent 
parameters. 

Tanino and 
Nepf [72] 

0
1Rep

α α+  

Randomly distributed, 
rigid, emergent circular 
cylinders in the range of 

0.65 0.9ε< <  and 
70 Re 6850p< <  (similar 

to Ergun relation). The 

0α  and 1α  are porosity 

dependent fitting 
parameters. 

 
 
3. Numerical results 
 
This section is dedicated to the finite element (FE) based model simulations of both 

ordered and disordered fibre arrays at various porosities and flow regimes. Alternative to 

the FE method like the lattice Boltzmann method (LBM) can also deal with complex pore 

geometries and boundary conditions in the inertial regime, but are discussed and 

compared elsewhere [22]. The results on the friction factor (both the viscous and inertial 

components) as function of porosity, structure, shape, etc., are presented and discussed. 

 

3.1. Ordered structure 

 

We start the analysis with the case of a 2D regular periodic array of cylinders, 

perpendicular to the flow direction, as shown in Fig. 1. These models rely on the 

assumption that the porous media is periodic and thus can be divided into unit cells that 

are then also representative volume elements (RVE). The friction factor is then 

determined by modeling the flow through these, more or less, idealized cells.  
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                                    (a)                                                           (b) 

Figure 1: The geometry of the unit cells used for (a) square and (b) hexagonal 
configurations. 

 
 

3.1.1 Computational method and boundary conditions 

The FE software ANSYS® is used to calculate the superficial velocity, U, from the results 

of our computer simulations as 
1

fA

U udA
A

= ∫ , where A, Af and u are the total area of the 

unit cell, area of the fluid and intrinsic fluid velocity, respectively. On the flow domain, 

the steady state NS equations combined with the continuity equations were discretised 

into an unstructured, triangular element. They were then solved using segregated, 

sequential solution algorithm. The developed matrices from assembly of linear triangular 

elements are then solved based on a Gaussian elimination algorithm. Some more 

technical details are given in Refs. [5-7]. The mesh size effect is examined by comparing 

the simulation results for different resolutions (data not shown here). At the left and right 

pressure- and at the top and bottom periodic-boundary conditions are applied. No-slip 

boundary conditions, i.e., zero velocity are applied on the surface of the particles/fibres. 

Computations were performed for Reynolds numbers 510 Re 30− < <  and porosity 

0.3 0.9ε< < , assuming that the stationary solution is still physically valid in the upper 

range of this Reynolds numbers. 

 

3.1.2 Generalized Forchheimer equation 

The validity of the Forchheimer equation for ordered structures (namely square and 

hexagonal configuration) is studied in this section. A generalized non-dimensional form 

Flow direction 
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of the Forchheimer Eq. (3) can be derived by postulating a power law and multiplying the 

friction factor by Re, so that: 

'
' * '

1 1
Re

U
f

K U K

λ
λγ γ − = + ≡ + 

 
                                                                                     (8) 

where ( )' 2 / Repf d p U fµ= ∇ ≡  and ( )* /U dµ ρ=  are, by definition, modified friction 

factor and scaled velocity, respectively. The normalized permeability ' 2/K K d=  and 

non-dimensional inertial coefficients λ  and γ , in general, depend on the porosity and 

structure of the medium. The power λ  represents the deviation from Darcy’s regime 

( ' const.f = ), so that the non-linear correction can be isolated by studying ' '1/f K− −  (as 

done in the Appendix C). In case of 1λ = , Eq. (8) reduces to the Ergun equation (Eq. (4) 

or (6)) with ( )( )2' 3 / 150 1K ε ε= −  and ( ) 31.75 1 /γ ε ε= − . Similarly, for 2λ = , Eq. (8) 

reduces to Eq. (7) with *γ γ= . More discussion on the dependence of normalized 

permeability, 'K  on porosity and pore-structure for (dis)ordered fibrous medium is given 

in [5, 6] and references therein. In the following, we rather focus on the influence of 

micro-structural parameters on the inertial coefficients λ  and γ , while 1/K’  is the low-

Re permeability that only depends on porosity. 

Fig. 2(a) shows the variation of the modified friction factor as function of normalized 

velocity, */ ReU U ≡ , for square (red) and hexagonal (blue) configurations for three 

different porosities. The solid lines represent the best least square fit to the FE data using 

Eq. (8) with the power as free parameter, while the black dashed line (only one shown at 

ε = 0.6) represents a fit to the cubic deviation (λ = 2) from the Darcy regime, which is 

pretty perfect (99.99% agreement) for Re<3, but strongly overestimates the results for 

larger Re. As mere examples, the hexagonal structures at ε = 0.6, 0.7, 0.8 correspond to 

1/K’ = 91.5584, 35.3612, 12.3190, and 2γ  = 0.06993, 0.05330, 0.04297, respectively. 

