
Acta Geotechnica manuscript No.
(will be inserted by the editor)
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Abstract The macroscopic mechanical behavior of granular materials inherently depends

on the properties of particles that compose them. Using the Discrete Element Method, the

effect of particle contact friction and polydispersity on the macroscopic stress response of

3D sphere packings is studied. The analytical expressions for the pressure, coordination

number and fraction of rattlers proposed for isotropically deformed frictionless systems also

hold when the interparticle coefficient of friction is finite, however the numerical values

of the parameters such as the jamming volume fraction change with varying microscopic

contact and particle properties.

The macroscopic response under deviatoric loading is studied with triaxial test simu-

lations. Concerning the shear strength, our results agree with previous studies showing that

the deviatoric stress ratio increases with particle coefficient of friction µ starting from a non-

zero value for µ = 0 and saturating for large µ . On the other hand, the volumetric strain does
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not have a monotonic dependence on the particle contact friction. Most notably, maximum

compaction is reached at an intermediate value of the coefficient of friction µ ≈ 0.3. The

effect of polydispersity on the macroscopic stress-strain relationship cannot be studied inde-

pendent of initial packing conditions. The shear strength increases with polydispersity when

the initial volume fraction is fixed, but the effect of polydispersity is much less pronounced

when the initial pressure of the packings is fixed. Finally, a simple hypoplastic constitutive

model is calibrated with numerical test results following an established procedure to ascer-

tain the relation between particle properties and material coefficients of the macroscopic

model. The calibrated model is in good qualitative agreement with simulation results.

Keywords Granular matter · friction · polydispersity · triaxial test · hypoplastic constitutive

model

1 Introduction

Understanding the mechanical properties of granular materials and their connection to the

microscale particle properties is important for many industrial applications and basic re-

search. Even when grain scale properties such as shape, roughness and elasticity are known

it is not straight forward to relate them to the macroscopic constitutive behavior. The main

difficulty arises from the discreteness and disorder of granular materials which leads to

reorganizations of the inhomogeneous and anisotropic contact and force networks and dis-

tributions [1, 2].

In general, two types of approach focusing on different length scales are pursued to

model the mechanical behavior of granular materials. Micro-mechanical [3] models con-

sider individual particles and their interactions with the surrounding, for example, by spec-

ifying contact force laws and inter-particle friction. Although this is analytically tractable
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Fig. 1: Approach to study the macroscopic continuum behavior of granular materials with
discrete particle methods.

for a limited number of particles, it is usually implemented numerically in discrete parti-

cle methods [4] for useful results. Large scale phenomena and industrial applications of

granular materials involve countless particles. Even with the most advanced computational

technology of today it is not possible to simulate a nature-scale realistic system following

this approach.

An alternative is to assume a granular medium as a continuum and apply the princi-

ples of continuum mechanics to obtain macroscopic field variables. Generally numerical

methods implementing this approach require comparatively less computational resources.

However, besides the lower resolution one has to sacrifice many features of granular materi-

als readily implemented in discrete methods, such as re-structuring, geometric non-linearity

due to discreteness, explicit control over particle properties etc. Instead an empirical con-

stitutive model has to be defined typically based on phenomenological observations of the

relation between stress and strain. Although, micromechanical parameters are introduced

[5–7] to enhance the models, the main drawback of the continuum approach remains its

lack of connection with the microscopic behavior and properties of the constituent particles.

Despite their disadvantage in large scale simulations, particle methods can be used to

understand the macroscopic constitutive behavior and develop models of granular materials,

as illustrated in Fig. 1. In particular, the possibility to selectively control properties at the

particle level enables to determine their role in the constitutive behavior. In this paper we

study the effect of particle polydispersity and friction on the macroscopic stress-strain rela-

tions of sphere packings. For this, we systematically vary the size ratio and the coefficient
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of friction of the particles in discrete element method (DEM) simulations. The results of

triaxial test simulations are then used to calibrate the material coefficients of a hypoplastic

constitutive model to determine their relation with particle properties.

The manuscript is organized as follows: In section 2 we describe the general numeri-

cal setup for sample preparation and parameters used in simulations. Next in section 3 we

present results of isotropic deformation simulations of frictional packings and compare the

evolution of the pressure with previously studied frictionless packings with varying poly-

dispersity. Section 4 introduces the hypoplastic constitutive model. In Section 5 we present

the results of triaxial test simulations and discuss the macro behavior before we calibrate the

hypoplastic model for different contact coefficients of friction and particle polydispersities.

2 Simulation setup

The motion of N spherical particles with uniformly distributed radii between rmin and rmax

was simulated using the Discrete Element Method (DEM) [4]. Linear spring–dashpot con-

tact force laws as function of the overlaps are used to model the interaction of particles in

the normal and tangential directions [8]. Friction was modelled according to the Coulomb

law involving a sliding friction. Gravity was neglected during all simulations and an arti-

ficial background dissipation proportional to the translational and rotational velocities was

included to damp the slow, large wavelength dynamics. Numerical values of the parameters

used in our simulations are presented in Table 1.

