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Abstract Buoyancy driven granular convection is stud-
ied for a shallow, vertically shaken granular bed in a quasi
2D container. Starting from the granular Leidenfrost state,
in which a dense particle cluster floats on top of a dilute
gaseous layer of fast particles (Meerson et al. in Phys Rev Lett
91:024301, 2003; Eshuis et al. in Phys Rev Lett 95:258001,
2005), we witness the emergence of counter-rotating convec-
tion rolls when the shaking strength is increased above a criti-
cal level. This resembles the classical onset of convection—at
a critical value of the Rayleigh number—in a fluid heated
from below. The same transition, even quantitatively, is
seen in molecular dynamics simulations, and explained by
a hydrodynamic-like model in which the granular material
is treated as a continuum. The critical shaking strength for
the onset of granular convection is accurately reproduced
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by a linear stability analysis of the model. The results from
experiment, simulation, and theory are in good agreement.
The present paper extends and completes our earlier analysis
(Eshuis et al. in Phys Rev Lett 104:038001, 2010).
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1 Introduction

Granular materials in many instances exhibit fluid-like
behavior, and it is therefore no wonder that much effort has
been devoted during the past few decades to arrive at a hydro-
dynamic description in which these materials are treated as
a continuous medium [1–11]. Indeed, one of the key ques-
tions in granular research today is to what extent continuum
theory can describe the plethora of new and often counter-
intuitive phenomena [9,12–15]. It has become clear that a
variety of phenomena such as clustering [16–20], Couette and
chute flow [21–23] and granular jets [24,25] indeed admit a
quantitative description in terms of hydrodynamic-like mod-
els. This is important not only from a fundamental point of
view—revealing the physical mechanisms behind the collec-
tive behavior of the particles, all the more remarkable when
one realizes that the particles are not bound to each other
by any adhesive forces—but also for innumerable applica-
tions in industry. As an example we mention fluidized beds,
widely used in the chemical industry and typically tens of
meters high, for which a direct calculation of all the indi-
vidual particle trajectories is simply out of the question [26].
Here the continuum description is a welcome, and even nec-
essary, alternative.

In the present paper, which is an extended version of
our earlier publication [27], we apply the hydrodynamic
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Fig. 1 Experiment, MD simulation, and theory: a The quasi 2D exper-
imental setup showing granular convection for F = 6.2 layers of
d = 1.0 mm steel beads shaken at a = 3.0 mm and f = 55.0 Hz
(dimensionless shaking strength S = 110). The adjustable container
length is L/d = 101 in this experiment. Two convective cells are
present here, each consisting of a pair of counter-rotating rolls. The
beads move up in the dilute regions (high granular temperature) and
are sprayed sideways to the three dense clusters (low granular tem-
perature). The sidewalls induce a downward motion due to the extra
dissipation, so we always find a cluster at the wall. Available as movie
1a with the online version of the paper. b Molecular dynamics simu-
lation matching the experimental parameters from above, i.e. F = 6.2
particle layers shaken at a = 3.0 mm and f = 55 Hz (S = 110). The
light colored particles are moving upward and the dark ones down-
ward. Available as movie 1b with the online version of the paper. c The
density profile according to our hydrodynamic theory for F = 6 layers
and a dimensionless shaking strength of S = 110. The color coding
indicates the regions with high density (black) and low density (white).
d The corresponding theoretical velocity profile showing two pairs of
counter-rotating convection rolls

approach to buoyancy driven convection in a strongly shaken
granular bed, see Fig. 1. Taking as a starting point the granular
Leidenfrost state1, in which a dense cluster is elevated by a
gas-like layer of fast particles underneath [28], we find—
when the shaking strength is increased beyond a certain
threshold value—that this state becomes unstable and gives
way to a pattern of convection rolls [29]. These rolls are
very reminiscent of the well-known Rayleigh-Bénard con-
vection rolls in an ordinary fluid, when this is heated from
below and the temperature gradient exceeds a certain critical
value [30–37]. In the ordinary case, the ascending part of
the roll contains hot fluid (which goes upward thanks to its
smaller density) and the descending part of the roll contains
relatively cool, denser fluid. Likewise, in the granular case,
highly mobile particles move up in the dilute regions, are then
sprayed sideways towards denser regions, where they collec-
tively move downwards. The resemblance is indeed so strong
that we will model the granular convection in analogy with
the hydrodynamic theory known from Rayleigh-Bénard con-
vection, adapting it where necessary to the granular context.
Experiment, numerical simulation, and theoretical analysis
are used side by side to supplement and reinforce each other.
Together these three will provide a comprehensive picture of
the convection.

Convection is widespread in vibrated granular systems,
and it plays an important role e.g. in the famous Brazil nut
effect [38]. In that case, however, the bed is fluidized only
mildly, without any pronounced density differences, and the
rolls emerge mainly as a result of the interaction between the
particles and the walls of the container. That is, the convection
is boundary-driven. Almost all studies up to date are dealing
with this type of convection [38–50,52–54,56–63]. However,
buoyancy-driven granular convection can also occur without
direct wall interaction as origin, as was first observed in the
event-driven MD simulations by Ramiírez et al. [51] and
Isobe [64] and later by He et al. [55].

Here we will be concerned with buoyancy-driven convec-
tion, which appears at strong fluidization, in the presence of
considerable density differences. This is a bulk effect and is
only marginally influenced by the boundaries. This type of
convection has been reported much more rarely in the lit-
erature: We are aware of one theoretical study by [65], one
numerical study by [66], while the first experimental observa-
tion of buoyancy-driven granular convection was presented
in [29].

Khain and Meerson [65] studied an infinite two-dimensio-
nal horizontal layer with a (fully elastic) closed top. By
contrast, our experiment has an open surface. However,
just as Khain and Meerson we start our analysis from the

1 Meerson et al. [71] had numerically predicted such a state 2 years
prior to its experimental observation by Eshuis et al. [27]. Meerson
et al. called the state ‘floating cluster’.
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Fig. 2 Experiment: Breakthrough of a convection roll for F = 11.1
layers of steel beads shaken at an amplitude of a = 3.0 mm and fre-
quency f = 45 Hz (dimensionless shaking strength S = 75). These
pictures show approximately one-third of the total container length
L/d = 101, close to the right wall, from an experiment in which the

frequency was linearly increased from f = 42 Hz to f = 48 Hz at
a rate of 90 Hz/min. The breakthrough of the convection roll, starting
from the Leidenfrost state, took place in less than 1 s, i.e. Δ f < 1.5 Hz.
Note the similarity between this figure and figure 2 of Isobe [64] who
performed MD simulations

experimentally observed inhomogeneous Leidenfrost state
in which a solid phase co-exists with a gaseous phase [28],
see Fig. 2. One difference between that work and ours is
that in Khain and Meerson’s case there can be granular con-
vection roles without any density inversion, whereas here we
focus on the case of convection roles with prior density inver-
sion. The most important difference between our work and
that one by Khain and Meerson [65] is that we account for
finite-density corrections to the constitutive relations of the
granular hydrodynamics.

In the numerical model by Paolotti et al. the container
walls were taken to be perfectly elastic, leading to convec-
tion patterns in which the rolls are either moving up or down
along the sidewalls. In our system, with dissipative walls,
they always move down (see Fig. 1). Another difference is
that the convection rolls studied by [66] emerge as instabil-
ities from a state of homogeneous density rather than from
the Leidenfrost state.

In the present paper we will stay close to the experiments
reported in [29], both in the molecular dynamics (MD) sim-
ulations and in the model. As we will see, the observed onset
of convection can be quantitatively explained by a linear sta-
bility analysis around the Leidenfrost state.

