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Non-equilibrium molecular dynamics simulations of an atomic fluid under shear flow, pla-

nar elongational flow and a combination of shear and elongational flow are unified consis-

tently with a tensorial model over a wide range of strain rates. A model is presented that

predicts the pressure tensor for a non-Newtonian bulk fluid under a homogeneous planar

flow field. The model provides a quantitative description of the strain-thinning viscosity,

pressure dilatancy, deviatoric viscoelastic lagging and out-of-flow-plane pressure anisotropy.

The non-equilibrium pressure tensor is completely described through these four quantities

and can be calculated as a function of the equilibrium material constants and the velocity

gradient. This constitutive framework in terms of invariants of the pressure tensor departs

from the conventional description that deals with an orientation-dependent description of

shear stresses and normal stresses. The present model makes it possible to predict the full

pressure tensor for a simple fluid under various types of flow without having to produce these

flow types explicitly in a simulation or experiment.

I. INTRODUCTION

There is significant scientific and industrial interest in describing the relation between the pres-

sure tensor for non-Newtonian fluids out of thermodynamic equilibrium and other quantities, such

as the strain rate and the fluid density and temperature. Such relations would find applications

for example in petrochemical and biomedical processes or in the flow of polymer melts. The be-

havior of simple monoatomic fluids is not nearly as complex as that for macromolecular fluids and

colloidal system. Yet, even for simple fluids, no relation is known that accurately predicts the

non-equilibrium pressure tensor for any arbitrary velocity field. Numerous computer simulations
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and experimental studies have provided insights into the behavior of sheared liquids and the nor-

mal stresses in an isotropically compressed liquid, while many other types of flow are far more

difficult to create in a laboratory or with molecular dynamics simulations. If we are able to predict

the non-equilibrium pressure tensor for any velocity field, it would reduce the experimental and

computational efforts needed to design and improve fluidic devices. We introduce a framework in

which the pressure tensor can be related to the flow (strain rate tensor) through carefully chosen

invariants of the pressure tensor as a function of the velocity field. This framework is applied to a

range of planar flow types with different field strengths.

Planar Couette flow (PCF), or (simple) shear, is by far the most studied and well-understood

type of flow. It is perhaps the simplest type of flow to study via experiments (e.g., lubrication)

as well as with non-equilibrium molecular dynamics (NEMD). Elongational flows are vorticity-

free flows that contain contraction, stretching, or a combination of both. Such flows occur in

several biological and industrial processes (for example extrusion and moulding processes), but are

generally rather difficult to study with NEMD simulations or experiments, since the dimensions of

the fluid sample or simulation cell change with time, not allowing continuous deformation. Special

techniques are needed to allow for simulations or experiments that can continue indefinitely, which

is much easier in the case of shear flow. In planar elongational flow (PEF), a fluid element is

compressed in one direction and stretched in another (perpendicular) direction, while the fluid

element is not deformed in the third direction. If the rates of contraction and stretching are equal,

also called pure shear, the flow is isochoric (i.e., the volume of the fluid element is a constant of the

motion). In NEMD simulations of a bulk fluid, the primitive cell is surrounded by periodic images

and the deformation of the cell follows the streaming motion of the fluid. The minimum allowable

cell size in each direction is given by twice the cutoff distance of the interaction potential. If the

cell size becomes too small, particles can interact with their own periodic image, which leads to

non-physical results. Hence, the maximum simulation time would be limited by the cell size in

the direction of contraction. This limitation on the simulation time can be avoided if reproducible

boundary conditions can be found that are periodic in space and time. These boundary conditions

remap the cell after each time interval τp, such that the simulation time is not limited by the

deformation and sufficient statistics can be accumulated. Kraynik and Reinelt1 introduced such

periodic boundary conditions for PEF, based on lattice theory. Todd and Daivis2 later applied this

method to NEMD simulations to perform various planar shear-free flows with longer simulation

times than those that were previously accessible.