Cuboid samples were prepared from random granular gases with initial volume frac-

tion νgas = 0.3 with prescribed polydispersities, where the volume fraction ν is the ratio

of total volume of particles and system volume. The packings were compressed isotropi-

cally by moving periodic boundaries until the volume fraction reached selected value for
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Parameter Value Description Dimensionless
values

N 9261 [–] Number of particles 9261
⟨r⟩ 1 [mm] Average radius 1
w 1−5 [–] Polydispersity parameter

w = rmax/rmin

1−5

ρ 2000 [kg/m3] Density 2000
kn 104 [kg/s2] Stiffness–normal spring 105

kt 2×103 [kg/s2] Stiffness–tangential spring 2×104

µ 0−100 [–] Coefficient of friction 0−100
γn 10−2 [kg/s] Viscous dissipation–normal

direction
1000

γt 2×10−3 [kg/s] Viscous dissipation–tangential
direction

200

γtr 10−4 [kg/s] Background damping–Translation 10
γrot 2×10−5 [kg/s] Background damping–Rotation 2
τc 64 [µs] Duration of a collision for two

average size particles
0.64

Table 1: Summary and numerical values of particle parameters. The dimensionless values
used in DEM simulations are such that the unit of length is xu = 10−3 m, the unit of density is
ρu = 1 kg m−3, which leads to the unit of mass of mu = 10−9 kg, and the set is completed by
the unit of time tu = 10−4 s= 0.1 ms. Stress values from the simulations are thus translated
to dimensional units by multiplication with mu/(xut2

u ) = 102 kg/(ms2).

the subsequent isotropic compression and unloading cycle. The boundaries were displaced

using a cosine wave function to avoid shocks. The systems were then relaxed at constant

volume fraction to dissipate most of the remaining kinetic energy. Fig. 2 illustrates sample

preparation and a typical simulation of an isotropic deformation cycle.

It was previously observed [9, 10] that friction has an important effect on the struc-

ture and geometry of loose packings generated by compressing random granular gases. The

preparation history, which can influence the mechanical behavior of granular packings at

later stages, is not our aim in this study. However, when studying the effect of friction, we

did not entirely disregard it by preparing frictionless samples. Instead, to minimize the effect

of friction during the preparation procedure, very soft tangential springs, i.e. kt/kn = 0.01

were used. This has no visible consequences for the samples prepared below the jamming
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density. However, as it will be shown in Sec. 5.1, even with soft tangential springs particle

friction has noticeable repercussion, e.g. on pressure, at higher densities. Note that in actual

simulations (after the preparation step) the tangential spring stiffness is set to kt = kn/5.
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Fig. 2: Preparation of a sample and isotropic compression-expansion cycle. The initial ran-
dom granular gas (A) is compressed until the volume fraction reaches the desired value. It
is then relaxed at constant volume and used as the initial packing (B) for subsequent simu-
lations. The color of particles indicates their average overlap. Large (artificial) overlaps are
present in the initial random gas (red particles) whereas in the relaxed packing (blue) par-
ticles practically do not touch. The variation in color in the static packing (C) at maximum
density is due to well known force-chain inhomogeneity. The data presented subsequently
in section 3 corresponds to the branch (C)-(D).

3 Isotropic deformations: Evolution of pressure

Experimental [11] and numerical investigations [9, 12] in 2 and 3 dimensions have shown

that pressure along with other quantities such as the coordination number are evolving as

a power law of volume fraction in the vicinity of jamming. In our earlier work [13] we

derived an analytical expression of the dimensionless pressure p = 2⟨r⟩
3kn

tr(σ) for packings

of frictionless polydisperse particles which is applicable to a wide range of volume fractions

above jamming:

p = λ
νZ
νc

(−εv) [1− γp(−εv)] , (1)



Effect of particle friction and . . . 7

where Z is the coordination number, νc is the critical (jamming) volume fraction where the

pressure drops to zero during unloading, εv = ln(νc/ν) is the compressive volumetric strain

applied to the packing, and λ and γp are fit parameters, (see [13] for an interpretation of

their physical meaning). The derivation was based on the assumptions that the compacity

(contacts per surface area) of particles is independent of their size and they deform affinely

in the assembly, see also [14]. The scaling of the dimensionless pressure by the ratio of

inverse contact density and the critical volume fraction, p∗ = νc
νZ p, indicates that the effect

of the polydispersity on pressure is characterized by these quantities. This was confirmed

in simulations [13] for polydispersities up to w = 3. Furthermore, we tested the validity of

the power law for the coordination number ignoring rattlers, i.e. frictionless particles having

less than 4 contacts, at high volume fractions:

Z∗(ν) = Z0 +Z1

(
ν
νc

−1
)α

, (2)

where Z0 is the critical coordination number at jamming, which is equal to 6 in the isostatic

limit for frictionless particles, and Z1 and α are fit parameters. The classical coordination

number Z (taking rattlers into account) is related to Z∗ through Z = Z∗(1−ϕr), where ϕr is

the fraction of rattlers, which we observed to decay [13] exponentially as a function of the

volume fraction:

ϕr(ν) = ϕc exp
[
−ϕν

(
ν
νc

−1
)]

, (3)

where ϕc is the fraction of rattlers at jamming and ϕν is the rate of decay with density above

νc. In summary, combining Eqs. (2) and (3) one can express the dimensionless pressure (1)

merely as a function of the volume fraction [13].

Next we study numerically the evolution of pressure in isotropically deformed assem-

blies with varying particle coefficient of friction and fixed polydispersity w = 1.5. Samples
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Fig. 3: (a) Non-dimensional pressure p as function of the volume fraction and (b) scaled
pressure p∗ = pνc/(νZ) as function of volumetric strain. The points represent simulation
data, while the line in (b) is p∗ =−εvλ with λ = 0.045.

were prepared, as described in Section 2, at a few percent, i.e. ∆ν = νc −ν0 ≈ 0.05, below

the estimated jamming volume fractions [15]. The packings were compressed up to ν = 0.75

and decompressed back to their initial density by imposing a cosine shape displacement on

the periodic boundaries. We applied the strains at very low rates in order to approach the

quasi-static limit. The rate dependence was studied in Ref. [13]. The maximum average

compression rate 1 was 6.33×10−6 τ−1
c .