The paper is organized as follows: In Sect. 2 we introduce
the setup and give the main experimental results, followed in
Sect. 3 by a description of our code used in the MD simu-
lations. In Sect. 4 we develop the hydrodynamic model and
derive the equations plus boundary conditions on which we
then proceed to perform the stability analysis. The theoreti-
cally determined value of the shaking strength beyond which
granular convection sets in is found to be in perfect agree-
ment with experiment and MD simulation. The comparison
between experiment, numerics, and theory is continued in
Sect. 5, where we compare the density, velocity, and (gran-
ular) temperature fields as observed by all three methods.
Again we find good agreement. Finally, Sect. 6 contains con-
cluding remarks. The paper is accompanied by two Appen-
dices: The first of these discusses the shear viscosity μ for

our granular system, while the second gives the relations for
the pressure, dissipation, and transport coefficients used in
the theoretical model.

2 Experimental setup and results

Our experimental setup (Fig. 1) consists of a quasi 2D Per-
spex container of dimensions L × D × H with an adjustable
container length L = 10 − 202 mm, a depth D = 5 mm,
and a height H = 150 mm. The container is partially filled
with steel beads of diameter d = 1.0 mm, density ρ =
7,800 kg/m3, and coefficient of normal restitution e ≈ 0.9.
The setup is mounted on a sinusoidally vibrating shaker with
tunable frequency f and amplitude a. The experiments are
recorded with a high-speed camera capturing 2,000 frames
per run at a frame rate of 1,000 frames per second.

The natural dimensionless control parameters to analyse
the experiments are: (i) the shaking parameter for strong flu-
idization [28,29,67]:

S = a2ω2

gd
, (1)

with ω = 2π f and g = 9.81 m/s2. The shaking strength
S is the ratio of the kinetic energy inserted into the system
by the vibrating bottom and the potential energy associated
with the particle diameter d; (ii) the number of bead layers
F , defined as F ≡ Npd2/(L D), where Np is the number of
particles (determined from the total mass); (iii) the inelastic-
ity parameter ε = (1 − e2); and (iv) the aspect ratio L/d.
The parameter ε is taken to be constant in this paper, since we
ignore the velocity dependence. We use steel beads through-
out unless otherwise stated. The aspect ratio L/d is varied
in the range of L/d = 10 − 202 by adjusting the container
length L in steps of 4 mm; So, we will systematically vary all
dimensionless parameters (except the inelasticity parameter
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Fig. 3 Experiment versus MD
simulation: Onset of convection.
a–d The onset of convection for
F = 11.1 layers of steel beads
in a container of length
L/d = 101 shaken at an
amplitude of a = 3.0 mm and
frequency f = 45 Hz (S = 75).
The frequency was linearly
increased in the range of
f = 42 − 48 Hz at 90 Hz/min.
The transition from the steady
Leidenfrost state to fully
developed convection took place
in 1.5 s, i.e. Δ f < 2.3 Hz.
Available as movie 2a with the
online version of the paper. e–h
The breakthrough process in a
molecular dynamics simulation
equivalent to the experiment:
F = 11.1, shaking amplitude
a = 3.0 mm, and linearly
increased frequency at 90
Hz/min with f = 44 Hz in e.
The onset of convection takes
place at a frequency of f = 45
Hz (S = 75). Available as
movie 2b with the online
version of the paper

(a) (b)

(c) (d)

(e) (f)

(g) (h)

ε) by changing the amplitude a, the frequency f , the number
of layers F and the container length L .

What is the origin of convection in our system? For only a
small number of layers convection arises from the bounc-
ing bed base state (where the granular bed bounces in a
similar way as a single particle would do), which occurs
for relatively weak fluidization [29]. The vastly more typ-
ical transition to convection is observed for high fluidiza-
tion and is formed out of the Leidenfrost state, in which a
cluster of slow almost immobile particles is supported by a
gaseous region of fast particles underneath. Figure 2 shows
how a number of particles becomes more mobile (higher
granular temperature) than the surrounding ones and cre-
ates an opening in the floating cluster of the Leidenfrost
state. These particles have picked up an excess of energy
from the vibrating bottom (due to a statistical fluctuation)
and collectively move upwards, very much like the onset
of Rayleigh-Bénard convection in a classical fluid heated
from below. This upward motion of the highly mobile beads
must be balanced by a downward movement of neighbor-

ing particles, leading to the formation of a convection roll-
pair.

The downward motion is most easily accomplished at the
sidewalls, due to the extra source of dissipation (i.e. the fric-
tion with the walls), and for this reason the first convection
roll is always seen to originate near one of the two sidewalls.
As shown in Fig. 3, this first roll within a second triggers the
formation of rolls along the entire length of the container,
leading to a fully developed convection pattern.

To find out how these fully developed convection patterns
depend on the dimensionless control parameters, we system-
atically vary them individually, starting with the aspect ratio
L/d.

Figure 4 shows that when the aspect ratio L/d is increased,
the number of convection rolls increases. Let k be the number
of observed convective cells, each consisting of a pair of
counter-rotating rolls. We find that k grows linearly with the
aspect ratio L/d, see Fig. 4e. This indicates that the cells
have an intrinsic typical length Λ independent of the aspect
ratio. This is again similar to the rolls in Rayleigh-Bénard
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(a)

(b)

(c)

(d)

(e)

Fig. 4 Experiment: The number of convective cells k for increasing
container length L/d, keeping the number of layers fixed at F = 6.2 and
the shaking strength at S = 63 (a = 2.5 mm and f = 50 Hz): a k = 1
(one pair of convection rolls), b k = 2 (two pairs), c k = 3, d k = 4. e
The number of convective cells k as a function of the container length
L/d for the same parameter values as in a–d. The dotted vertical lines
denote a situation in which the system continuously switches between
two states with a different number of rolls, as explained in the text.
The straight line is a guide to the eyes. The intrinsic cell length Λ for
this (S, F)-combination, determined from the linear fit through the data
points, is Λ = 43 mm. Experiments shown in a–d are available as movie
3 with the online version of the paper

convection for a normal fluid, which also have an intrinsic
length. The “intrinsic” cell length (Λ = 43 mm for F =
6.2 particle layers at a fixed shaking strength S = 63) is
determined from the linear fit through the experimental data
and is indicated by the straight, black line in Fig. 4e.

The dotted vertical lines in Fig. 4e represent an interest-
ing feature. For these aspect ratios the system continuously

switches between two states: The length of the system here is
either too long or too short to fit k intrinsic cell lengths, and
the system tries to release this frustration by going towards a
situation with one convection roll more or less. But the sys-
tem cannot comfortably accommodate this state either, since
at that moment there is no cluster at one of the sidewalls, and
due to the extra dissipation with the wall the previous frus-
trated situation with an integer number of cells k is restored,
repeating the series of events indefinitely. Only for a very
small aspect ratio of L/d we observed a stable state with
k = 1/2, i.e. one convection roll with one cluster. The aspect
ratio here is too small to allow for any switching to a neigh-
boring state, so this specific situation is stabilized.

The influence of the other two parameters, the shaking
parameter S and the number of layers F , will be presented
after the introduction of the numerical simulations in Sect. 3
and the theoretical stability analysis in Sect. 4.

3 Molecular dynamics simulations

In order to investigate information not available in exper-
iment, we have also performed molecular dynamics (MD)
simulations, using a granular dynamics code [68,69] to
numerically study the shaken quasi 2D granular material. In
such a model all the forces between the particles that are in
contact with each other (or with the wall) are known, and also
the positions and velocities of the particles, so the MD code
calculates the particle trajectories from Newton’s equations
of motion:

m
d2ri

dt2 = fi + mg for the translational motion, (2)

Ii
dωi

dt
= qi for the rotational motion, (3)

with ri the position of particle i, fi = ∑
fi the total force

on particle i, g the gravitational acceleration, Ii the moment
of inertia, ωi = dϕi/dt the angular velocity, and qi the total
torque on the particle. The inelastic particle–particle interac-
tion is modelled by a 3-D soft sphere collision model, includ-
ing tangential friction [68,69]. The coefficient of restitution
e is incorporated in this soft sphere model following Eq. (27)
of Deen et al. [69], and the restitution coefficient effectively
also takes care of the damping in the model. The particle–wall
interaction is modelled in the same way the particle–particle
interaction is handled, so the wall is treated as a particle only
now with infinite mass and radius.