In the past, predominantly shear flow3–6 and elongational flows1,2,5,7–9 have been simulated due
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to their relative simplicity. Evans and Heyes8 were the first to perform NEMD simulations of a

fluid under combined elongation and shear, i.e., mixed flow. They were however limited by the

lack of reproducible periodic boundary conditions valid for planar mixed flow (PMF) and not all

simulations arrived at a steady state before reaching their maximum simulation time. Recently,

Hunt et al.10 developed suitable boundary conditions for PMF, based on the approach of Kraynik

and Reinelt.1 These periodic boundary conditions make it possible to study a wide range of flows

that were previously not feasible to study with molecular dynamics. Hunt et al.,10 and later

Hartkamp et al.,11 performed mixed flow molecular dynamics simulations, in which the velocity

gradient is a linear combination of those for shear and planar elongational flow

∇u =


ε̇ 0 0

γ̇ −ε̇ 0

0 0 0

 , (1)

where γ̇ = ∂ux/∂y is the shear rate and ε̇ the rate of elongation (stretching if component (∇u)αα >

0, and contraction if (∇u)αα < 0, where α = x, y or z). When the shear rate is zero, γ̇ = 0 and

ε̇ 6= 0, the flow simplifies to planar elongational flow and when the elongational rate is zero, ε̇ = 0

and γ̇ 6= 0, the fluid is under shear flow. Shear flow and mixed flow have a non-zero vorticity that

is proportional to the shear present in the flow ω = γ̇/2.

The velocity gradient can be homogeneously coupled to an atomic fluid via the SLLOD equations

of motion12–15

ṙi =
pi
mi

+ ri · ∇u , (2)

ṗi = Fi − pi · ∇u− ζpi . (3)

A variant of this set of equations (the so-called DOLLS algorithm) was initially only developed

for shear flow and uniaxial compression.16 Later the SLLOD equations of motion (Eq. (3) above)

were shown to correctly obtain the normal stress differences and proven to be valid for arbitrary

homogeneous flow.14,15 Eq. (2) represents the evolution of the position ri of particle i, where pi is

the peculiar (i.e., thermal) momentum with respect to the streaming motion. The rate of change

in position of a particle depends on the sum of its ‘thermal’ fluctuation velocity and the streaming

velocity at the position of the particle, given by u(ri) = ri · ∇u. Eq. (3) is the evolution of the

peculiar momentum. The first term on the right hand side denotes the sum Fi of the forces on

particle i due to other particles. The second term couples the velocity field to the fluid and the

last term couples the fluid to a heat bath, where ζ is a thermostat multiplier with inverse time
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units. These equations of motion result in a homogeneous fluid, in which all the particles are

subjected to the same external field (i.e., velocity gradient) and their dynamics is described by the

same evolution equations.

By averaging the microscopic information over time and space, macroscopic quantities can be

computed. For example the pressure tensor

P =
1

V

N∑
i=1

pipi
mi

+
1

2

∑
j 6=i

rijFij

 , (4)

where pipi denotes the dyadic product of the peculiar momentum vectors, rij = ri− rj , and Fij is

the interaction force acting on atom i due to atom j. Positive values of the diagonal components of

the pressure tensor are associated with compression and negative values with tension. The pressure

tensor is (besides the sign convention in some literature) identical to the stress tensor σ, that is

more common in rheology and the solid mechanics literature.17,18

The structure of this paper is as follows: The simulation details are presented in Section II.

An introduction to the derivation of our proposed model is given in Section III. In Section IV, the

simulation results are presented and used to calibrate and validate our model, and the presented

model and results are discussed in Section V.

II. SIMULATION DETAILS

We simulate an atomic fluid whose interactions are mediated via the well-known Lennard-

Jones (LJ) potential,19 truncated at its minimum-energy distance 21/6σ, where σ is the interaction

length scale, and shifted up by the well-depth ε. This special version of the truncated and shifted

LJ potential is known as the Weeks-Chandler-Andersen (WCA) potential20

UWCA(r) =

 4ε
[(

σ
r

)12 − (σr )6]+ ε, r ≤ 21/6σ ,

0, r > 21/6σ .
(5)

All physical quantities presented are made dimensionless using the particle mass m and the LJ

scales σ and ε, such that mass and the LJ scales become identical to unity in the simulations. The

reduced quantities are: length rij = r∗ij/σ, number density ρ = ρ∗σ3/m, temperature T = kBT
∗/ε,

pressure tensor P = P∗σ3/ε, strain rate γ̇ = γ̇∗(mσ2/ε)1/2, time t = t∗(mσ2/ε)−1/2 and viscosity

η = η∗σ2(mε)−1/2. The equations of motion are integrated with a fourth-order Gear predictor-

corrector algorithm with a time-step of ∆t = 0.001 in reduced units.