Figure 3a shows the dimensionless pressures of isotropically expanding 2 packings as a

function of volume fraction for different levels of particle friction. The pressure at a given

volume fraction increases with the coefficient of friction and the volume fraction of van-

ishing pressure νc decreases with friction [9, 10, 15–17]. However the effect of particle

friction on pressure seems to be limited as the lowest value of νc saturates around a mini-

mum of ∼ 0.60 when µ tends to infinity. Numerical values of νc are given in Table 2 and the

procedure to obtain them will be discussed below. In moderately frictionless polydisperse

1 The average compression (expansion) rate is computed as ∆V/V0
Tc

= ν/ν0−1
Tc

where Tc is the half period of
the cosine wave displacement function.

2 The data is not shown during compression but during decompression because of artificial dynamical
effects in the former, see [13] for a detailed discussion.



Effect of particle friction and . . . 9

packings νc is observed to increase with w [13, 18], whereas it is decreasing with friction

and rolling resistance [15] as consistent with the present data.

The scaled dimensionless pressure is shown in Figure 3b. In contrast to previously stud-

ied frictionless polydisperse systems, there is not a perfect collapse of the data on a single

line, which indicates that the effect of particle friction on pressure cannot be assessed solely

by the contact density and critical volume fraction. However, the quasi-linear dependence on

strain is similar. Nevertheless somewhat stronger non-linearity at low strains is noticeable

for large coefficients of friction which causes the quality of the fit of Eq. (1) to deteriorate

for ν ≈ νc.

For completeness we also show in Figures 4a and 4b the coordination number Z∗ and

fraction of rattlers ϕr as a function of volume fraction. The critical coordination number

Z0 = 5.95 of the frictionless packing obtained from the fit of Eq. (2) is very close to the the-

oretically predicted isostatic limit 6. As the particle friction increases Z0 decreases towards

4 (see Table 2). The exponential decay function is underestimating the fraction of rattlers

close to unjamming for large particle friction. This is due to the fact that the criterion of hav-

ing less than 4 contacts for identifying rattlers is not accurate for frictional particles. About

2.7 % of the particles are rattlers in the frictionless packing (see Table 2). Earlier studies

have reported about 2 % rattlers for frictionless monodisperse systems [9, 12]. The slightly

higher value in our simulation is due to the small amount of polydispersity (w= 1.5) present.

However, in more polydisperse systems (w = 3) we have measured a considerably higher

percentage of rattlers i.e. ϕc ≈ 15 % [13]. We also observe that the decay rate is decreasing

as the particle coefficient of friction is increasing, which is in line with the expectation that

frictional packings most likely to contain a higher number of rattlers.

The analytical expressions (1), (2) and (3) of the pressure, coordination number and frac-

tion of rattlers respectively, all depend sensibly on the critical volume fraction νc. Therefore,
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Fig. 4: (a) Coordination number excluding rattlers as function of the volume fraction for
different particle friction coefficients. (b) fraction of rattlers i.e., particles with less than 4
contacts for different particle friction coefficients.

it cannot be obtained from the fits as a parameter but must be determined independently.

During isotropic decompression, νc corresponds to the volume fraction where the pressure

vanishes and the system looses its mechanical stability [9, 12]. We expressed this with an

energy criterion which states that νc is the first point on the volume fraction axis where the

average elastic energy per particle drops below 10−5 µJ. Note that a precise definition of

νc does not exist and other authors [9, 12, 13, 19] have used similar criteria to quantify νc.

The numerical values of the fit parameters based on two alternative ways to determine νc

are given in Table 2.

We studied the evolution of pressure in isotropically deformed frictional packings pre-

pared with soft tangential springs kt/kn = 0.01. Interestingly, the equations for pressure,

coordination number and rattlers originally proposed for frictionless systems also hold for

finite particle coefficient of friction. We note that, the prefactor λ is practically constant thus

independent of µ , which to our knowledge, has not been predicted theoretically before.
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µ νc Z0 Z1 α ϕc ϕν λ γp
Energy

0.0 0.650 5.95 8.66 0.564 0.027 40.84 0.0426 0.069
0.01 0.645 5.85 8.67 0.589 0.031 44.74 0.0425 -0.108
0.1 0.628 5.24 7.86 0.555 0.087 30.53 0.0441 0.000
0.5 0.605 4.79 7.09 0.556 0.165 22.94 0.0457 0.453
1 0.602 4.74 7.10 0.573 0.160 20.34 0.0458 0.467
10 0.600 4.68 7.21 0.583 0.179 21.73 0.0458 0.515

Extrapolation
0.0 0.650 5.98 8.71 0.572 0.024 37.71 0.0430 0.114
0.01 0.645 5.88 8.72 0.598 0.031 44.76 0.0428 -0.066
0.1 0.628 5.29 7.89 0.564 0.086 30.54 0.0446 0.045
0.5 0.605 4.77 7.09 0.553 0.166 22.93 0.0455 0.439
1 0.601 4.68 7.09 0.562 0.170 20.66 0.0450 0.417
10 0.599 4.60 7.21 0.569 0.191 21.90 0.0446 0.440

Table 2: Summary of the parameters appearing in the equations (2), (3) and (1) for the coor-
dination number Z∗(ν), fraction of rattlers ϕr(ν) and dimensionless pressure p(ν), respec-
tively. The numerical values of all parameters except νc are obtained from fits to simulation
data. The critical volume fractions are extracted from the dimensionless pressure data dur-
ing decompression where the average potential energy per particle drops below 10−5 µJ.
(Energy) or alternatively, by extrapolating the pressure in Eq. (1), excluding the data points
closest to and below νc (Extrapolation).