Note that for all fits, first the constant, low Re regime is fitted and then the nonlinear 

correction. Since the cubic correction-term (λ = 2) – even though perfectly fine for small 

Re (see Appendix C) – is not a good prediction for larger Re, we will discuss fits with 

non-integer λ values since they are good approximations up to Re<30. 
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As expected, by increasing the porosity, the normalized permeability, K’, increases, i.e. 

for higher pressure gradients the flow regime changes from Darcy (horizontal line) into 

inertial (nonlinear) regime. For square configurations the transition starts at lower 

velocities (i.e. Re@10) compared to the hexagonal configuration. Note that in Darcy’s 

regime, the flow is symmetric about both horizontal and vertical axis (not shown here). 

However, in the inertial regime, due to the non-linear contribution of inertia to the 

transport of momentum, the symmetry about vertical axes (normal to the flow direction) 

will break (see section 3.1.4 below, Fig. 5) while the flow is still stationary. 

Fig. 2(b) shows the variations of inertial coefficients (i.e. λ  and γ ) in Eq. (8) as function 

of porosity for both square and hexagonal configurations. We observe that the power λ  

is (i) larger than unity and varying between 1 2λ< <  and (ii) not only depends on 

porosity but also on structure/arrangements of the particles/fibres. By increasing porosity 

(i.e. for more dilute systems) the power decreases and approaches the value of unity (i.e. 

the original quadratic Forchheimer correction, Eq. (3)). Square arrays have larger values 

of λ  compared to hexagonal arrays implying that the transition to inertial regime starts 

earlier and sharper (see Fig. 2(a)). On the contrary, the pre-factor γ  (in the inset) seems 

to be independent of structure and linearly decreases by increasing porosity as 

( )0.8 1γ ε≅ − . In the appendix A, the quality of the proposed power law fit (Eq. (8)) is 

compared with the quadratic ( 1λ = ) and cubic ( 2λ = ) fits at different porosity for both 

square and hexagonal configurations.  
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Figure 2 (a): Variation of the modified friction factor as function of the normalized 
velocity (or Re) for square (red) and hexagonal (blue) configurations (solid lines show 
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the best least square fit to Eq. (8) and the black dashed lines show the best quadratic 
( 1λ = ) and cubic ( 2λ = ) fits in the range of 510 Re 30− < < ), symbols show the 

analytical/numerical data from literature; (b) Inertial coefficients λ  and γ  as in Eq. (8) 
plotted against porosity. 

 

 

3.1.3 Effect of staggered cell angle 

In this subsection, the effect of the staggered cell angle, α  on the inertial term is 

discussed. The staggered angle is defined between the diagonal of the unit-cell and flow-

direction (horizontal), as shown in Fig. 3(a). In addition to the special cases o45α =  and 

o60α = , i.e., square and hexagonal packings, respectively, several other angles are 

studied. 

Fig. 3(b) shows the variation of the modified friction factor as function of normalized 

velocity for different staggered angles, α  at the constant porosity 0.7ε = . Similar to the 

normalized permeability, the inertial coefficient γ  is weakly dependent on the staggered 

angle in the range of o o30 60α< < . However, λ  increases (almost) linearly from 1λ ≅  

at 70α =  to 2λ ≅  at 20α = . For o70α =  and higher (but lower than the maximum 

achievable ( )( )( )1 o
max tan / 2 1 80α π ε−= − ≅ ), the flow mainly follows a straight line 

with large superficial velocity and consequently large values of permeability and the 

transition starts at higher scaled velocities (Re) . On the other hand, at o20α =  and lower 

(but larger than the minimum allowable limit ( )( )1 o
min tan 2 1 / 11α ε π−= − ≅ ), the flow 

is more tortuous and consequently it has lower permeability. At this range, the transition 

into non-Darcy regimes starts already at smaller superficial velocities.   
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                           (a)                                                                    (b) 

Figure 3: (a) staggered angle α  and (b) modified friction factor as function of normalized 
velocity for different α  at porosity 0.7ε = . The solid blue lines show the best least 

square fit in Eq. (8) in the range of 510 Re 30− < < . 
 

 

3.1.4 Effect of particle shape 

In order to study the effect of particle/fibre shapes on the macroscopic permeability and 

inertial coefficients, the normalization is done with respect to the obstacle length, Lp, 

which is defined as 

Lp = 4 area / circumference, with: 
Lp = d (for circles),   Lp = c (for squares),   and Lp = 4πab / AL (for ellipses)         (9) 

where d, c, a and b=a/2 are the diameter of the circle, the side-length of the square, the 

major (horizontal) and minor (vertical) lengths of the ellipse, respectively, and AL is the 

circumference of the ellipse.  

By applying the same procedure as in the previous section, the normalized permeability 

and inertial coefficients are calculated for different shapes on a square configuration.  