We have performed NEMD simulations of a fluid, containing N = 512 particles. The simulations

are performed in the isokinetic-isochoric ensemble. The fluid density (i.e., the number of atoms and
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the system volume are fixed) and temperature are kept at a constant value, while the pressure tensor

can depend on the state point and on the flow. The fluid density is ρ = 0.8442 and its temperature

T = 0.722. The temperature is controlled using a Gaussian isokinetic thermostat.21 This state point

is near the triple point that a Lennard-Jones fluid with the same parameters would have. This is

the most extensively studied state point for MD simulations of a simple atomic fluid such as Argon

or Krypton.22 The simulations correspond to combinations of shear rates γ̇ = 0, 0.1, . . . , 0.5 and

elongational rates ε̇ = 0, 0.1, . . . , 0.5, such that the combinations of both deformations represent

simple shear (5×), planar elongation (5×) and planar mixed flow (25×) simulations. Furthermore,

additional shear flow simulations have been performed at shear rates γ̇ = 0.025, 0.05 and 0.15.

The fluid is first equilibrated to reach a non-equilibrium steady state, followed by a simulation of

500 units of time. The data is averaged over this steady-state time window and over ten equivalent

simulations with different random initial configurations.

III. NEWTONIAN PRESSURE TENSOR

Eq. (4) describes the pressure tensor for an atomic bulk fluid. The values in the resulting tensor

are known to be related to the density and temperature of the fluid as well as to the velocity field.

The relation between stresses and the fluid density and temperature can be described through an

equation of state.23,24 We concentrate more on finding a constitutive relation that describes how

the pressure tensor depends on the velocity field. As detailed in Section II, we perform isochoric

simulations, which corresponds to traceless velocity gradients. Furthermore, we consider planar

flows. Eq. (1) satisfies these conditions, with at least one of γ̇ and ε̇ non-zero. We start our

derivation in this section by decomposing and rewriting the Newtonian pressure tensor and we

proceed with non-Newtonian pressure tensors in Section IV.

Any tensor can be decomposed into an isotropic part and a (traceless) deviatoric part. For an

(idealized) incompressible Newtonian fluid, under an arbitrary flow type, we can write

PN = p0 I− η0 S , (6)

such that the magnitude of the isotropic equilibrium part is determined by the hydrostatic pressure

p0 and the deviatoric viscous pressure tensor is given by the product of the strain rate tensor S

and the zero-shear viscosity η0.

The deviatoric pressure tensor can be rewritten in terms of a diagonal (principal) tensor rotated

away from its principal orientation to the orientation of the pressure tensor.25–27 We then obtain
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the product of a scalar, to represent the magnitude of the deviatoric pressure tensor, and a matrix

to denote its orientation. For a Newtonian fluid under any planar flow type with the velocity and

its gradient in the x-y flow plane, Eq. (6) can be written as

PN = p0 I− η0 sR(φS) · ID ·RT (φS) , (7)

ID ≡


1 0 0

0 −1 0

0 0 0

 , (8)

R(φ) ≡


cosφ − sinφ 0

sinφ cosφ 0

0 0 1

 , (9)

where s ≡
√

1
2S : S is the magnitude of the strain rate tensor (S : S is the second scalar invariant

of S), φS is the angle between the x-axis and the eigenvector that corresponds to the maximum

eigenvalue of the strain rate tensor, R is a rotation matrix,28 that rotates around the z-axis

(perpendicular to the flow plane) in counter-clockwise direction and ID is a (traceless) unit deviator

matrix. The principal orientation angle of the strain rate tensor for a simple shear flow is φS = 45◦

and for planar elongational flow it is φS = 0◦. The orientation angle of the strain rate tensor for a

planar mixed flow depends on the ratio between γ̇ and ε̇ and is given by φS = tan−1(γ̇/(2ε̇))/2.