4 Hypoplastic constitutive model

As pointed out earlier, a continuum mechanical description of granular materials disregards

their discrete nature and focuses on the macroscopic relation between stress and strain. Con-

stitutive models for the plastic deformation of granular materials have been typically devel-

oped in the framework of elasto-plasticity [20] which requires a yield surface defined in the

principal stress space and a flow rule to determine the direction of plastic strain. More re-

cently, enhanced models based on higher order gradients of the strain tensor and micropolar

Cosserat type models with additional degrees of freedom have been developed, to address

the microstructural effects, see e.g. [21, 22] among others. Alternative formulations based

on rate equations were proposed as hypoplastic type of models [23]. It is claimed that they

lead to simpler formulations without explicit recourse to a yield surface or flow rule, us-

ing however the concept of limit states, and are able to capture basic features of granular
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materials. We choose a simple variant of these models for subsequent analysis because of

their aforementioned advantages and the possibility to calibrate the model with a single tri-

axial test. The goal is then to understand the relation between the macro-parameters and the

micro-properties.

A hypoplastic constitutive model T̊ = H(T,D) relates [23–25] the rate of the stress ten-

sor T̊ to itself and the rate of deformation tensor D, where □̊ denotes the objective Jaumann

rate. Basic ingredients of hypoplasticity are (i) rate independence, (ii) homogeneity in stress

and (iii) objectivity, which is a requirement for all constitutive models. One of the simplest

hypoplastic constitutive models, which satisfies these conditions has the form [24]:

T̊ =C1 tr(T)D+C2
tr(TD)T

trT
+

(
C3

T2

trT
+C4

T∗2

trT

)
||D||, (4)

where T∗ is the deviatoric part of the stress tensor. ||D|| =
√

trD2 is the norm of the rate

of deformation tensor and C1,C2,C3 and C4 are material coefficients. The first two terms of

Eq. (4) express the linear elastic part of the model. A decomposition of the stress and strain

tensors into isotropic and deviatoric parts shows that under simple biaxial conditions the

bulk modulus and the anisotropy can be directly related to the coefficients C1 and C2 [26].

In order to predict the mechanical behavior of a specific material, a constitutive model

needs to be adapted by providing a suitable set of material coefficients which are usually

obtained by calibrating the model with experimental data. Results of a single triaxial test

are sufficient to calibrate the hypoplastic constitutive model given in Eq. (4). The procedure

[24, 25] which consists of solving a linear system of equations to find the numerical values

of the material coefficients C1,C2,C3 and C4 is summarized in Appendix A.
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Fig. 5: Triaxial test simulated with DEM. The boundary conditions are such that the pressure
on the side walls σ2 = σ3 is kept constant and the strain on top is increased monotonically.
The color indicates the pressure of particles normalized by the normal contact stiffness kn.
The pressure is computed according to 1

3 tr(σp) =
kn

3Vp
∑δ (rp−δ/2) where Vp is the volume

of the particle and δ is its overlap with neighbors which is averaged over all its contacts.

5 The triaxial test

The triaxial test is a standard laboratory test procedure widely used to measure mechanical

properties of soils [25] and other granular materials. The classical experiment typically con-

sists of compressing a cylindrical specimen wrapped in a membrane in axial direction while

keeping the lateral stress constant by means of hydrostatic pressure. We have implemented

the triaxial test in DEM simulations for a cubic geometry with periodic boundary conditions

in order to avoid wall effects. Similar to the experimental setup, the pressure on the lateral

walls (i.e. periodic boundaries) is kept constant while applying a monotonically increasing

strain in the third direction. Figure 5 illustrates the numerical simulation setup. The average

stress of the packing is measured according to the procedure described in [13, 27, 28].

In the following we perform triaxial test simulations with frictional and polydisperse

packings and calibrate the hypoplastic constitutive model with the numerical data to under-

stand the relation between material coefficients and particle properties. The initial packings
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Fig. 6: (a) Average pressure of the packings as function of particle coefficient of friction for
ν0 = 0.70 and w = 1.5. The pressure of the frictionless packing is indicated by the arrow.
The symbols are data, the lines only a guide to the eye. (b) Histogram of normalized particle
overlaps in the packing with µ = 1.

were prepared as described in Sec. 2 with different particle friction and polydispersities at

volume fractions ν0 > νc.

5.1 Friction

Figure 6a shows the pressure of the initial samples prepared at ν0 = 0.70 from a granular

gas with w = 1.5 as a function of the particle friction. In accordance with the observations

in Section 3 the pressure increases with friction and saturates at very high values of µ .

However, note that we have used very soft tangential springs (kt = 102 [kg/s2], kt/kn = 0.01)

to reduce the effect of friction during the preparation. Nevertheless, it has still a noticeable

effect on the pressure build-up during initial compression as the difference of pressure for

µ = 0 and µ = 0.01 is about 8 % and, for µ = 0.01 and µ = 100 is about 10 %.

Since the density and thus the pressure is considerable, we have checked the distribution

of particle overlaps in the packings. Fig. 6b shows the histogram of overlaps normalized by

the average particle diameter in the packing with highest pressure (µ = 1). Although some
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Fig. 7: Results of DEM triaxial test simulations with different particle coefficients of fric-
tion. (a) Deviatoric stress ratio, (b) volumetric strain as a function of axial strain. The inset
shows the minimum volumetric strain, i.e. the maximal compression as a function of particle
friction.

particles have large overlaps the percentage is small. More than 96% of the overlaps are

smaller than 5% of average particle diameter. Therefore, it is expected that this will not have

a significant effect on the qualitative behavior observed hereafter.