Fig. 4 shows the modified friction factor as function of the normalized velocity for 

different shapes. The circular shape has the lowest and horizontal ellipses the highest 

normalized permeability. The reason is that, at the same porosity, ellipses are more 

stretched in the flow direction and therefore the fluid can flow more easily on a straight 

α  Flow 
direction 
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line through the wider channels. However, at high porosities this effect diminishes (data 

not shown). Note that, due to the narrower channels, the local maximal velocity is higher 

for circular shapes, given the same porosity and pressure gradient. However, the 

superficial (average) velocities for ellipses are larger, leading to higher permeability, than 

other shapes. For the same reason, the transition to the inertial regime happens earlier for 

squares, whereas it occurs at higher velocities for ellipses. The values of the inertial 

coefficients λ , γ  and the viscous (normalized permeability, K’ ) term, obtained by least 

square fitting to Eq. (8), are listed in Table 3. The power λ  is not much affected by the 

shape (maximum variation less than ~10%), however, for squares, the pre-factor γ  is ~5 

times larger than for ellipses at low porosities. Our numerical results show that, similar to 

the normalized permeability, the effect of shape on the inertial parameters is less 

pronounced at high porosities ( )0.9ε > , not shown here.  Establishing a common drag 

law based on the aspect ratio, sphericity or other shape parameters is still a challenge for 

future study. 

To better understand and explain the flow characteristic in the inertial regime, the 

patterns of the streamlines for different shapes and the vortices generated behind the 

obstacle are shown in Fig. 5. The non-Darcy effect occurs because microscopic inertial 

effects alter the velocity and pressure fields. At the same porosity 0.7ε =  and Reynolds 

number Re@10, we observe that for the square shape we have stronger vortices (i.e. those 

that contribute more to the energy loss) compared to the ellipses in which the wake (or 

flow separation) zones behind the obstacle is flattened and stretched. These vortices 

increase in size as the velocity increases and eventually become unsteady and local 

turbulence occurs. At fixed porosity and pressure gradient, the flow for ellipses is – even 

though faster in average – less “turbulent” and smoother. 

Note that the flow pattern is stationary and symmetric along the horizontal symmetry axis 

and non-symmetric relative to the vertical axes. The above example implies that the 

tortuosity (flow path) is one of the key factors in determining the viscous and non-Darcy 

coefficients (see section 3.2.3 for more details). 
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Figure 4: Plot of modified friction factor versus normalized velocity for different shapes 
at porosity 0.7ε = . The solid lines show the best least square fit in Eq. (8) in the range of 

510 Re 30− < < . 
 

 

Table 3: The values of the inertial coefficients λ , γ  and viscous (normalized 
permeability, K’  [5] ) term, obtained by least square fitting of the FE results into the Eq. 

(8) in the range of 510 Re 30− < < , for different shapes and various porosities. 

Shape Circle Ellipse Square 

Porosity, ε  0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 

' 2/ pK K L=  [5] 0.025 0.077 0.319 0.065 0.147 0.486 0.031 0.091 0.375 

λ  1.544 1.561 1.338 1.343 1.436 1.111 1.281 1.342 1.129 

γ  0.211 0.113 0.082 0.072 0.058 0.056 0.355 0.168 0.113 
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Figure 5: The streamline patterns around (a) circle, (b) square and (c) ellipse of the aspect 
ratio a/b=2 at the constant porosity 0.7ε = and Re@10. The color shows the magnitude of 

the horizontal velocity. 
 

 

3.2 Structural disorder 
 

Because of the complexity of pore-space geometry, classical numerical methods for 

solving flows through porous media are typically restricted to ordered and small or 

periodic domains. However, many realistic porous media are (i) confined with walls, (ii) 

are not truly two-dimensional, and (iii) possibly contain a degree of randomness (or 

disorder) at larger length scale that is not adequately represented in too small periodic 

boundary cells. In this section we focus on (i), as compromise, and investigate the effect 

of disorder on both viscous and inertial coefficients in a moderately large system with 

N=800 particles/fibres within a channel with walls.  

 

3.2.1 Computational domain and methodology 

Fig. 6 shows a 2D representation of N=800 randomly distributed fibres, generated by a 

Monte Carlo (MC) procedure [73], oriented normal to the flow direction at porosity 

ε =0.6 with minimum inter fibre distance δmin=0.05d or dimensionless 

min min / 0.05dδ∆ = = . Similar to Chen and Papathanasiou [73], and Yazdchi et al. [5], a 

minimal distance is needed in 2D to avoid complete blockage. The microstructural 

parameters, namely the system size, method of generation, homogeneity and isotropy of 

the structure and their influence on macroscopic permeability have been discussed in [6]. 

(a) (b) (c) 
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At the left and right of the system pressure is set and at the top and bottom walls as well 

as at the surface of the particles/fibres no-slip boundary conditions are applied. Fibres are 

assumed to be very long so that a 2D solution can be applied. A typical fine, unstructured 

and triangular FE mesh is also shown in Fig. 6. The typical range of number of elements 

is varying from 5×105 to some 106 depending on the porosity regime. The lower the 

porosity the more elements are needed in order to resolve the flow in the many narrow 

channels between the neighboring fibres. Our numerical results show that in all 

simulations we need at least ~10 rows of elements between neighboring particles to 

correctly capture the fluid behavior and obtain a converging solution. Details of the 

comparison of different resolutions are provided in Appendix B. To obtain good 

statistical accuracy, the permeability values and inertial coefficients were fitted to data 

averaged over 10 realizations of packings generated by the random MC procedure. 