In our simulations we have used the same parameters and
dimensions as in the equivalent experiment: The container is
filled with Np = L/d×D/d×F identical spherical particles,
i.e., the number which corresponds to the filling height F .
The coefficient of restitution e and friction coefficient for the
particle–particle and particle–wall interactions determine the
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total energy dissipation in the system. Note that due to the
interaction with the wall the aspect ratio of the cell matters
and we pick the same as in the experiments.

The friction coefficient is set to 0.03, while the coefficient
of normal restitution (which for simplicity is assumed to be
velocity-independent) is fitted to correctly describe the exper-
imentally found onset for the case of F = 10 layers, yielding
the very realistic values of e = 0.957 for steel and e = 0.905
for glass beads for both particle-particle and particle-wall
interactions2.

The numerical results for Sc(F) are shown in Fig. 9, too,
and they well agree with the experimental results within
numerical and experimental precision. Snapshots from the
numerical simulations are shown in Figs. 3 and 1, together
with the corresponding experiments, again showing a one-
to-one correspondence.

4 Theoretical model

In this section we are going to explain the experimental and
numerical results by a hydrodynamic theory. Our model is
analogous to the one used to determine the onset of Rayleigh-
Bénard convection in classical fluids in which linear stability
analysis is applied to the homogeneous base state [22,32].
We perform basically the same procedure with a more intri-
cate base state, namely the inhomogeneous Leidenfrost state
with the dense cluster on top of the gaseous region, and with
various empirical constitutive relations due to the granular
nature of the problem.

We will show that the linear stability analysis is able to pre-
cisely reproduce the critical shaking strength for which the
onset of convection is observed in experiment. Moreover,
we will show that the theoretically determined cell length
Λ(S, F, ε) reasonably agrees with the experimental obser-
vations.

4.1 Granular hydrodynamics

The basis of our analysis is formed by the hydrodynamic
equations, which describe the three hydrodynamic contin-
uum fields: The number density n(x, y, t), the velocity field
u(x, y, t), and the temperature T (x, y, t) [32]. Our setup
is quasi 2D so we restrict the analysis to two spatial direc-
tions (x, y), which can obviously be generalized to 3D as
well. Here we present an essential model that includes all
the elemental features necessary to capture the phenomena
observed.

2 Note that higher values for e are obtained when a higher friction
coefficient is used, reflecting that the total energy dissipation in the
system must stay constant.

The first continuum field, the density, is described by the
continuity equation (or mass balance) and describes how the
density varies in time:

∂n

∂t
+ u · ∇n + n∇ · u = 0. (4)

Secondly, the time-variations of the components of the
two-dimensional velocity field u are governed by the Navier–
Stokes equation (i.e. the momentum or force balance):

mn

(
∂u
∂t

+ u · ∇u
)

= mng − ∇ p

+∇ ·
(
μ
[
∇u + (∇u)T

])
+ ∇ (λ∇ · u), (5)

in which m is the mass of a single particle, p the pressure,
g the gravitational acceleration, μ the shear viscosity and λ

the second viscosity. The velocity field u is a vector in two
dimensions, so Eq. (5) actually represents two equations:

mn

[
∂ux

∂t
+
(

ux
∂ux

∂x
+ uy

∂ux

∂y

)]

= − ∂p

∂x

+ 2
∂

∂x

(

μ
∂ux

∂x

)

+ ∂

∂y

[

μ

(
∂ux

∂y
+ ∂uy

∂x

)]

+ ∂

∂x

[

λ

(
∂ux

∂x
+ ∂uy

∂y

)]

, (6)

mn

[
∂uy

∂t
+
(

ux
∂uy

∂x
+ uy

∂uy

∂y

)]

= − mng − ∂p

∂y

+ 2
∂

∂y

(

μ
∂uy

∂y

)

+ ∂

∂x

[

μ

(
∂ux

∂y
+ ∂uy

∂x

)]

+ ∂

∂y

[

λ

(
∂ux

∂x
+ ∂uy

∂y

)]

. (7)

The third continuum field is the granular temperature,
which is defined as the velocity fluctuations of the particles
around the mean velocity, i.e. 1

2 kB T = 1
2 m

(〈u 2〉 − 〈u 〉2
)

with kB = 1. The temperature change in time is described
by the energy equation or energy balance:

n
∂T

∂t
+ nu · ∇T = ∇ · (κ∇T ) − p (∇ · u) − I, (8)

where κ is the thermal conductivity and I is the dissipative
term due to the inelastic particle collisions. In Eq. (8) we
neglected terms which are quadratic in ∇u.

4.2 Constitutive relations

The granular hydrodynamic equations (4)–(8) are to be com-
plemented by constitutive relations for the pressure field p,
the energy dissipation rate I , and the transport coefficients
κ, μ, and λ. Since our system combines dilute, gaseous
regions with clusters where the density approaches the closed
packed value, we need to take excluded volume effects into
account.
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First we have the equation of state for a two dimensional
granular fluid [28,70,71]:

p = nT
nc + n

nc − n
, with nc = 2√

3d2
, (9)

which is the ideal gas law with a VanderWaals-like correction
[70] to account for the excluded area. Here nc = 2/

√
3d2

the number density of a hexagonal close-packed crystal.
The second constitutive relation concerns the energy dis-

sipation rate I [28,70,71]:

I = ε

γc�
nT

√
T

m
. (10)

Here the inelasticity parameter ε = (1 − e2), which we
already identified as one of the experimental control parame-
ters of this system, shows up also in the theoretical model.
The value for the constant γc = 2.26 has been adopted from
[70] in the same spirit as above.

The first transport coefficient is the thermal conductivity
κ [28,70,71]:

κ = n (α� + d)2

�

√
T

m
, (11)

with the mean free path being given by � = (nc −
n)/[√8nd(nc − an)] following [70], with the constant a =
1 − √

3/8 = 0.39 and nc the number density of a hexagonal
close-packed crystal. For the constant α we adopted the value
α = 0.6 from [71].

In the literature various choices have been proposed for the
shear viscosity μ in granular systems [55,59,72–74], and as it
turns out it is quite critical which one we take. In Appendix A
we will show that the results for our system strongly depend
on the relation chosen for μ by using some of the available
relations. We find good agreement with experiment when we
take:

μ = mPr κ, (12)

in which Pr is the Prandtl number, which measures the
ratio between diffusive momentum and energy transfer. This
dimensionless number is in principle unknown and we will
show that in our system a constant Pr of order unity is consis-
tent with our results, just as it is for molecular gases. Because
the viscosity μ for our granular system behaves so analo-
gously to classical fluids, we use the Stokes approximation
(strictly speaking only applicable for incompressible fluids,
for which the bulk viscosity is zero) to get the simplest expres-
sion for the second viscosity λ:

λ = − 2

3
μ, (13)

even though our gas is compressible.

4.3 Linearization around the Leidenfrost state

The model presented above is an extension of the one used in
[28]. The Leidenfrost state nL(y), TL(y) is obtained numer-
ically as described in that paper. We proceed to linearize (4),
(6), (7), and (8) around this state by adding a small perturba-
tion,

n(x, y, t) = nL(y) + δn(x, y, t), (14)

ux (x, y, t) = 0 + δux (x, y, t), (15)

uy(x, y, t) = 0 + δuy(x, y, t), (16)

T (x, y, t) = TL(y) + δT (x, y, t). (17)

This perturbed Leidenfrost state is inserted in the four
hydrodynamic equations (4), (6), (7), and (8). We leave this
as an exercise to the reader.

4.4 Boundary conditions

The linearized hydrodynamic equations are accompanied by
boundary conditions for the perturbed density, velocities,
and temperature. First, conservation of particles must apply.