The results of DEM triaxial test simulations are shown in Figures 7a and 7b for the evo-

lution of deviatoric stress ratio and the volumetric strain. Fluctuations and non-zero values

at the initial configurations are due to the stress control algorithm which cannot strictly en-

force the prescribed lateral stress (taken as the average of σxx, σyy and σzz after isotropic

compression). For the strain levels applied in our simulations softening after the maximum

stress is not observed. However, in a few simulations up to 20 % axial strain the packings

with higher particle friction exhibited some softening. In any case the strain levels were not

enough to reach the critical state where the stress and volumetric strain have stationary val-

ues [29]. The inset of Figure 7b shows that the maximum compaction of the packings does

not have a linear relationship with the particle friction. It increases with friction and reaches

an extremum at µ = 0.3, then decreases and stagnates around εv ≈ −0.01 for µ ≥ 1. The

axial strains where the maximum compaction is achieved show a similar trend.
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Fig. 8: (a) Macroscopic angle of friction, (b) percentage of sliding contacts and (c) coordi-
nation number at the peak stress plotted as a function of particle coefficient of friction.

Figure 8a shows the macroscopic angle of friction defined by φ f = arcsin((σ1−σ2)/(σ1+

σ2))max as a function of the particle coefficient of friction. It is rapidly increasing and sat-

urates around 21 degrees for µ ≥ 1. The percentage of sliding contacts at the peak stress

is given in Fig. 8b. For large particle friction, i.e. µ ≥ 1, less than 1 % of the contacts are

sliding. This is in agreement with previous experiments [30] and simulations [31–33]. As

shown in Fig. 8c the average number of contacts at the peak stress is also decreasing when

particle friction is increased. The average contact force is higher in packings with large parti-

cle friction because of the lower coordination number and higher macroscopic stress carried

by the structure. We also observe that the coordination number of the frictionless packing

is practically constant during loading whereas for high friction it decreases linearly with

axial strain (data not shown). Finally we note that the macroscopic friction angle is smaller

than the contact friction angle when µ > 0.4. The numerical values of macroscopic friction

angles, percentage of sliding contacts and coordination number are listed in Table 3.

Previous studies have explored the mechanism behind the effect of particle friction on

the macroscopic behavior of granular materials[31–33]. It was shown that the contact force

network can be divided into strong and weak forces and particle friction increases the con-

tribution of strong contact forces to major principal stress and decreases their contribution to

minor principal stress which leads to increasing deviatoric stress [33]. Furthermore, the finite
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shear strength of frictionless particles can be attributed to interlocking and stress anisotropy

which is present even in initially isotropic packings. Saturation of the macroscopic friction

angle at large particle friction is due to rolling of particles as it was shown that preventing

particle rotation leads to increasing macroscopic friction [31]. Below is a summary of our

observations of the effect of particle friction which are consistent with earlier studies in 2D

(see Figs. 26 and 27 in Ref. [34] and references therein) and in 3D (see eg. [16, 31, 33]):

1. Stronger particle friction leads to smaller jamming densities

2. Finite macroscopic friction is measured even for µ = 0

3. Macroscopic friction saturates for µ ⪆ 0.3

4. Macroscopic friction does not match particle friction

The effect of particle friction on the peak/softening behavior goes beyond the scope of this

paper.

We now compare the results of the triaxial tests from DEM and with the calibrated hy-

poplastic model. Figure 9a shows the deviatoric stress ratio and volumetric strain as a func-

tion of axial strain for small and large particle friction. The calibrated hypoplastic model

(see Appendix A) captures the stress-strain relationship relatively well, however fails to

approximate the broad dip in the volumetric strain of the systems with small particle fric-

tion. Another disagreement between the model and DEM simulations is the longer linear

range during initial loading which leads to higher stiffness and compactancy. Consequently,

the model systematically underestimates the axial strains where the packing starts to dilate.

Figure 9b shows the relation between the particle coefficient of friction µ and the model

coefficients C1,C2,C3 and C4 obtained from the calibration of the model with DEM simu-

lation data (see Table 3 for numerical values). Although the model results are not in perfect

agreement with DEM data we can make a few observations. First, the numerical values of all
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Fig. 9: (a) Comparison of the triaxial test simulation results of DEM (dashed and dash-dotted
lines) and the calibrated hypoplastic constitutive model (solid lines) for µ = 0.01 and 1. (b)
Evolution of the material coefficients as function of particle friction.

coefficients seem to saturate at high coefficients of friction i.e. for µ > 1. This is in line with

the previously observed limited effect of particle friction on the macroscopic stress-strain

relationship for large µ in Fig. 7. Next, C2 reaches its minimum value (maximal magnitude)

at µ = 0.3 which coincides with the coefficient of friction of the packing which is most

compacted. We also note that C1 and C3 have extremal values at µ ≃ 0.09 but we were not

able to relate it to any of the microscopic quantities studied here. Finally, the coefficient C4,

which is multiplying the last term of the hypoplastic model in Eq. (4), with the deviatoric

stress is strongly correlated with the macroscopic angle of friction.

The relatively small magnitude of C3 compared to C4 suggests that the third term in Eq.

(4) can be neglected. Nevertheless, imposing C3 = 0 during the calibration procedure sig-

nificantly affects other coefficients which in turn leads to large discrepancies between the
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model and DEM results. Furthermore, as discussed in Ref. [24] the hypoplastic model con-

sidered here cannot reproduce softening and the critical state, which limits the applicability

of the model to small and moderate strains.