 

 

               

Figure 6: Fibre distributions generated by a Monte Carlo procedure, with N=800 
unidirectional cylinders, normal to the flow direction, with minimum inter fibre distance 
δmin=0.05d at porosity ε =0.6. The zoom shows the fine, unstructured, triangular FE 

mesh. 
 

Fig. 7(a) shows the variation of the modified friction factor as function of the normalized 

velocity, U/U* for disordered configurations at various porosities. As expected, 

increasing the porosity leads to an increased normalized permeability, K’. For Re<3, like 

Flow 
direction 
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in the ordered hexagonal situations, the normalized friction factor is perfectly fitted by a 

cubic correction, e.g., for porosities 0.6, 0.7, 0.8, one has 1/K’ = 158.8418, 49.40725, 

12.74905, and 2γ =  0.6569, 0.5369, 0.2592, respectively. Thus the modified friction 

factor is considerably larger for low porosity in the random configurations, while the 

correction quadratic factor (λ=2) 2γ  is about an order of magnitude larger, implying that 

the inertial effects occur at much smaller Re numbers already. The relative deviation at 

Re=1 for the above porosities is 0.004, 0.01 and 0.02, respectively. Thus at Re<<1 

Darcy’s law holds, yet for Re~1 stationary eddies (dead zones that do not participate in 

the overall mass-flux) exist mainly due to the geometry of the pores. The gradual 

deviation from Darcy’s law is due to the dynamic growth of pre-existing eddies within 

the micro-scale flow field and separation of flow in pores where flow diverged. Small 

deviation between our FE and LB results of Koch & Ladd [15] at creeping flow regime 

might be due to the difference in minimum inter-fibre distance, resolutions, number of 

fibers or boundary (periodic/wall) conditions.  

Since the quadratic fit deteriorates for Re>0.5-2, we again perform the nonlinear fits to 

our data up to about Re~30, see Fig. 7(b), where the variations of the inertial coefficients 

( λ  and γ ) in Eq. (8) are shown as function of porosity. We observe that for 0.45ε > , 

unlike for the ordered arrays and similar to the Ergun equation, the power λ  is 

approximately constant and close to unity, whereas the pre-factor γ  decreases with 

increasing porosity. However, at very low porosities ( 0.45ε < ),λ  increases (γ  

decreases) with decreasing porosity and approaches the expected values ( 2λ ≅ ) for 

hexagonal arrays, corresponding to the appearance of ordered zones. Due to the 

(artificial) gap between fibres/discs, each disc has an effective diameter ( )*
min1d d= + ∆  

greater than its actual value, d. With this effective diameter, it is possible to define an 

effective porosity ( )( )2*
min1 1 1ε ε= − − + ∆ . Inserting min 0.05∆ =  and 0.45ε = , the 

effective transition porosity from disorder to order arrangements is estimated as 

* 0.393ε ≅ . Note that this value is still far above the random close packing limit 

* 0.16rcpε ≅  [74], or the minimum hexagonal lattice * 0.0931hexε ≅ , and still above the 

freezing point * 0.309fε ≅  [75] or melting point * 0.284mε ≅  [75]. In fact it indicates that 
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even small (partial) ordering in the system can drastically affect the transport properties, 

namely permeability [6] and inertial coefficients of porous media. The comparison of the 

quality of the proposed power law fit (Eq. (8)) with the quadratic ( 1λ = ) and cubic 

( 2λ = ) fits at different porosities are given in the appendix A.  

In appendix D, we present a universal scaling law, valid at all porosities, based on 

different definitions of Re and friction factor. It is shown that the inertial effect can be 

better explained as two distinct regimes: (i) cubic correction at Re<1 and (ii) quadratic fit 

at Re>1, with almost the same accuracy as the proposed power law. 
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Figure 7: (a) Variation of modified friction factor as function of normalized velocity for 
disordered media at various porosities3. The solid lines show the best least square fit in 
Eq. (8) in the range of 510 Re 30− < <  (b) Inertial parameters as function of porosity. 

 

As mentioned before, most of the available correlations have the similar viscous porosity 

dependence as the Ergun equation with varying constants CKψ , where our data lead to a 

range of 150 300CKψ< <  [76], see next section. Here we are curious to check the 

quantitative validity of the inertial component of the Ergun equation, i.e. 