Since the Leidenfrost density obeys
∫ L

0 dx
∫∞

0 dy nL(y) =
Ntotal = Fncd2, the integral over the perturbed number den-
sity must vanish,

L∫

0

dx

∞∫

0

dy δn(x, y, t) = 0. (18)

Here the number of layers F (already identified as a con-
trol parameter in the experiments) arises as a relevant control
parameter also in the theoretical model. As we will see later,
this conservation condition (18) will not be used directly in
the mathematical solution of the model, but still reflects an
essential feature of the system.

We assume that the velocity field in the x-direction has an
extremum (either a maximum or a minimum) at the bottom
of the container, so the derivative of δux should be zero here:

∂(δux )

∂y

∣
∣
∣
y=0

= 0. (19)

The velocity component in the y-direction necessarily
vanishes at the bottom, and consequently

δuy(x, 0, t) = 0. (20)

For the boundary conditions at the top (y → ∞) we
assume that the velocity field vanishes altogether, leading
to the following relations for the perturbed velocity fields:

lim
y→∞ δux (x, y, t) = 0, (21)

lim
y→∞ δuy(x, y, t) = 0. (22)
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As we impose a granular temperature T0 at the bottom
[with T0 ∝ m(a f )2 directly related to the kinetic energy
imparted to the particles by the vibrating bottom], the bound-
ary condition for the perturbed temperature should be zero:

δT (x, 0, t) = 0. (23)

Finally we have the boundary condition for the granular tem-
perature at the top, which we assume to vanish just like the
velocity field, which stands to reason, since T (x, y, t) repre-
sents the velocity fluctuations. So, the condition for perturbed
temperature at the top becomes

lim
y→∞ δT (x, y, t) = 0. (24)

As will be seen in Sect. 4.6, these seven boundary conditions
are sufficient to solve the system of equations.

4.5 Non-dimensionalizing the hydrodynamic equations

The next step is to non-dimensionalize our linearized hydro-
dynamic equations and boundary conditions. To this end we
first have to choose non-dimensional units. First, the den-
sity is made dimensionless by the number density nc of a
hexagonal close packing in 2D:

n 
→ ñ = n

nc
, with nc = 2√

3d2
. (25)

Secondly, the temperature field is made dimensionless by
the imposed granular temperature at the bottom:

T 
→ T̃ = T

T0
. (26)

For the dimensionless length scales in our system we can
choose between the container length L and the particle diam-
eter d. Since the latter one is kept constant throughout our
study, and the first one not, we non-dimensionalize the length
scales as follows:

x 
→ x̃ = x

d
, (27)

y 
→ ỹ = y

d
, (28)

and we do the same for the mean free path

� = 1√
8nd

nc − n

nc − an

→ �̃ = �

d

=
√

3

32

[
1

ñ

(
1 − ñ

1 − añ

)]

, (29)

with a = 1 − √
3/8 [70].

To make the time t dimensionless we make use of the
dimensionality of the granular temperature (energy), the
mass of one particle m, and the diameter d:

t 
→ t̃ = t

√
T0/m

d
, (30)

and consequently the velocity fields ux and uy become in
dimensionless form:

ux 
→ ũx = ux√
T0/m

, (31)

uy 
→ ũ y = uy√
T0/m

. (32)

By inserting the dimensionless fields into the hydrody-
namic equations we deduce the non-dimensional form of
p, I , and the transport coefficients of (9)–(13). The equa-
tion of state then becomes:

p̃ = p

ncT0
= ñT̃

1 + ñ

1 − ñ
. (33)

The dimensionless form of the energy dissipation rate I is:

Ĩ = I d

ncT0
√

T0/m
= ε

γ

ñT̃
√

T̃

�̃
. (34)

The transport coefficient κ reads in dimensionless form

κ = n (α� + d)2

�

√
T

m

→ κ̃ = κ

ncd
√

T0/m

=
(
α�̃ + 1

)2

�̃
ñ
√

T̃ . (35)

Equation (12) relates the shear viscosity μ to the thermal
conductivity κ , so μ now reads in dimensionless form:

μ̃ = Pr κ̃, (36)

and from (13) the second viscosity λ follows immediately:

λ̃ = −2

3
Pr κ̃ . (37)

We can now write the hydrodynamic equations in dimen-
sionless form. For every equation we have sorted the terms up
to O(δ2) in the following way: δñ, δũx , δũ y , and δT̃ , each
on its own line, this reflects the fact that the total perturbation
is a four-vector with these four components. The structure of
the problem (and of its solution) becomes much more trans-
parent if we adhere to this vectorial notation. The linearized
continuity equation becomes in dimensionless form:

∂(δñ)

∂ t̃
= 0 − ñL

∂(δũx )

∂ x̃
− ∂ ñL

∂ ỹ
δũ y − ñL

∂(δũ y)

∂ ỹ
+ 0. (38)

The dimensionless form of the force balance in the x-
direction becomes:

ñL
∂(δũx )

∂ t̃
= − ∂ p̃

∂ ñ

∣
∣
∣
L

∂(δñ)

∂ x̃
+ 2μ̃L

∂2(δũx )

∂ x̃2

+ ∂

∂ ỹ

[

μ̃L
∂(δũx )

∂ ỹ

]

+ λ̃L
∂2(δũx )

∂ x̃2

+ ∂

∂ ỹ

[

μ̃L
∂(δũ y)

∂ x̃

]

+ λ̃L
∂2(δũ y)

∂ x̃∂ ỹ

− ∂ p̃

∂ T̃

∣
∣
∣
L

∂(δT̃ )

∂ x̃
. (39)
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The force balance for the y-direction takes the following
dimensionless form:

ñL
∂(δũ y)

∂ t̃
= − 1

S
δñ − ∂

∂ ỹ

(
∂ p̃

∂ ñ

∣
∣
∣
L

)

δñ − ∂ p̃

∂ ñ

∣
∣
∣
L

∂(δñ)

∂ ỹ

+ μ̃L
∂2(δũx )

∂ x̃∂ ỹ
+ ∂λ̃L

∂ ỹ

∂(δũx )

∂ x̃
+ λ̃L

∂2(δũx )

∂ x̃∂ ỹ

+ 2
∂μ̃L

∂ ỹ

∂(δũ y)

∂ ỹ
+ 2μ̃L

∂2(δũ y)

∂ ỹ2 + μ̃L
∂2(δũ y)

∂ x̃2

+ ∂λ̃L

∂ ỹ

∂(δũ y)

∂ ỹ
+ λ̃L

∂2(δũ y)

∂ ỹ2

− ∂

∂ ỹ

(
∂ p̃

∂ T̃

∣
∣
∣
L

)

δT̃ − ∂ p̃

∂ T̃

∣
∣
∣
L

∂(δT̃ )

∂ ỹ
. (40)

In the first term on the right hand side appears the dimen-
sionless shaking strength S:

S = T0

mgd
with T0 ∝ m(a f )2. (41)

This S was already introduced as the governing shaking
parameter in the context of our experiments, see (1). Note that
we did not use the more familiar dimensionless acceleration
Γ = aω2/g. This choice is now justified by hydrodynamic
theory.

Finally, the energy balance in dimensionless form becomes:

ñL
∂(δT̃ )

∂ t̃
=
[

− ∂ Ĩ

∂ ñ

∣
∣
∣
L

+ ∂

∂ ỹ

(
∂κ̃

∂ ñ

∣
∣
∣
L

)
∂ T̃L

∂ ỹ
+ ∂κ̃

∂ ñ

∣
∣
∣
L

∂2T̃L

∂ ỹ2

]

δñ

+ ∂κ̃

∂ ñ

∣
∣
∣
L

∂ T̃L

∂ ỹ

∂(δñ)

∂ ỹ
− p̃L

∂(δũx )

∂ x̃

− ñL
∂ T̃L

∂ ỹ
δũ y − p̃L

∂(δũ y)

∂ ỹ

+
[

∂

∂ ỹ

(
∂κ̃

∂ T̃

∣
∣
∣
L

)
∂ T̃L

∂ ỹ
+ ∂κ̃

∂ T̃

∣
∣
∣
L

∂2T̃L

∂ ỹ2 − ∂ Ĩ

∂ T̃

∣
∣
∣
L

]

δT̃

+
(

∂κ̃L

∂ ỹ
+ ∂κ̃

∂ T̃

∣
∣
∣
L

∂ T̃L

∂ ỹ

)
∂(δT̃ )

∂ ỹ
+ κ̃L

∂2(δT̃ )

∂ x̃2

+ κ̃L
∂2(δT̃ )

∂ ỹ2 (42)

The non-dimensionalization of the boundary conditions
(18)–(24) is trivial.