5.2 Polydispersity

An important property of natural granular materials is polydispersity i.e. the size disorder

of the grains. In this subsection we study the effect of size distribution on the macroscopic

stress-strain relationship of granular materials with DEM simulations of the triaxial test.

In contrast to subsection 5.1, initial samples were prepared at ν0 = 0.70 by isotropic com-

µ p0 [kPa] ϕ f [◦] sliding
contacts

[%] Z C1 C2 C3 C4

0.0 142.6 4.00 0 8.01 -1.51 -15.81 8.88 -2916.24
0.01 153.5 6.26 17.8 7.98 -3.20 -36.96 20.80 -2763.10
0.02 156.7 7.42 19.0 7.91 -3.39 -28.04 22.61 -2173.83
0.03 161.1 8.40 14.2 7.85 -3.72 -27.86 26.01 -1948.24
0.04 162.3 9.10 15.4 7.80 -4.30 -37.34 32.29 -2019.97
0.05 164.2 9.95 14.9 7.76 -4.49 -40.64 34.33 -1841.77
0.06 165.5 11.04 12.8 7.73 -4.06 -38.62 30.65 -1418.35
0.07 169.8 11.56 11.7 7.69 -4.47 -41.28 35.92 -1484.12
0.08 165.5 12.70 12.1 7.65 -4.55 -43.11 35.12 -1304.17
0.09 170.6 12.55 10.3 7.65 -4.21 -41.60 32.81 -1234.32
0.1 164.9 14.01 10.5 7.57 -4.49 -43.08 34.98 -1129.61
0.2 167.8 17.89 5.1 7.40 -3.95 -45.55 31.64 -758.79
0.3 167.5 20.06 2.4 7.22 -3.68 -47.34 29.21 -637.61
0.4 166.1 21.32 1.7 7.10 -3.64 -47.51 28.30 -594.43
0.5 167 21.53 0.7 6.96 -3.72 -44.63 29.51 -598.60
0.6 166.2 21.57 0.1 6.89 -3.48 -41.84 26.64 -550.80
0.7 166.6 21.27 0.6 6.86 -3.55 -40.61 26.77 -560.43
1 174.5 20.57 0.1 6.83 -3.24 -36.43 24.52 -526.73
2 171.7 21.15 0.1 6.70 -3.40 -32.37 23.68 -502.58
5 170.4 20.26 0.02 6.64 -3.51 -28.02 23.85 -517.91
10 171.0 20.65 0.03 6.66 -3.39 -32.32 23.73 -515.17
100 172.3 20.68 0 6.68 -3.37 -34.01 24.46 -524.89

Table 3: Initial pressures p0, macroscopic angles of friction ϕ f , percentage of sliding con-
tacts and coordination number at maximum deviatoric stress and calibrated material coef-
ficients of packings with constant initial volume fraction ν0 = 0.70 and different particle
coefficient of friction.
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Fig. 10: (a) Relation between polydispersity w and pressure p in packings with constant
volume fraction (ν0 = 0.70). (b) Relation between polydispersity w and volume fraction ν
in packings with constant pressure fraction (p0 = 154.1 kPa).

pression and relaxation of a frictionless granular gas. Figure 10a shows the pressure of the

samples as a function of the size ratio w = rmax/rmin. The results confirm previous studies

which have shown that the pressure of frictionless packings at a constant volume fraction de-

creases with polydispersity [13, 18]. The dependence of the mechanical behavior of granular

materials on the initial density and stress level has long been recognized in soil mechanics

[24, 35, 36]. The variation of the volume fraction as function of the polydispersity is shown

in Fig. 10b for another set of initial samples prepared (again without friction) at constant

pressure (p0 = 154.1 kPa). As expected denser packings are needed to achieve a certain

level of pressure with more polydisperse particles.

After the frictionless preparation procedure, the coefficient of friction was set to µ = 0.4

for all polydispersities during the triaxial test simulations. Deviatoric stress ratio and volu-

metric strain as a function of axial strain are shown in Figures 11 and 12 for the constant

initial volume fraction and constant initial pressure conditions, respectively. When ν0 is

fixed the shear strength of the packing increases with polydispersity, even though the ini-

tial pressure which determines the confining stress σ2 = σ3 = p0 is decreasing with poly-

dispersity, see Fig. 10a. This is in agreement with laboratory experiments of triaxial tests
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Fig. 11: Triaxial test simulation results for polydisperse packings of spheres with fixed ini-
tial volume fraction ν0 = 0.70. (a) Deviatoric stress ratio and (b) volumetric strain plotted
against axial strain.

performed at different stress levels which indicate that the macroscopic friction angle de-

creases with confining pressure [36]. However, as illustrated in Fig. 11b, we observe that the

“compactancy” angle ψ0 = arctan(ε̇v/ε̇1)ε1=0 at the initial loading and the dilatancy angle

ψ = arctan(ε̇v/ε̇1)ε1|σ1=σ1,max at peak stress are practically independent of polydispersity and

thus of pressure. The average values are ψ0 ≈−21.4◦ and ψ ≈ 34.8◦.

The results of the triaxial test simulations for the packings prepared at constant pressure

are shown in Figure 12. The effect of polydispersity (and that of the initial volume fraction

indirectly) is significantly less visible compared to the case of fixed initial volume fraction.