The product of the unit deviator and the scalar pre-factors denotes the principal deviatoric

pressure tensor for a Newtonian fluid η0sID. The diagonal elements of this term (η0s,−η0s, 0) are

the eigenvalues of the deviatoric pressure tensor, while the rotation matrix R(φS) consists of the

corresponding eigenvectors. This notation replaces the usual expression in terms of shear stress and

normal stresses by a notation that is not explicitly dependent on the Cartesian tensor orientation,

but rather on tensor eigenvalues, eigen-system and the velocity gradient magnitude.

The Newtonian pressure tensor assumes colinearity of the pressure tensor and strain rate tensor.

This is often not the case for real fluids, such that φP 6= φS , where φP is the angle between the

x-axis and the eigenvector that corresponds to the principal angle of the deviatoric pressure tensor.

The difference between φP and φS is related to the viscoelasticity of the fluid and will be discussed

in more detail in Section IV. An attempt to describe the pressure tensor of a viscoelastic fluid

simply by replacing φS by φP in Eq. (7), is not enough to accurately describe the pressure tensor

of a non-Newtonian fluid; a more sophisticated model is needed.

Eqs. (6) and (7) contain the equilibrium values of the shear-viscosity and hydrostatic pressure,

whereas real fluids tend to exhibit shear thinning, pressure dilatancy and normal stress differences
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when they are deformed sufficiently fast. Thus, this model, in which the viscous pressure (tensor)

is a linear function of the shear rate, does not account for the more complex behavior, such as

pressure dilatancy and normal stress differences, that some fluids exhibit even at small deformation

rates. On the other hand, many existing models that do account for non-Newtonian phenomena

are limited to only a specific type of flow. There is currently no simple model that quantifies

the pressure tensor for a homogeneous non-Newtonian shear-thinning fluid subject to an arbitrary

planar velocity gradient, while some less general relations have been developed for granular fluids

under simple shear flow29,30 or under radial deviatoric strain.31

IV. RESULTS AND DISCUSSION

A. Conventional description and an existing model

We first show simulation results in terms of shear stress and first normal stress difference, as

is conventional. These quantities are relatively easy to extract from experiments, but are highly

dependent on the type of flow. Figure 1 shows the shear stress Pxy and the first normal stress

difference N1 = Pyy − Pxx of a WCA fluid plotted against the magnitude of the strain rate tensor

s ≡
√

1
2S : S =

√
γ̇2 + 4ε̇2. The open markers denote the simulation results, whereas the filled

markers correspond to a model prediction that is discussed below. Error bars are not shown

since the standard errors are smaller than the plotted symbols. The average standard deviation

of all data points is shown by the vertical bars directly below the legends. This is a measure

for the fluctuations in the respective quantities. It is immediately clear that the values of the

shown quantities strongly depend on the type of flow. For example: PCF, PEF and PMF all show

non-zero first normal stress differences, but no unified picture between the different flow types.

Nevertheless, the data for Pxy and N1 show trends with increasing γ̇ and ε̇. The mixed flow data

is in agreement with that reported by Hunt et al..10 The data points on the x-axis of Figure 1(a)

correspond to planar elongational flow simulations, whereas the data points close to the x-axis

of Figure 1(b) correspond to shear flow simulations. A surprising observation is that the first

normal stress difference increases with an increasing shear rate for PCF, while it decreases with an

increasing shear rate γ̇, at a constant elongational rate ε̇, for PMF. We have found from computer

simulations at different state points (data not shown here) that the behavior of the first normal

stress difference strongly depends on the state point of the fluid. Positive first normal stress

differences are observed for very dense fluids, while the first normal stress differences become
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FIG. 1: NEMD simulation data of the shear stress (a) and first normal stress difference (b) for a fluid under

shear (PCF), elongation (PEF) and planar mixed flow (PMF) compared to the prediction of the second-order

fluid (SOF) model (ρ = 0.8442, T = 0.722).

negative towards the semi-dilute regime, while the temperature is kept constant.