4.6 Formulation of the eigenvalue problem

Having brought the linearized hydrodynamic equations plus
the accompanying boundary conditions in dimensionless
form, we now formulate the eigenvalue problem. In order
to do so we apply the following Ansatz for the form of the

perturbations:

δñ = N (ỹ)eikx x̃ eγ t̃ , (43)

δũx = U (ỹ)eikx x̃ eγ t̃ , (44)

δũ y = V (ỹ)eikx x̃ eγ t̃ , (45)

δT̃ = Θ(ỹ)eikx x̃ eγ t̃ . (46)

Here N (ỹ), U (ỹ), V (ỹ), and Θ(ỹ) are the vertical pro-
files of the perturbation fields. The terms with eikx x̃ con-
tain the wave number kx , expressing the periodicity in the x-
direction, see for example Fig. 1. This wavenumber is related
to the natural wavelength Λ. As we will see later, the wave-
length we observe in practice can deviate somewhat from
this natural wavelength, because the wavelength has to be
accommodated in the container length L . In the factor eγ t̃

we have γ = γR + iγI , where the real part γR denotes the
growth/decay rate of the perturbation and the imaginary part
γI indicates the frequency of the wave, i.e., whether it is trav-
elling wave or not. It turns out that the solution of our model
does not show any travelling waves, meaning that γI = 0 and
hence γ = γR . This matches the experimentally observed
instabilities of the current study, which are found to be sta-
tionary. So when γ < 0 the Leidenfrost state is stable and
when γ > 0 it is unstable. In the latter case the Leidenfrost
state gives way to convection rolls for this specific value of
γ , i.e. the eigenvalue, which we also called the growth rate
of the perturbation.

This Ansatz is inserted in the four hydrodynamic equa-
tions, so the continuity equation (38) takes the form:

0 = γ N + ñL kxU + ∂ ñL

∂ ỹ
V + ñL V ′ + 0. (47)

The force balance for the x-direction (39) transforms into:

0 = − ∂ p̃

∂ ñ

∣
∣
∣
L

kx N +
[
ñLγ + (

2μ̃L + λ̃L
)

k2
x

]
U − ∂μ̃L

∂ ỹ
U ′

− μ̃LU ′′ + ∂μ̃L

∂ ỹ
kx V + (

μ̃L + λ̃L
)

kx V ′

− ∂̃p

∂ T̃

∣
∣
∣
L

kxΘ, (48)

and the force balance for the y-direction (40) becomes:

0 =
[

1

S
+ ∂

∂ ỹ

(
∂ p̃

∂ ñ

∣
∣
∣
L

)]

N + ∂ p̃

∂ ñ

∣
∣
∣
L

N ′ − ∂λ̃L

∂ ỹ
kxU

− (μ̃L + λ̃L
)

kxU ′ +
[
ñLγ + μ̃Lk2

x

]
V

−
[

2
∂μ̃L

∂ ỹ
+ ∂λ̃L

∂ ỹ

]

V ′ − [
2μ̃L + λ̃L

]
V ′′

+ ∂

∂ ỹ

(
∂̃p

∂ T̃

∣
∣
∣
L

)

Θ + ∂̃p

∂ T̃

∣
∣
∣
L
Θ ′. (49)
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Finally, the energy balance (42) takes the form:

0 =
[

∂ Ĩ

∂ ñ

∣
∣
∣
L

− ∂

∂ ỹ

(
∂κ̃

∂ ñ

∣
∣
∣
L

)
∂ T̃L

∂ ỹ
− ∂κ̃

∂ ñ

∣
∣
∣
L

∂2T̃L

∂ ỹ2

]

N

− ∂̃κ

∂ ñ

∣
∣
∣
L

∂ T̃L

∂ ỹ
N ′ + p̃LkxU + ñL

∂ T̃L

∂ ỹ
V + p̃L V ′

+
[

ñLγ − κ̃Lk2
x − ∂

∂ ỹ

(
∂κ̃

∂ T̃

∣
∣
∣
L

)
∂ T̃L

∂ ỹ

− ∂κ̃

∂ T̃

∣
∣
∣
L

∂2T̃L

∂ ỹ2 + ∂ Ĩ

∂ T̃

∣
∣
∣
L

]

Θ

−
[
∂κ̃

∂ ỹ
+ ∂κ̃

∂ T̃

∣
∣
∣
L

∂ T̃L

∂ ỹ

]

Θ ′ + κ̃LΘ ′′. (50)

These four equations (47)–(50) can be written as a 4 × 4
matrix problem for the column vector (N , U, V,Θ) and its
first and second derivative:

A · d2

d ỹ2

⎛

⎜
⎜
⎝

N
U
V
Θ

⎞

⎟
⎟
⎠+ B · d

d ỹ

⎛

⎜
⎜
⎝

N
U
V
Θ

⎞

⎟
⎟
⎠+ C ·

⎛

⎜
⎜
⎝

N
U
V
Θ

⎞

⎟
⎟
⎠ = 0, (51)

The elements of the 4 × 4 matrices A, B, and C can be read
from the hydrodynamic equations (47)–(50):

A =

⎛

⎜
⎜
⎝

0 0 0 0
0 −μ̃L 0 0
0 0 −2μ̃L − λ̃L 0
0 0 0 κ̃L

⎞

⎟
⎟
⎠ , (52)

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 ñL 0

0 −∂μ̃L

∂ ỹ
(μ̃L +λ̃L )kx 0

∂ p̃
∂ ñ

∣
∣
L −(μ̃L +λ̃L )kx −2 ∂μ̃L

∂ ỹ
− ∂λ̃L

∂ ỹ
∂ p̃

∂ T̃

∣
∣
L

−∂κ̃

∂ ñ

∣
∣
L

∂ T̃L
∂ ỹ

0 p̃L −∂κ̃L
∂ ỹ

− ∂κ̃

∂ T̃

∣
∣
L

∂ T̃L
∂ ỹ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(53)

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

γ ñL kx ;
− ∂ p̃

∂ ñ

∣
∣
L kx ñLγ + (2μ̃L + λ̃L )k2

x ;
1
S + ∂

∂ ỹ

(
∂ p̃
∂ ñ

∣
∣
L

)
− ∂λ̃L

∂ ỹ
kx ;

− ∂

∂ ỹ

(
∂κ̃

∂ ñ

∣
∣
L

)
∂ T̃L
∂ ỹ

p̃L kx ;
+ ∂ Ĩ

∂ ñ

∣
∣
L − ∂κ̃

∂ ñ

∣
∣
L

∂2 T̃L
∂ ỹ2

; ∂ ñL
∂ ỹ

0

; ∂μ̃L

∂ ỹ
kx −∂ p̃

∂ T̃

∣
∣
L kx

; ñLγ +μ̃L k2
x

∂

∂ ỹ

(
∂ p̃

∂ T̃

∣
∣
L

)

; ñL
∂ T̃L
∂ ỹ

ñLγ − ∂

∂ ỹ

(
∂κ̃

∂ T̃

∣
∣
L

)
∂ T̃L
∂ ỹ

−̃κL k2
x − ∂κ̃

∂ T̃

∣
∣
L

∂2 T̃L
∂ ỹ2 + ∂ Ĩ

∂ T̃

∣
∣
L

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (54)

The matrices A, B and C are functions of the height ỹ and
evidently all of them are evaluated at the unperturbed Lei-
denfrost state (̃nL( ỹ), 0, 0, T̃L( ỹ)). To calculate the matrices
A, B and C one needs the constitutive relations and their vari-
ous derivatives (pressure p̃, energy dissipation rate Ĩ , thermal

conductivity κ̃ , shear viscosity μ̃, and second viscosity λ̃).
These are given in Appendix B.