Nevertheless, while the deviatoric stress is not much affected, see Fig. 11a, the maximum

compaction slightly increases with polydispersity as shown in Fig. 12b. Tables 4 and 5 list

the macroscopic angles of friction, the compactancy and dilatancy angles and the calibrated

material coefficients of the hypoplastic model for the constant initial volume fraction and

constant pressure cases, respectively. Figure 13 illustrates the material coefficients scaled

with the values corresponding to the monodisperse packing. Remarkably the dependence

of all coefficients on polydispersity is the same. When the initial volume fraction is fixed

they increase with polydispersity (pressure). On the other hand, the coefficients do not show



22 Fatih Göncü, Stefan Luding

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.02  0.04  0.06  0.08  0.1

(σ
1−

σ 2
)/(

σ 1
+σ

2)

ε1

w

1
1.5

2
2.5

3
3.5

4
4.5

5

(a)

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  0.02  0.04  0.06  0.08  0.1

ε v

ε1

w

1
1.5

2
2.5

3
3.5

4
4.5

5

(b)

Fig. 12: Triaxial test simulation results for polydisperse packings of spheres with fixed initial
pressure (constant confining stress) p0 = 154.1 kPa. (a) Deviatoric stress ratio, (b) volumet-
ric strain vs. axial strain.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1  1.5  2  2.5  3  3.5  4  4.5  5

C
i 
/C

i,
w

=
1

w

p0=cst

ν0=cst

Fig. 13: Material coefficients C1 (×),C2 (⊡),C3 (⊙) and C4(△) of the calibrated hypoplastic
constitutive model normalized with the values obtained for the monodisperse packing w= 1.
Red and blue symbols correspond to the constant initial volume fraction and pressure cases,
respectively.

much variation when the initial pressure is fixed. The effect of different polydispersity is

studied in more detail in Refs. [14, 18].

6 Summary and conclusions

We studied the effect of particle friction and polydispersity on the macroscopic mechanical

behavior of sphere packings using the discrete element method. Our results support previ-
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ous observations on the effect of particle friction in isotropically deformed systems, i.e. the

pressure at a given volume fraction decreases with friction and saturates at large values. We

also confirm that the critical volume fraction νc below which the packing has no mechanical

stability decreases with friction. The scaling of the dimensionless pressure by the ratio of

inverse contact number density and the critical volume fraction found for frictionless poly-

disperse packings also applies — although less perfectly, close to νc — for strong friction.

The response of the packings to anisotropic deformations was measured with triaxial

tests. An increase in particle friction leads to higher macroscopic friction angles, however

the shear strength is bounded and does not increase further for µ ≥ 1. The effect of particle

friction on the evolution of volumetric strain is more subtle. The angle of compactancy de-

creases with friction, however, the maximum level of compaction is attained by the packing

with µ = 0.3. The axial strain of maximum compaction does not correspond to the strain

of maximum stress and displays a non monotonic behavior as function of particle friction.

Other microscopic quantities such as the fraction of sliding contacts and the coordination

number decrease with increasing friction.

The hypoplastic constitutive model is able to reproduce the basic features of the stress

strain relationships of the packings. The quantitative agreement is far from perfect, but qual-

w p0 [kPa] ϕ f [◦] ψ0 [◦] ψ [◦] C1 C2 C3 C4

1 154.1 22.49 -21.18 33.04 -4.04 -52.49 31.83 -635.31
1.5 142.7 22.87 -23.53 32.53 -4.62 -64.63 39.58 -755.70
2 118.6 23.39 -24.33 35.57 -5.25 -72.51 45.42 -846.88
2.5 105.6 23.61 -21.72 35.33 -5.58 -78.61 46.16 -881.38
3 91.1 23.95 -20.30 36.15 -6.22 -88.75 50.12 -965.39
3.5 85.4 23.67 -20.43 36.00 -6.24 -86.22 49.70 -963.43
4 77.9 24.09 -20.03 33.52 -7.06 -109.96 58.86 -1130.95
4.5 73.9 23.67 -19.17 36.46 -6.96 -93.98 53.27 -1050.91
5 75.2 23.67 -20.20 34.20 -7.03 -101.93 56.93 -1105.46

Table 4: Initial pressures p0, macroscopic angles of friction ϕ f , compactancy ψ0 and dila-
tancy ψ angles and calibrated material coefficients of polydisperse packings with constant
initial volume fraction ν0 = 0.70.
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w ν0 ϕ f [◦] ψ0 [◦] ψ [◦] C1 C2 C3 C4

1 0.700 22.49 -21.28 33.04 -4.04 -52.57 31.94 -636.66
1.5 0.703 22.71 -23.98 32.18 -4.38 -60.73 37.69 -719.80
2 0.711 22.91 -24.38 31.35 -4.31 -62.90 38.36 -722.66
2.5 0.716 22.92 -23.03 31.48 -4.20 -60.75 36.20 -692.63
3 0.722 23.00 -23.36 31.22 -4.30 -63.39 37.66 -715.27
3.5 0.725 22.69 -22.36 33.19 -4.02 -53.68 32.91 -642.44
4 0.727 22.83 -23.35 31.14 -4.03 -58.15 34.90 -667.14
4.5 0.729 22.55 -22.48 31.57 -3.87 -53.22 32.20 -629.29
5 0.730 22.34 -23.44 31.33 -3.91 -52.94 32.94 -641.60

Table 5: Initial volume fractions ν0, macroscopic angles of friction ϕ f , compactancy ψ0
and dilatancy ψ angles and calibrated material coefficients of polydisperse packings with
constant initial initial pressure p0 = 154.1 kPa

itatively all features are captured. However because of its phenomenological origin and the

complex interplay of the different deformation modes, it was not possible to uniquely and

directly link the coefficients of the model to the microscopic particle properties. However,

some conclusions are possible since we systematically calibrated the model with DEM sim-

ulations in order to clarify the relation between material constants and particle friction. We

observe that the third coefficient is positive, while all others are negative. The fourth coeffi-

cient follows a trend similar to the macroscopic angle of friction, while the third coefficient

is considerably smaller, but must not be set to zero, i.e., it is important nevertheless. The

other coefficients have extremal values at various particle friction coefficients correspond-

ing to those of the packings with maximum compaction and initial confining pressure. Their

non-monotonous variation with µ reflects the complex influence of the contact friction on

the different macroscopic terms in the hypoplastic constitutive relation in Eq. (4).