An existing family of models to describe the pressure tensor of non-Newtonian fluids makes

use of a nonlinear tensorial approximation as a function of the flow field.32–34 Second-order fluid

(SOF) models are the simplest of such models that predict non-Newtonian phenomena, such as

normal stress differences and shear dilatancy. These models can be employed to predict the pressure

tensor of a fluid under any arbitrary flow field. For simple shear, planar elongation or planar mixed

flow, the second-order fluid prediction can be compared to NEMD simulation data. One, but by

no means the only one, of these models will be briefly discussed here and a comparison is made

between the prediction and simulation data for a simple WCA fluid under various planar flow types

to assert that the use of a second-order model is not suitable to predict the pressure tensor of a

shear-thinning fluid. In this model, equilibrium material constants are used to quantify the viscous

part of the pressure tensor of a non-Newtonian fluid as a combination of elements that are linear

and quadratic in terms of the deformation rate. Thus, not allowing for non-analytic behavior.

The pressure tensor in a second-order fluid can be described by the Rivlin-Ericksen constitutive

relation35

P = p0I− η0S +
Ψ1,0

2
A− (Ψ1,0 + Ψ2,0)S

2 , (10)

A ≡ Ṡ + S · ∇u + (∇u)T · S , (11)

where Ψ1,0 and Ψ2,0 are the zero-shear rate first and second normal stress coefficients and S and A

are the strain rate tensor and second Rivlin-Erickson tensor, respectively, where the second Rivlin-
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Erickson tensor is a function of the strain rate tensor and the velocity gradient. Furthermore, Ṡ = 0

in our case of steady flow denotes the derivative of S with respect to time.36 This model is very

simple, general and based on the assumption that the non-equilibrium pressure tensor is analytic

in terms of the deformation rate. The zero-shear rate first and second normal stress coefficients

are defined as

Ψα,0 = lim
γ̇→0

Ψα(γ̇), α = 1, 2 , (12)

where the non-equilibrium first and second normal stress coefficients, Ψ1 and Ψ2, are defined as

Ψ1(γ̇) =
N1

γ̇2
=
Pyy − Pxx

γ̇2
, (13)

Ψ2(γ̇) =
N2

γ̇2
=
Pzz − Pyy

γ̇2
. (14)

The first two terms on the right hand side of Eq. (10) represent the Newtonian part (Eq. (6)),

whereas the other two terms represent the deviation from Newtonian behavior. The model predicts

that the shear stress and first normal stress difference under a planar mixed flow are given by

Pxy = γ̇(η0 + ε̇Ψ1,0) , (15)

N1 = γ̇2Ψ1,0 + 4ε̇η0 . (16)

These expressions clearly show deviations from the Newtonian model when the shear rate is non-

zero γ̇ > 0. The predicted shear stress and first normal stress difference under planar elongational

flow are identical to the Newtonian prediction. In the case of shear flow, the shear stress is simply

Newtonian, without shear thinning, while normal stress effects are accounted for. Combined stress

effects arise for planar mixed flow.

Rather than evaluating the limit in Eq. (12), the zero-shear rate first normal stress coefficient can

be calculated from time integrals over equilibrium correlation functions, as is described in detail by

Hartkamp et al..37 Using this method, the zero-shear rate first normal stress coefficient is calculated

as Ψ1,0 = 0.69±0.03. The zero-shear rate shear viscosity is calculated as η0 = 2.32±0.01 using the

relevant Green-Kubo expression. The lines in Figure 1 indicate the trends predicted by the SOF

model. The dashed lines correspond to constant ε̇, whereas the dash-dotted lines correspond to

constant γ̇. The assumption of analytic behavior of the pressure tensor is known to be reasonably

accurate at small deformation rates, but inaccurate for simple fluids at the state point and range

of deformation rates that we study. As γ̇ or ε̇ increases, so does the deviation from the SOF model

prediction, due to strain thinning. The inability of the model to predict the pressure tensor in the

thinning regime makes an alternative approach desirable.
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B. A new tensorial description

A symmetric pressure tensor contains six independent quantities, in general. This reduces to

four independent quantities in the case of a steady-state planar flow, where the only non-zero shear

stress is in the plane of flow. Therefore, the pressure tensor for a simple atomic fluid under a planar

flow can be uniquely described with a model that contains a minimal four variables.