Note that the first equation in (51) is of first order, whereas
the other three are of second order, such that the seven bound-
ary conditions from Sect. 4.4 completely determine the solu-
tion.

4.7 Linear stability analysis using spectral methods

To solve the eigenvalue problem (51), consisting of four cou-
pled ordinary differential equations, standard methods for
linear equations can be applied.

The goal is to locate the onset of convection by finding
the eigenvalue γ for which the Leidenfrost state becomes
unstable (i.e. γ > 0). The wave number kx corresponding to
the most unstable mode (maximal γ -value) determines the
dominant perturbation that will start the convection for this
particular Leidenfrost state.

We use the spectral-collocation method to perform the
linear stability analysis. Spectral methods find their origin
in the 1940s and were revived by Orszag [75] in the 1970s,
after which they became mainstream in scientific compu-
tation [76]. These methods are designed to solve differen-
tial equations, making use of trial functions (also known as
expansion or approximating functions) and the so-called test
or weight functions.

The trial functions represent the approximate solution
of the differential equations. They are linear combinations
of a suitable family of basis functions, e.g. trigonometric
(Fourier) polynomials; these functions are global in contrast
to the basis functions used for instance in finite-element or
finite-difference methods, which are local. The test functions
guarantee that the differential equations and the boundary
conditions are satisfied at the collocation points.

Thanks to the linearity of the problem we have various
options for the trial basis functions, namely trigonometric
or Fourier polynomials, Chebyshev polynomials, Legendre
polynomials, and many more. In the y-direction our system
of equations is non-periodic, so Fourier polynomials are not
suitable as trial basis functions along the y-direction. Cheby-
shev polynomials are the next candidate [76] and have proven
to be successful in performing a linear stability analysis in
granular studies by Alam and Nott [21,23] in Couette flow
and Forterre and Pouliquen [22] in chute flow. So it is natural
to adopt this method also in our case and indeed, it turns out to
be convenient for our current stability analysis of the Leiden-
frost state. The Chebyshev polynomials Tk(y) are defined as
follows on the y = [−1, 1] Chebyshev domain [76]:

Tk(y) = cos
(

k cos−1 y
)

, k = 0, 1, 2 . . . (55)

A particular convenient choice for the collocation points y j

in the case of Chebyshev polynamials is the Gauss-Lobatto

123



Buoyancy driven convection in shaken granular matter 903

(a) (b)

Fig. 5 Theory: a The density profile ñ(ỹ) for the Leidenfrost state for
F = 11 layers and shaking strength S = 200, used as a base state for
the linear stability analysis. b The growth rate γ as a function of the
wave number kx for the Leidenfrost solution depicted in a. For all grey
crosses γ < 0, meaning that the Leidenfrost state is stable. The black

dots indicate the unstable modes corresponding to γ > 0. The most
unstable mode, marked by the grey square, defines the dominant wave
number (kx,max = 0.095) and hence the length of the convection cell:
Λ = 2π/kx,max = 66 particle diameters

choice, which fixes the trial functions at the points:

y j = cos

(
π j

N

)

, j = 0, . . . , N , (56)

and this transforms the basis functions into:

Tk(y j ) = cos

(
π jk

N

)

, j = 0, . . . , N , k = 0, 1, 2 . . .

(57)

The Gauss-Lobatto points (56) are used to collocate the
momentum and energy equations plus the corresponding
boundary conditions. Note that the number of collocation
points N controls the number of spurious modes that appear
due to the discretization. We found that N = 50 is sufficient
to prevent spurious eigenvalues and to determine the physical
modes with high accuracy.

It is important to stress that in order to retrieve a correct
solution, a correct and high resolution base state, i.e., Leiden-
frost state, should be used. For (incorrect or unresolved) base
states the linear stability analysis results in spurious travel-
ing wave solutions with γI �= 0, so the imaginary part of the
growth rate becomes nonzero.

To collocate the continuity equation we use the so-called
Gauss points:

y j = cos

(

π
(2 j + 1)

2N + 2

)

, j = 0, . . . , N , (58)

which brings the corresponding basis functions into the fol-
lowing form:

Tk(y j ) = cos

(
π(2 j + 1)k

2N + 2

)

, j = 0, . . . , N ,

k = 0, 1, 2 . . . (59)

In the way the Gauss and Gauss-Lobatto points (56, 58)
are defined one sees the advantage of the Chebyshev spec-

tral collocation method: The boundary regions, which are
most relevant in this stability problem, are covered with high
resolution.

One may note that the Gauss points do not include
the boundary points, whereas the Gauss-Lobatto points do
describe the boundaries. The reason for this is that we do
not want to collocate the density at the boundary, because
we do not have actual boundary conditions for δñ. [Instead
for δñ we have the integral constraint of the particle con-
servation over the whole system (18).] This is no problem,
since we can reduce the set of four hydrodynamic equations
through elimination of the number density δñ by making use
of the continuity equation, which is of first order, as already
remarked in the context of (51). We then get a system of
three coupled equations for the velocity fields δũx and δũ y ,
and the granular temperature δT̃ . Therefore we do not need
a boundary condition for δñ3, but only boundary conditions
(at the bottom and the top) for δũx , δũ y , and δT̃ , i.e. the
conditions (19)–(24).

The matrix problem defined by (51)–(54) and the bound-
ary conditions of (19)–(24) are then translated from the phys-
ical domain ỹ = [0, Hmax] (with Hmax the truncated height of
the system in particle diameters) to the y = [−1, 1] Cheby-
shev domain (on which the trial functions are defined) via
the following transformation:

y = lim
H→Hmax

2 ỹ

H
− 1. (60)

We have used a truncated physical domain up to y = Hmax

where we have also applied the boundary conditions. The
value of Hmax ranges from 30 to 80 particle diameters

3 One can also collocate the continuity equation at Gauss-Lobatto
points, but that calls for using artificial boundary conditions for the
density field that may lead to one spurious eigenvalue [21].
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Fig. 6 Theory: The
construction of the density
profile of the convective state for
F = 11 and S = 200 by adding
the perturbation (obtained from
the linear stability analysis taken
over one natural time unit
t̃ = 1/γ , see text) to the
corresponding Leidenfrost state.
From the stability analysis of
Fig. 5 we know that the cell
length is Λ = 66 particle
diameters; two cell lengths are
depicted here. Dark colors
indicate regions of high density

depending on the parameters. Using the grid formed by the
Gauss and Gauss-Lobatto points the linear stability analysis
of the hydrodynamic model is performed using the spectral-
collocation method, which has the advantage that the deriv-
atives are easily computed and that the boundary conditions
are dealt with in a relatively simple way [76].

4.8 Solution

As an example of a state on which we have performed the
stability analysis, in Fig. 5a we show the Leidenfrost state for
F = 11 layers at a shaking strength S = 200. Since this base
state is a numerical solution, the matrices A, B, and C nec-
essary to solve (51) are generated numerically. The growth

rate γ obtained from the solution of (51), using the spectral-
collocation method, is depicted in Fig. 5b. It shows an interval
of kx -values for which γ is positive (i.e. the Leidenfrost state
is unstable). The convection mode that will manifest itself for
this particular Leidenfrost state is associated with the wave
number kx,max = 0.095, for which the growth rate is maxi-
mal (marked by the grey square). Thus, hydrodynamic theory
predicts a cell length (consisting of a pair of counter-rotating
convection rolls) of Λ = 2π/kx,max = 66 particle diameters.