( ) 31.75 1 /γ ε ε= − . To this end, we fit our FE results into Eq. (8) assuming constant 

1λ =  (i.e. quadratic correction) for porosities 0.45ε > , i.e. random/disorder co-existence 

arrangements. Fig. 8 shows the comparison between the inertial coefficient γ , obtained 

from our FE simulations (blue squares) and from Ergun’s equation (red line) at various 

                                                 
3 Note that the numerical values in Koch & Ladd [15] were presented in the form of 

( )/KLf F Uµ=  (F is mean drag per unit length), as function of Re. At steady state, the 

average drag force multiplied by the cylinder number density, ξ , is equal to the applied 
pressure gradient, i.e. p Fξ∇ = . Combining this relation with the definition of friction 

factor in our paper, i.e. Eq. (8), leads to ( )( )' 4 1 / KLf fε π= − . 
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porosities. Astonishingly, the excellent agreement of these curves demonstrates the 

validity of the inertial component of the Ergun’s equation, originally obtained for 3D 

spherical beds, also for 2D disordered fibrous media.  
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Figure 8: Variation of inertial coefficient γ , obtained from FE simulations (blue squares) 
and from Ergun equation (red line) at various porosities from disordered configurations. 

 

 

3.2.2 Different definitions of the Reynolds number 

In analyzing flow through porous media, the superficial velocity and pressure drop are 

typically correlated through the particle friction factor, fp, which appears as a function of 

Reynolds number, Re, see Eq. (6). Looking at the literature, several Reynolds numbers 

for porous media are defined, namely      

reference flow Reynolds number:   Re /Udρ µ=                                                           (10) 

particle Reynolds number:              ( )( )Re / 1p Udρ ε µ= −                                           (11) 



 27 

modified Reynolds number:            Re /
k

U Kρ µ=                                                   (12) 

interstitial Reynolds number:          ( )Re /i Udρ εµ=                                                     (13) 

Recently, based on the lubrication effect of the narrow channels, we found a power law 

relationship between the permeability values obtained from fluid flow simulations and 

the mean value of 2nd nearest neighbor surface-to-surface fibre distances gap∆  normalized 

with the fibre diameters [6]. Therefore, another microstructural definition could be the 

“gap” Reynolds number as ( )Re / / Reg gap gapU dρ µ= ∆ ≡ ∆ , where ( )/gap d∆  is a 

function of porosity [6]. In Appendix D we use this definition to get a universal friction 

factor-Reg relation valid at almost all porosities. By increasing the porosity and at the 

limit of very dilute regime (i.e. 1ε →  or 0d → ), by intuition, the Reynolds number 

should increase and approach its maximum limit, Remax for the duct flow (i.e. flow 

between parallel plates). The definitions presented in Eq. (10) and (13) incorrectly 

approach zero values in this limit. On the other hand, the definition in Eq. (12) contains 

the macroscopic permeability which, in general, is an unknown quantity- a priori- on the 

microscopic level. This has motivated us to revisit the definition of the Reynolds number 

in terms of some measurable quantities of the (random) systems such that a proper trend 

is recovered also in dilute regimes. A useful, measurable quantity that is frequently used 

in modeling of porous/fibrous structures is the hydraulic diameter, Dh. When one has 

obstacles like fibres (or particles) instead of straight pores, the hydraulic diameter can be 

defined as: 

( ) ( ) ( )
4 4 particle surface 4

, with
1 1 particle volume 1

v
h v

v v

SV d
D a

S a V d

ε ε ε
ε ε ε

= = = = = =
− − −

  ,            (14) 

with the total volume of the unit cell, V, the total wetted surface, Sv, the specific surface 

area, av. Note that the hydraulic diameter, in this way, is expressed as a function of the 

measurable quantities porosity and specific surface area. The above value of av is for 

circles (cylinders) – for spheres one has av=6/d. Therefore the relation between 

normalized hydraulic diameter Dh/d and porosity for fibres will reduce to: 

( )1
hD

d

ε
ε

=
−

.                                                                                                                   (15) 
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Using the hydraulic diameter as the characteristic length, we define the pore Reynolds 

number as 

hDRe /hUDρ µ= ,                                                                                                            (16) 

and combine it with Eq. (15) which leads to 

( )( )
hDRe / 1Udρ ε µ ε= − ,                                                                                               (17) 

For the case of flow between parallel plates (slab flow), separated by distance hs, the 

hydraulic diameter is 2h sD h=  and the superficial velocity, U is related to the pressure 

gradient as 

2

12
sh

U p
µ

= − ∇ .                                                                                                                 (18) 

Combing Eq. (18) and (16) leads to the maximum Reynolds number 
3

max 2
Re

6
sh

p
ρ
µ

−= ∇ . 