Rather than looking at the shear stress and first normal stress difference, we can look at quan-

tities that are only dependent on the magnitude of the strain rate tensor and not on the type of

flow. The thinning behavior that was seen in the shear stress and the normal stress differences in

Figure 1 is related to the viscosity, which is the proportionality constant between a driving force

and the corresponding resulting flux.13 An expression for the generalized viscosity can be derived

from the steady rate of heat production per unit volume, as discussed by Hounkonnou et al.38

η(γ̇, ε̇) = −P : S

S : S
=
−γ̇Pxy + ε̇N1

γ̇2 + 4ε̇2
. (17)

The viscosity computed with this expression is independent of the choice of the coordinates in the

flow plane, as the double tensor contractions in the numerator and denominator of the expression

imply. When the elongational rate is zero, Eq. (17) simplifies to the well-known expression for shear

viscosity η = −Pxy/γ̇, whereas a situation in which the shear rate is zero results in the elongational

viscosity η = N1/(4ε̇).

Figure 2 shows all our viscosity data of a WCA fluid under shear, elongation and mixed flows

as a function of s. The viscosity approaches the Newtonian viscosity η0 in the equilibrium limit

(s→ 0) and shows a monotonic decay with the strain rate magnitude. The fact that all data points

in Figure 2 collapse onto a profile that is a function of the strain rate magnitude s only, implies

that the viscosity of the WCA fluid is independent of the flow type. It does, however, depend on

the strength of the deformation rate and which is proportional to the square root of the rate of

energy dissipation. The data is fitted with a Carreau function39 as η = η0/(1 + cη1 s
2)cη2 , where

η0 = 2.32±0.01 is the zero-shear rate viscosity, cη1 = 21.21 and cη2 = 0.076. The positive power cη2

indicates that the fluid is shear thinning, whereas a negative number would correspond to a shear

thickening fluid. Note that the Carreau equation is merely one of the fitting functions possible.

Alternative examples include a simple power law40 or the Cross model.41 These are not shown

here, since an extensive discussion of viscosity is not our main purpose. For comparisons of fitting

functions, the reader is directed to Refs. 6,42–44. The zero-shear rate viscosity η0 can be compared

to a kinetic theory prediction for a dense fluid of rigid spheres.45 We calculate an effective volume
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FIG. 2: Viscosity of a WCA fluid under shear (PCF), elongation (PEF) and mixed flow (PMF) at state

point ρ = 0.8442, T = 0.722. The data is fitted with a Carreau model and the equilibrium viscosity η0 and

a kinetic theory prediction are shown at s = 0. The inset contains the same data as a semi-log plot.

fraction ν = 0.4674 by substituting our density, temperature and zero-shear rate viscosity into

Eq. (2) from Ref. 45. Using the effective volume fraction, temperature and equilibrium pressure of

the WCA fluid, the kinetic theory model predicts a zero-shear rate viscosity of ηKT = 2.18, which

is 6.2% smaller than our simulation result.

1. Rotating the pressure tensor to its principal orientation

We start the derivation of our model by subtracting the first tensor invariant, i.e., the pressure

p = tr(P)/3, from the diagonal of the pressure tensor. What remains is the (traceless) deviatoric

pressure tensor PD = P− pI. The pressure is defined as the isotropic mean of the diagonal com-

ponents of the pressure tensor; this is the first tensor invariant. The intermediate principal stress

orientation of the deviatoric tensor, in a steady planar flow situation, is perpendicular to the plane

of flow (while the major and minor principal stresses lie in the flow plane). This perpendicularity

holds (as confirmed) within the statistical fluctuations of our data. The orientation of the devia-

toric pressure tensor, which is equal to that of the full pressure tensor, is then given by a single

angle φP between the x-axis and the eigenvector that corresponds to the largest eigenvalue of the

deviatoric pressure tensor.