From this dominant perturbation mode we can deter-
mine the density profile of the corresponding convec-
tion pattern as illustrated in Fig. 6: It is the sum of
the Leidenfrost density profile and the perturbation pro-
file. In this figure we have taken the perturbation over
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(a)

(b)

(c)

(d)

Fig. 7 Experiment, MD simulation, and theory: a Convection patterns
for F = 6.2 particle layers in a container of length L/d = 101 at
three consecutive shaking strengths: S = 58, S = 130, and S = 202.
Available as movie 4 with the online version of the paper. b Snapshots
of MD simulations that are completely equivalent to the experiments

shown above, so F = 6.2 layers in a container of length L/d = 101 for
S = 58, S = 130, and S = 202. Available as movie 4 with the online
version of the paper. c, d Two cell lengths (2Λ/d) of the theoretical den-
sity and velocity profiles for F = 6 layers shaken at S = 60, S = 130,
and S = 200. The respective cell lengths are Λ/d = 57, 70, and 79

(a) (b)

Fig. 8 a Shaking strength S versus wave number kx for F = 6 layers.
The black dots correspond to the unstable modes kx as determined by
the linear stability analysis of our hydrodynamic model. The smallest
S-value for which an unstable mode is found defines the onset of con-
vection: Sconv = 55. The grey squares mark the most unstable mode at
each shaking strength and determines the theoretical length of a con-
vective cell: Λ = 2π/kx,max. b Experiment versus theory: Cell length

Λ as a function of shaking strength S. The black dots indicate the exper-
iments with F = 6.2 particle layers, where Λ is determined from a plot
such as depicted in Fig. 4e. The dotted black line is a linear fit through
the experimental data. The grey crosses are theoretical data obtained
from the instability region depicted in a, and the dashed grey line is a
linear fit through these theoretical points
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Fig. 9 Experiment, MD simulation, and theory: The convection thresh-
old in (S, F)-phase diagram. The experiments and simulations are per-
formed with d = 1 mm glass beads, with shaking amplitude a = 2.0
mm (dots), a = 3.0 mm (squares), and a = 4.0 mm (triangles). The
shaking strength S is varied via the frequency f . The open black sym-
bols correspond to the experiments and the solid grey ones to the MD
simulations. The theoretical line (black) is a fit through the theoretical
data points (not shown), which depend sensitively on the expression
used for the viscosity: Here we have taken μ̃(̃n, T̃ ) = Pr κ̃ (̃n, T̃ ) with
the dimensionless Prandtl number Pr = 1.7 as the only fit parameter
in the system. An experiment and simulation are available as movie 5
with the online version of the paper

one natural time unit for the growth rate γ , i.e., we used
t̃ = 1/γ in ñL(ỹ) + N (ỹ)eikx x̃ eγ t̃ to match the observed
patterns.

This linear stability analysis has been performed on a large
number of Leidenfrost states obtained from the hydrody-
namic model, where we systematically varied the number
of layers F and the shaking strength S. This ultimately leads
to the phase diagram of Fig. 9 in which we compare hydro-
dynamic theory with the experimental observations, as will
be discussed in detail in the next section.

5 Comparing experiment, numerics, and theory

Now that we have passed the onset of convection we get into
the region of fully developed convection, so how do the rolls
look like when considering the density-, velocity-, and gran-
ular temperature field? In this section we will compare the
results of the experiments, molecular dynamics simulations,
and theory.

5.1 Cell length Λ versus shaking strength S

The comparison of experiment, MD simulation, and theory
of Fig. 7 reveals that if the shaking strength S is increased
the convective cells expand and consequently the number of
convection rolls fitting the container becomes smaller. This
dependence is studied in more detail in Fig. 8 for the exper-
iments and hydrodynamic theory.

(a)

(b)

(c)

Fig. 10 Comparing experiment, MD simulation, and theory: a The
density profile (averaged over 250 high-speed snapshots) of F = 6.2
layers of steel beads in a container of length L/d = 164, shaken at
a = 4.0 mm and f = 52 Hz (S = 174). This experimental profile
shows 2 convective cells, where the color coding indicates the regions
with high density (black) and low density (white). b Averaged density
profile of a MD simulation showing two convective cells for F = 6.2
layers in a container of length L/d = 164, with shaking amplitude
a = 4.0 mm and frequency f = 52 Hz (S = 174), as in the experiment
shown in a. c The theoretical density profile for F = 6 and S = 170
plotted for two cell lengths: 2Λ/d = 158

Figure 8a shows which Leidenfrost states for F = 6 layers
are stable (corresponding to an eigenvalue γ < 0, white
region), and which ones are unstable (γ > 0, dotted region)
and thus give way to convection. The region of instability
defines the critical shaking strength Sconv = 55 required for
the onset of convection for this number of layers F . When the
shaking strength is increased beyond this critical value, the
instability region is seen to widen and at the same time the
dominant wave number kx,max (marked by the grey squares
in Fig. 8a) becomes smaller. This means that the cell length
Λ = 2π/kx,max increases with S.

Comparing with experiment, Fig. 8b, we see that the theo-
retically predicted cell length (Λ = 2π/kx,max) consistently
overestimates the experimentally observed cell lengths. Both
show a linear dependence though, and for the experimental

123



Buoyancy driven convection in shaken granular matter 907

(a)

(b)

Fig. 11 MD simulation versus theory: a Velocity profile time averaged
over 200 snapshots (i.e. 5 periods of the vibrating bottom) from a MD
simulation with F = 6.2 layers in a container of length L/d = 164,
shaken with an amplitude a = 4.0 mm and frequency f = 52 Hz
(S = 174). b The theoretical velocity profile plotted for two cell lengths
(2Λ/d = 158) for F = 6 layers and shaking strength S = 170

(a)

(b)

Fig. 12 MD simulation versus theory: a Time averaged temperature
profile based on 200 snapshots from a MD simulation with F = 6.2
layers in a container of length L/d = 164, shaken at a = 4.0 mm
and f = 52 Hz (S = 174). b Two cell lengths (2Λ/d = 158) of the
theoretical temperature profile with F = 6 layers and shaking strength
S = 170

data available the theoretical prediction becomes better for
stronger fluidization.

The comparison of experiment, MD simulation and theory
culminates in the (S, F)-phase diagram of Fig. 9 showing the

onset of convection for various numbers of layers4. Experi-
ment, numerics and theory are seen to be in good agreement.
The only fit parameter we have used is the Prandtl number of
Eq. (12), the value of which we have fixed to Pr = 1.7 after
fitting it to experimental data for F = 8.

5.2 Density profile

In Fig. 10 we compare the density profiles for experiment,
MD simulation, and theory. The experimental density profile
(Fig. 10a) is determined by averaging over 250 high-speed
snapshots. The simulation profile (Fig. 10b) is time averaged
over several snapshots, and averaged over the depth of the
container. The density profiles of Fig. 10 are seen to reason-
ably agree.

In Fig. 7 we have shown how the experiments, simulations,
and theory depend on the shaking strength S. The increasing
cell lengthΛ for stronger fluidization has already been treated
in the previous subsection. Besides, the cells also expand in
height, which is an indication of the approaching transition
from convection rolls to a granular gas.

In the theoretical density and velocity profiles, Fig. 7c,
d, we have plotted two cell lengths Λ, determined by the
value of kx,max of the dominant perturbation mode. If we
translate these cell lengths to the experimental and numeri-
cal container length of L/d = 101, theory predicts that the
container should contain k = 2, 2, and 1 convective cells
respectively. It exactly matches the results of the MD simu-
lations and closely matches the experimental findings (k = 3,
2 and 1 respectively). So, the linear stability analysis of the
hydrodynamic model is in reasonable quantitative agreement
with the experiments and MD simulations.

5.3 Velocity profile

The velocity field cannot be extracted in a straightforward
way from the experiment, because the particles overlap in
the high-speed pictures of the quasi 2D setup. We therefore
compare only the MD simulations with hydrodynamic the-
ory, see Fig. 11. The velocity fields are very similar and dis-
play nearly the same cell length Λ.