Fig. 9 shows the variation of different definitions of Reynolds numbers as function of 

porosity at relatively low, constant pressure gradient 0.0005p∇ =  [Pa/m]. The non-

Darcy behavior (i.e. high Re numbers) become important due to the combination of high 

porosity and large pressure gradient. As it is seen, by increasing the porosity the 

Reynolds numbers (for all the definitions) increase and the flow approaches the inertial 

regimes even at such a small applied pressure gradient. However, Re (reference Re 

number) and Rei (interstitial Re number) will decrease at porosities 0.95ε >  and 

asymptotically goes to zero. Whereas, the particle Reynolds number (Rep) and the pore 

Reynolds number (Re
hD ) increases and approaches the maximum 

3

max 2
Re 66

6
sh

p
ρ
µ

−= ∇ ≅  

(though it is a sharp increase from Re 0.032
hD ≅  at 0.99ε =  to  Re 66

hD ≅  at 1ε = ). We 

observed that the Re
hD  is nicely fitted to the exponential function with the power ~12.5 

for the wide range of porosities 0.9ε < . Our numerical results show that this scaling 

remains valid also at larger applied pressure gradients (data not shown here). For the 

range of 0.8ε < , the variation of Re
hD  is similar to Reg and Re

hD /Reg is almost constant 

equal to ~1/6.  In Appendix D we use Re
hD  or Reg to get a universal friction factor, valid 

for all porosities for random configurations. 
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Figure 9: Variation of different definitions of Reynolds number as function of porosity at 
constant pressure gradient 0.0005p∇ =  [Pa/m] for random configurations. 

 

3.2.3 Effect of inertia on viscous terms ( 'K ): Carman-Kozeny (CK) equation 

The earliest and most widely applied approach in the porous media literature, for 

predicting the permeability in Stokes regimes, involves capillary models [77] such as the 

one that leads to the Carman-Kozeny (CK) equation. The approach is based on the 

analogy between Poiseuille flow through pipes and pore channels. By applying the 

Poiseuille equation in terms of the hydraulic diameter, ( )/ 1hD dε ε= −  as 
2

32
hD

U p
ε

µ
= − ∇   

and combine it with Darcy’s law, Eq. (1), the normalized permeability is obtained as 

( )
3

'
22

1CK

K
K

d

ε
ψ ε

= =
−

                                                                                                    (19) 

where ψCK is the empirically measured CK factor which represents both the shape factor 

and the deviation of flow direction from that in a duct. It is approximated as ψCK=180 for 
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random packed beds of spherical particles [77] or as in Ergun equation (Eq. (4)) 

ψCK=150. Reported values of the CK factor for fibrous media are varying between 80 and 

320 [78, 79]. The same range of ψCK  has been obtained from the theoretical results of 

Sangani and Acrivos [80].  

The principal limitation of the CK equation is the fact that all geometrical features of the 

medium are lumped into the CK factor. Even though attempts have been made to 

introduce microstructural features of the system into the CK equation by suitably 

modifying the mean hydraulic radius, it is fair to say that, at this stage, microstructural 

features can be included only semi-empirically through experimental determination of 

ψCK. An initial attempt was made by Carman [77] who considered the effect of flow path 

(tortuosity) on ψCK. Writing the CK factor in terms of its components, namely the pore 

shape factor Ф and tortuosity Le/L 

2

e
CK

L

L
ψ  = Φ  

 
                                                                                                                (20) 

The tortuosity, Le/L is the average effective streamline length, Le scaled by system length, 

L. In the original CK equation, for 3D random spherical beds, it was assumed that the 

tortuosity is constant (Le/L = 2 ) and Ф=90, which gives us the CK factor as ψCK =180. 

However, in a recent study [76] we showed that for fibrous media in the creeping 

(viscous) regime the tortuosity is not constant and depends on porosity. The effects of 

several microstructural parameters (namely particle shape, orientation, staggered angle 

etc) on tortuosity in creeping flow regimes have investigated elsewhere [5, 76]. From our 

numerical simulations, we extract the average length of several streamlines (using 8 

streamlines that divide the total mass in-flux into 9 zones, thus avoiding the center and 

the edges). By taking the average length of these lines, the tortuosity can be obtained, 

while by taking the standard deviation of the set of streamlines, the homogeneity of the 

flow can be judged. The tortuosity is plotted in Fig. 10 as function of normalized velocity 

at different porosities. Similar to the modified friction factor, the tortuosity is just a 

function of porosity at creeping flow regimes (horizontal line). However, by turning into 

inertial regimes, it decreases by increasing the flow rate implying that the fluid flows 

mainly on a straight line and become less tortuous. 
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Figure 10: Tortuosity ( )LLe /  plotted as function of normalized velocity for different 

porosities on random configuration. 
 
 
 
4. Summary and conclusions 

 

The paper started with an extensive review of published experimental, numerical and 

theoretical work on the drag law correlations in fluidized beds and porous media with 

special attention to the intermediate-Re numbers (inertial) regime. Deviation from 

Darcy’s law, for Newtonian, incompressible, stationary flow in homogeneous porous 

media, was then investigated numerically using FEM. We refer to Darcy’s law as linear 

(in superficial velocity) while different nonlinear corrections for larger Re can be found 

on the market – from quadratic, intermediate to cubic. Computations were performed on 

model 2D systems with regularly and randomly distributed, rigid, uniform 

cylinders/fibres, oriented perpendicular to the flow direction. The effect of several 

microstructural parameters (namely the shape and structure/arrangement of the fibres) on 

the macroscopic permeability (viscous drag) and inertial coefficients was investigated 
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first, before we turned to random configurations of cylinders. Major conclusions emerge 

from the numerical results and can be listed as follows. 