The Newtonian model in Eq. (7) expressed the pressure tensor as a function of s in terms of

the principal orientation angle of the strain rate tensor φS and equilibrium material constants

η0 = 2.32 ± 0.01 and p0 = 6.3903 ± 0.0002. Most fluids behave non-Newtonian when they are

subjected to a sufficiently large deformation rate. The phenomenological transport coefficients
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and state variables can deviate from those predicted by linear response theory or measured from

equilibrium molecular dynamics simulations. Consequently, the measured values of η and p for

a fluid out of equilibrium can, and often do, deviate from the equilibrium values that are used

in the Newtonian model and the SOF model. These deviations are due to shear thinning and

pressure dilatancy, respectively. Colinearity between the pressure tensor and strain rate tensor

may no longer be assumed for a viscoelastic fluid. Thus, for a non-Newtonian fluid, η, p and

φP can and will deviate from the equilibrium values that were used in the Newtonian model.

Furthermore, an additional parameter may be required to uniquely describe the four independent

non-zero components of the pressure tensor for a fluid in a planar flow situation. We first express

the deviatoric pressure tensor in terms of its eigenvalues and its principal orientation (which is

related to its eigenvectors) and then study the relation to the strain rate tensor.

The constitutive relation in Eq. (7) can be generalized for a non-Newtonian fluid. Doing so, we

have to take into account that: 1) the principal orientation of the deviatoric pressure tensor is not

by definition identical to that of the strain rate tensor, 2) we do not know a priori the eigenvalues of

the deviatoric pressure tensor, hence we also cannot directly split the principal deviatoric pressure

tensor in a scalar magnitude and a unit deviator matrix, as was done in Eq. (7). Without prior

knowledge, we can write the pressure tensor for a fluid under planar flow as

P = p I + R(φP ) ·


−λ1 − λ2 0 0

0 λ1 0

0 0 λ2

 ·RT (φP ) , (18)

where p = p0 + ∆p is the non-equilibrium pressure and the eigenvalues of the deviatoric pressure

tensor are arranged as λ1 ≥ λ2 ≥ λ3 = −λ1 − λ2. The order in subscripts is convention, while the

order in magnitude of eigenvalues can be understood by thinking of planar elongational flow, in

which the principal pressure tensor equals the pressure tensor, such that the diagonal elements of

the deviatoric pressure tensor are equal to its eigenvalues. The stretch in the x-direction results in

the smallest diagonal component of the pressure tensor, while the contraction in the y-direction cor-

responds to its largest diagonal component, and the out-of-flow-plane direction has an intermediate

value.

In summary, the model expresses the pressure tensor in terms of non-equilibrium pressure p, the

orientation angle of the principal deviatoric pressure tensor φP and two independent eigenvalues

of the deviatoric pressure tensor λ1 and λ2. For further understanding, we study the dependence

of these quantities on the velocity gradient.
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2. Description of the non-Newtonian pressure tensor

Figure 3 shows the pressure and the eigenvalues of the deviatoric pressure tensor as functions

of the magnitude of the strain rate tensor. Both graphs show clear trends with s and no visible

dependency on the flow type. The pressure in Figure 3(a) increases with increasing s. This so-called

pressure dilatancy is proportional to ∆p ∝ s3/2 over almost two orders of magnitude, as shown

in the inset. The error bars in the inset denote the standard deviation of the data points. This

proportionality has been reported in the literature for WCA fluids46 as well as for a Lennard-Jones

fluid at the same state point and comparable deformation rates,47,48 and for a molten salt sheared at

much higher rates.44 Yet, the power law is based on a fit and is not based on theoretical arguments.

The scaling with the deformation rate is different for very small s; a different proportionality

∆p ∝ s2 has been reported for a WCA fluid near the LJ triple point, sheared at smaller rates

10−8 < γ̇ < 10−2, measured using the transient-time correlation function.48 Our measurements

at small deformation rates are not sufficient to confirm this different trend. The pressure in

Figure 3(a) is fitted to a function of the form p = p0 + cp s
3/2, where p0 is the equilibrium pressure

and cp = 0.7492. The eigenvalues of the deviatoric pressure tensor (Figure 3(b)) would be (λ1 =

η0 s, λ2 = 0, λ3 = −λ1 − λ2 = −η0 s) for a Newtonian fluid. This prediction is shown in the

figure with the dash-dotted lines. To account for non-Newtonian phenomena in the plane of flow,

an approximation can be made as (X s, 0, −X s), where the middle eigenvalue corresponds to

the direction perpendicular to the plane of flow and X is some variable that is determined later.