5.4 Temperature profile

The granular temperature profile can be determined from the
velocity field and because this data is only available for the
MD simulations and hydrodynamic theory we compare these
two in Fig. 12.

4 The results of Fig. 9 represent experiments with glass beads of d = 1
mm. Also for F = 6.2 layers of steel beads we found the onset of
convection (at Sconv = 62) to match the theoretical prediction very
well.
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The theoretical temperature profile of Fig. 12b is deter-
mined in a similar manner as the theoretical density profile
(Fig. 6): The perturbed temperature profile determined from
the linear stability analysis is added to the temperature pro-
file of the Leidenfrost state. Again, hydrodynamic theory and
MD simulations match well.

6 Conclusion

We have studied buoyancy driven convection in vertically
shaken granular matter, exploiting experiment, numerics, and
hydrodynamic theory. At strong shaking strength counter-
rotating convection rolls are formed, analogous to Rayleigh-
Bénard convection for ordinary fluids with a free surface.
Special features in our strongly shaken case are that the con-
vection does not originate from a homogeneous fluid, but
from the inhomogeneous Leidenfrost state (with a dense clus-
ter floating on a gaseous region—but note again that granular
convection roles can also arise without a prior density inver-
sion as shown by Khain and Meerson [65]); neither does it
originate from the interaction between the granulates and the
walls, as in the case of weakly shaken granular matter, see e.g.
[45]. Moreover, in our case the specific granular properties
of the system can be expressed by constitutive relations.

In analogy with the theory of Rayleigh-Bénard convec-
tion in ordinary fluids [32] we have performed a linear sta-
bility analysis of the hydrodynamic model for this Leiden-
frost state [28]. The results of this continuum description are
found to be in good overall agreement with the experimental
observations and simulations, and in particular the thresh-
old in the (S, F)-phase diagram for the onset of convection
(Fig. 9) shows a perfect match between experiment, simula-
tion, and theory. This is a great success for granular hydrody-
namics and stresses its applicability to collective phenomena
in strongly shaken granular matter.

Future work will have to reveal the sensitivity of the results
to the employed equation of state, constitutive relations, and
transport coefficients in granular flow, which will allow to
determine these relations and coefficients with considerably
enhanced confidence. In parallel, some of these functions
will be extracted from MD simulations directly. Moreover,
in future work the approach of this present paper should be
extended to higher dimensions, granular flow with smaller
particles where the surrounding air becomes important, and
particle mixtures of different sizes in which segregation starts
to play a role.
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Appendix A: Alternative models for the shear viscosity μ

There is quite some discussion on the shear viscosity μ in
granular systems and consequently various expressions have
been proposed in the literature. Brey et al. [72] give the fol-
lowing relation for two dimensions and for a dilute granular
gas:

μ(T ) = 1

2d

√
mT

π
μ∗(e), (61)

where μ∗(e) is a function of the restitution coefficient e.
Ohtsuki and Ohsawa [59] deduce an expression for μ

including a dependence on the density n to account for
excluded volume effects:

μ(n, T ) =
{

1

4
n2d3 + 1

2πd

(
1 + π

4
nd2

)2
}√

πmT . (62)

He et al. [55] propose that the shear viscosity should be
equal to the thermal conductivity κ:

μ(n, T ) = κ(n, T ), (63)

In the present paper we have found good correspondence
between experiment and theory using a more general form
based on dimension analysis:

μ(n, T ) = mPr κ(n, T ), (64)

where Pr is the Prandtl number. We used it as a fit parameter
for the phase diagram of Fig. 9 and found that Pr = 1.7 gave
good agreement.

Figure 13 shows the influence of μ on the resulting growth
rate γ (kx ), comparing the results obtained if one uses the
expression by Brey et al. (61) with those obtained for expres-
sion (64). It is seen that the viscosity definition of (64) has
a stabilizing effect on the Leidenfrost state with increasing
number of particle layers F , in agreement with the experi-
mental observations, whereas (61) has a destabilizing effect.
We show in the (S, F)-phase diagram of Fig. 9 that (64)
yields qualitative and quantitative agreement with the exper-
imental results.

Appendix B: Relations for the pressure, dissipation, and
transport coefficients

For the matrix problem (51) we need to specify the elements
of the matrices A, B, and C of (52)–(54), which contain p, I ,
and the transport coefficients and their derivatives. These are
given below:
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(a)

(b)

Fig. 13 Theory: Influence of the choice for the shear viscosity μ on
the growth rate γ (kx ) for two Leidenfrost states at the same shaking
strength S = 200: a For F = 6 layers the region of instability of the
Leidenfrost state is significantly reduced by going from the expression
for μ(T ) by Brey et al. [(61), black dots] to μ(n, T ) as defined by (64)
with Pr = 1.7 (grey crosses. b For F = 11 layers the stabilizing effect
is even stronger. Note that the range of unstable kx -values for the black
dots has increased compared to the F = 6 Leidenfrost state, whereas
the opposite is true for grey crosses

First of all, we have the equation of state for the pressure p̃
and its derivatives:

p̃L = ñL T̃L
1 + ñL

1 − ñL
, (65)

∂ p̃

∂ ñ

∣
∣
∣
L

= T̃L
1 + 2ñL − ñ2

L

(1 − ñL)2 , (66)

∂

∂ ỹ

(
∂ p̃

∂ ñ

∣
∣
∣
L

)

= (1 − ñL)(1 + 2ñL − ñ2
L)

∂ T̃L

∂ ỹ + 4T̃L
∂ ñL

∂ ỹ

(1 − ñL)3 ,

(67)
∂ p̃

∂ T̃

∣
∣
∣
L

= ñL
1 + ñL

1 − ñL
, (68)

∂

∂ ỹ

(
∂ p̃

∂ T̃

∣
∣
∣
L

)

=
[

1 + 2ñL − ñ2
L

(1 − ñL)2

]
∂ ñL

∂ ỹ
. (69)

The expressions for the energy dissipation rate Ĩ read as
follows:

Ĩ = ε

γ

ñT̃ 3/2

�̃
, (70)

∂ Ĩ

∂ ñ

∣
∣
∣
L

= ε

γ
T̃ 3/2

(
�̃ − ñ ∂�̃

∂ ñ

�̃2

)

, (71)

∂ Ĩ

∂ T̃

∣
∣
∣
L

= 3ε

2γ

ñ
√

T̃

�̃
. (72)

The mean free path �̃ and its derivatives are given by:

�̃ =
√

3

32

[
1

ñ

(
1 − ñ

1 − añ

)]

, (73)

∂�̃

∂ ñ
=
√

3

32

(−añ2 + 2añ − 1

ñ2 (1 − añ)2

)

, (74)

∂2�̃

∂ ñ2 = 2

√
3

32

(−a2ñ3 + 3a2ñ2 − 3añ + 1

ñ3 (1 − añ)3

)

. (75)

We continue with the transport coefficient for the thermal
conductivity κ̃ and its derivatives:

κ̃L =
(
α�̃ + 1

)2

�̃
ñ
√

T̃ , (76)

∂κ̃L

∂ ỹ
= ∂κ̃L

∂ ñ

∂ ñ

∂ ỹ
+ ∂κ̃L

∂ T̃

∂ T̃

∂ ỹ
, (77)

∂κ̃

∂ ñ

∣
∣
∣
L

= √
T

[
(α�̃ + 1)2

�̃
+ ñ

α2�̃2 − 1

�̃2

∂�̃

∂ ñ

]

, (78)

∂

∂ ỹ

(
∂κ̃
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∣
∣
∣
L

)

= ∂
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(
∂κ̃

∂ ñ

∣
∣
∣
L

)
∂ ñ

∂ ỹ
+ ∂

∂ T̃

(
∂κ̃

∂ ñ

∣
∣
∣
L

)
∂ T̃
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(79)
∂
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(
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∣
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)
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)2+ñ(α2�̃2−1) ∂2 �̃
∂ ñ2
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∂
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