For ordered and periodic structures: 

•  For small Re<3 (threshold varying with porosity, shape, etc.), a cubic correction 

in velocity ( 2λ =  is the power law for the dimensionless friction factor) works 

perfectly well, with deviations stronger/earlier for larger porosities – given 

constant pressure drop.  

• Based on the generalized, non-dimensional form of the Forchheimer equation, for 

larger Re<30, the nonlinear correction to the Darcy drag law is a power law with 

powers 1 2λ< <  depending on the porosity and the structure (i.e. square or 

hexagonal arrays), and with power decreasing from cubic at low porosity towards 

quadratic at high porosity. 

• The viscous and inertial coefficients are not much affected (maximum variation 

10%) by the staggered unit cell angle, α  in the range of o o30 60α< < . However, 

λ  increases (almost) linearly from 1λ ≅  at o70α =  to 2λ ≅  at o20α = . 

• The shape of the particles has a strong effect on both viscous and inertial drag 

coefficients, especially for porosities lower than approximately 0.9.  

For disordered (random) structures: 

•  For moderate Re, the nonlinear correction to Darcy drag law is well 

approximated, to first order, by a quadratic term in velocity (i.e. with 1λ = ). The 

inertial pre-factor ( ) 31.75 1 /γ ε ε= −  turns out to be very similar to the one used 

in the Ergun equation, originally derived for 3D spherical packed beds in the 

range of 0.45ε >  and Re<30. A nonlinear function fits better including also the 

very small Re data, but best performs a cubic correction up to a critical Re-

number, Rec,  and the same with a quadratic correction above Rec 

• With decreasing porosity a structural transition from disordered to ordered 

packing occurs (for our preparation method) and the inertial coefficients approach 

values closer to those for the hexagonal lattice.  

• The tortuosity (flow path) not only depends on the porosity and the pore structure 

but also on the fluid velocity (flow regime). At steady state and not fully turbulent 
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flows, by increasing the porosity or flow rate, the flow becomes faster and less 

tortuous. 

• A microstructural definition of the Reynolds number, gRe , is based on the mean 

value of the averaged 2nd nearest neighbor surface-to-surface fibre distances gap∆ . 

The “gap” Reynolds number Re /g gapUρ µ= ∆ , is employed to get the universal 

friction factor as function of Reg valid for all Re studied here and in an 

astonishingly wide range of porosities up to even ε~0.9. After scaling/collapsing 

all data, both the non-linear fit with non-integer power ( 1.15λ ≅ ) and the two-

regime approach fit the data for Re<30 very well. 

 

Although disorder was investigated in two dimensions, these results provide insights and 

indicate that similar conclusions might be extended to 3D realistic random porous 

structures. Further work can now be planned on anisotropic and heterogeneous media and 

also the study of the fully turbulent regime. 
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Appendix A.  

Comparison of the fit quality for ordered/disordered configurations 

 

The quality of the proposed power law fit for the modified friction factor, Eq. (8), can be 

evaluated by the relative error, χ  defined as: 

'
fit
'

FEM

1
f

f
χ = −                                                                                                                 (A.1) 
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The variation of χ  as function of */ ReU U ≡  using quadratic (blue), cubic (red) and 

proposed power law fits (black), for (a) square and (b) hexagonal configurations is shown 

in Fig. A1. The power law fits best to our FE results with maximum discrepancy less than 

1%, when the fits are performed in the full range of available data up to Re<30. (Note 

that the cubic fit performs even better, if not perfect, but only up to Re<3 (varying with 

porosity)). 

The quality factor, χ  for random configuration is shown in Fig. A2. Contrary to the case 

of ordered arrays, the quadratic and power law fits have approximately the same accuracy 

(maximum discrepancy less than 2%). However, by decreasing the porosity the quadratic 

correction becomes less accurate.  

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

U/U*

χ

ε = 0.8

ε = 0.6
ε = 0.4

Quadratic, λ = 1

Cubic, λ = 2

Power law, 1<λ <2

(a)

 



 35 

10
-5

10
-4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

U/U*

χ
ε = 0.8

ε = 0.6
ε = 0.4

Power law, 1<λ <2

Quadratic, λ = 1

Cubic, λ = 2

(b)

 

Figure A1: The quality of the quadratic, cubic and proposed power law fit (Eq. (8)) in the 
range of 510 Re 30− < <  for (a) square and (b) hexagonal configurations at different 

porosities. 
 