The effect of the polydispersity of the packings cannot be studied independent of the

volume fraction or the pressure of the initial samples. When the volume fraction is fixed the

pressure decreases as function of polydispersity. The opposite is observed for the volume

fraction when the initial pressure is fixed. The shear strength increases with polydispersity
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for the packings with fixed initial volume fraction. On the other hand, the effect of polydis-

persity is much less pronounced when the initial pressure is constant.

In conclusion, our results support and confirm previous numerical [31–33] and experi-

mental [36] studies based on biaxial and triaxial deformation tests. However, an important

difference is that we have studied relatively dense packings and soft particles (normal stiff-

ness corresponds approximately to PMMA) and a wide range of particle friction including

the frictionless case. In our opinion, this leads to interesting behavior such as the reversal

of the maximum compaction at µ = 0.3 which was not reported previously to the authors

knowledge.

Systematic variation of the simulation parameters allows to understand the effect of

micro-scale properties on the macroscopic behavior of granular materials in the spirit of the

approach sketched in Fig. 1. However, it is difficult to establish a formal relation between

the material parameters of a phenomenological constitutive model and microscopic particle

properties. Particle simulations can help to identify microscopic mechanisms relevant at the

macroscopic scale and facilitate the development of micromechanically based constitutive

models for granular materials. The qualitative agreement between DEM and the hypoplastic

constitutive model is very encouraging, but the visible quantitative differences could be a

sign that important properties, like the structural anisotropy, are missing. The comparison

and calibration with an anisotropic constitutive model [37, 38] is in progress.
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A Calibration of the hypoplastic constitutive model

The hypoplastic constitutive model given in Eq. (4) can be calibrated for a specific material with the results

of a triaxial test [25].

Fig. 14: Schematic representation of a triaxial test result for the calibration of the hypoplastic
constitutive model.

Due to the simple geometry of the test setup the stress and strain rate tensors are characterized by their

principal components:

−T =


σ1 0 0

0 σ2 0

0 0 σ3

 , D =


ε̇1 0 0

0 ε̇2 0

0 0 ε̇3

 , (5)

where compressive stresses are positive.
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As illustrated in Fig. 14, the values of (σ1 −σ2)max, the slope 3 E and the angles βA and βB at points A

and B can be computed from the test results and are related to T and D:

βA/B = arctan
(

ε̇v

ε̇1

)
A/B

= arctan
(

ε̇1 +2ε̇2

ε̇1

)
A/B

= arctan
(

1+2
ε̇2

ε̇1

)
A/B

(6)

Since the hypoplastic constitutive model is rate independent the magnitude of the strain rate |ε̇1| can be

arbitrary. However, the sign of ε̇1 must be negative due to compression during a conventional triaxial test.

Therefore for simplicity ε̇1 =−1 is chosen so that the strain rate tensor D at points A and B is:

DA/B =


−1 0 0

0 1
2 (1− tanβA/B) 0

0 0 1
2 (1− tanβA/B)

 . (7)

The stress tensor T at points A and B is known:

−TA =


σ2 0 0

0 σ2 0

0 0 σ2

 and −TB =


σ2 − (σ1 −σ2)max 0 0

0 σ2 0

0 0 σ2

 , (8)

and the stress rates are given by:

ṪA =


−E 0 0

0 0 0

0 0 0

 , ṪB =


0 0 0

0 0 0

0 0 0

 , (9)

where at the point A, σ̇1 = E ε̇1 since σ̇2 = 0 and ε̇1 =−1.

Substituting D,T and Ṫ computed at points A and B into Eq. (4), the following system of equations is

obtained with the unknowns C1,C2,C3 and C4:

3 Because of the fluctuations in the simulation results the stress-strain curves cannot be differentiated
easily. In order to obtain smooth curves, a fifth order polynomial has been fitted to the data and the slopes
have been computed using the fitted curves.
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

trTADA
1,1 T A

1,1
tr(TD)A

trTA
||DA||

(T1,1)
2
A

trTA
||DA||

(T ∗
1,1)

2
A

trTA

trTADA
2,2 T A

2,2
tr(TD)A

trTA
||DA||

(T2,2)
2
A

trTA
||DA||

(T ∗
2,2)

2
A

trTA

trTBDB
1,1 T B

1,1
tr(TD)B

trTB
||DB||

(T1,1)
2
B

trTB
||DB||

(T ∗
1,1)

2
B

trTB

trTBDB
2,2 T B

2,2
tr(TD)B

trTB
||DB||

(T2,2)
2
B

trTB
||DB||

(T ∗
2,2)

2
B

trTB





C1

C2

C3

C4


=



−E

0

0

0
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(10)

where for clarity the letters A and B have been switched to superscripts when the indicial notation of the

tensors is used. The solution to (10) can be obtained by simple matrix inversion using linear algebra or well

known numerical methods such as e.g. Gauss-Seidel.
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