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

U/U*

χ

ε = 0.8

ε = 0.6
ε = 0.4

Cubic, λ = 2

Quadratic, λ = 1

Power law, 1<λ <2

 

Figure A2: The quality of the quadratic, cubic and proposed power law fit (Eq. (8)) in the 
range of 510 Re 30− < <  for random arrangements at various porosities. 
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Appendix B.  

Mesh sensitivity analysis for random arrangements 

 

Due to the difference in scale between domain size and gap size between neighboring 

fibres, this typically requires local mesh refinement. For different porosities, flow through 

random fibre arrangements (Fig. 6) was simulated at different mesh resolutions (number 

of elements, Ne). The dependence of the solution in terms of the calculated friction factor 

at (a) dense, 0.4ε = , and (b) dilute, 0.8ε = , systems is shown in Fig. B1. The numerical 

results show that not only the inertial term (more elements are required to reach higher 

Re numbers), but also the viscous term (normalized permeability 'K ) depends on the 

resolution, Ne. By increasing the porosity (dilute system) less elements would be 

sufficient to get a convergent solution. 
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Figure B1: The variation of friction factor as function of Reynolds number *Re /U U≡ at 
porosity (a) 0.4ε =  and (b) 0.8ε =  for different resolution (number of elements, Ne). 

 

 

Appendix C.  

An alternative cubic ( 2λ = ) correction fit for the friction factor 

 

The following empirical fit is based on correction of the creep regime (constant 'f  for 

Re Rec< ) with a cubic term ( 2λ = ) and fitting the inertial deviation with another 

correction term, ( )Rem  for Re Rec> . The Rec  is the critical Re number in which the 

deviation starts. For the case of creeping regime one has the cubic correction for 'f  as 

( )' ' 2
2'

1
1 Ref K

K
γ− = + ,                                                                                                (C.1) 

and with the correction at Re Rec>  as 

( ) ( )' ' 2
2'

1
1 Re Ref K m

K
γ− = + .                                                                                    (C.2) 

For the special case of random configuration at 0.4ε = , the numerical fitted values are 
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( ) ( )

' 4
2

2 4
1 1

5.9983 10 , 1.1816, Re 4.3,

Re 1 Re Re , 4.3 10

c

c

K

m a a

γ−

−

 = × = =


= − − = ×

.                                                             (C.3) 

Fig. C1 shows the variation of friction factor as function of Re=U/U* together with the 

proposed fits in Eqs. (C.1), (C.2) and non-integer power law in Eq. (8). The agreement is 

perfect (better than 99.9%) for Re Rec<  using the first correction (Eq. (C.1)) and extends 

with the same quality up to Re~20 with Eq. (C.2). This indicates that another type of 

correction is needed in order to improve the prediction for larger Re. Therefore, there is 

not a single integer power law correction. However, we stop this approach here as the 

non-integer power law (Eq. (8)) is already a good approximation (maximum discrepancy 

less than 1%) in wide rage of Re<30. 
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Figure C1: The variation of friction factor as function of Reynolds number 
*Re /U U≡ for random configuration at porosity 0.4ε = .  The dashed and solid lines 

represent the cubic correction ( 2λ = ) fits in Eqs. (C.1), (C.2) and non-integer power law 
in Eq. (8), respectively. The inset shows the quality of the proposed fits. 
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Appendix D.  

Towards unifying friction factor using different definitions of Re numbers 

 

In this appendix we present unified relations for the friction factor as function of Reg or 

Re
hD , valid at a wide range of porosities for random configurations. The non-linear 

correction in Eq. (8) can be isolated by studying * ' ' 1f f K= − − , i.e. subtracting the 

viscous term, as 

* ' 'Re Re
1hDf K K

λ
λ

λεγ γ
ε

 = ≡  − 
     or     * ' 'Re Regap

gf K K
d

λ
λ

λγ γ
∆ 

= ≡  
 

.            (D.1) 

Note that by replacing Re with Re
hD  or Reg, the values of the fitting power λ  would not 

change. Fig. D1 shows the variation of f * as function of (a) Re
hD  and (b) Reg at various 

porosities for the case of random configurations. Using the alternative definitions of 

Reynolds numbers, i.e. Reg, the values of f * at different porosities collapse on a single 

curve up to astonishingly large porosity, ε~0.9. The weak inertial regime seems to be 

cubic ( 2λ = ), whereas the higher inertial regime fits better to quadratic ( 1λ = ) 

correction. Note that the non-integer power law (Eq. (8)), with 1.15λ ≅ , see the black 

line in Fig. D1(b), is also fit to our data considering the whole range of Re. Our numerical 

results show that one can not get such a scaling also for ordered (i.e. square or hexagonal) 

configurations (data not shown here). 
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Figure D1: The variation of friction factor as function of (a) hydraulic Reynolds number, 
Re

hD  and (b) gap Reynolds number, Reg at various porosities for random configurations. 

The inset shows the zoom. The solid lines show the best fitted cubic and quadratic 
corrections at weak and high inertial regimes, respectively.  
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