Substituting Eq. (18) into Eq. (17) gives

η =
2λ1 + λ2

2s
cos(2∆φ) , (19)

where ∆φ ≡ φS−φP represents the lagging of the pressure tensor relative to the strain rate tensor.

The term cos(2∆φ) is close to unity for all the data shown here, but this is not the case for example

for a dilute fluid, where a longer relaxation time leads to a larger lagging angle.56 Eq. (19) is exactly

valid for any steady planar flow. If we substitute the estimate λ1 = X s and λ2 = 0 into Eq. (19),

we obtain

X =
η

cos(2∆φ)
. (20)

This result is shown by the dashed lines in Figure 3(b). However, this approximation still assumes

a zero intermediate eigenvalue, which is inconsistent with the simulation data. The data show

that the magnitude of the intermediate eigenvalue is a function of s, but is independent of the
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FIG. 3: Pressure (a) and eigenvalues of the deviatoric pressure tensor (b) as a function of the magnitude

of the strain rate tensor (ρ = 0.8442, T = 0.722). The inset in (a) gives the proportionality between p and

s3/2 in a logarithmic graph, error bars give the standard error and the dashed line is the fit of the pressure

dilatancy.

flow type (i.e., the data for shear, elongation and mixed flow all collapse on a single curve that is

quantified later). An additional term can be added to the estimate of the eigenvalues as (X s +

a, −2a, −X s + a), where the value for a is calculated from the middle eigenvalue as a = −λ2/2.

Note that Eq. (19) remains exactly satisfied. The added correction term a is a measure for the

out-of-flow-plane anisotropy of the pressure tensor. The new functional form for the eigenvalues

leads to perfect agreement with the simulation data, as shown by the solid lines in the figure.57

Substituting the found functional form for the eigenvalues into Eq. (18) gives

P = p I + R(φP ) ·

− η s

cos(2∆φ)
ID + a


1 0 0

0 1 0

0 0 −2


 ·RT (φP ) . (21)

Since λ2 6= 0, the unit deviator matrix ID is not sufficient for the description of the deviatoric

pressure tensor and we have gained an additional tensorial term. This term is again written as the

product of a scalar magnitude and a traceless matrix. The first term represents a planar, but non-

colinear, deviatoric pressure tensor, while the second term quantifies the out-of-plane anisotropy.

Both terms are traceless, and thus deviatoric, but the second is invariant under rotation in the

plane of flow.

The tensor rotation on the right hand side of Eq. (21) can be split into a rotation about an

angle φS and an additional rotation by the (negative) lagging angle −∆φ = φP − φS to obtain the
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orientation of the pressure tensor φP . We know from Eqs. (6) and (7) that S = sR(φS)·ID ·RT (φS),

such that the pressure tensor can be written as

P = p I− η

cos(2∆φ)
R(−∆φ) · S ·RT (−∆φ) +

√
3 aIa , (22)

Ia ≡
1√
3


1 0 0

0 1 0

0 0 −2

 , (23)

where Ia is scaled such that the tensor has a scalar magnitude of 1, exactly like ID. This model

contains the four state variables p, η, ∆φ and a, which all are functions of the velocity gradient. The

last term in the model is invariant under rotation around the z-axis and has equal contributions

in the x and y directions.

It must be noted that the diagonal components of ID and Ia are closely related to the in-

plane η− and out-of-plane η∗ viscosity coefficients49,50 that can be used as a measure of non-

Newtonian behavior under shear flow. For simple shear flow, these coefficients are defined as

η− ≡ N1/(2γ̇) = (Pyy − Pxx)/(2γ̇) and η∗ ≡ (Pyy − 2Pzz + Pxx)/(4γ̇), where the occurrences of

the normal pressure terms in the coefficients agree exactly with the diagonals of the planar and

the non-planar terms in Eq. (21), respectively. The out-of-plane viscosity coefficient η∗ is related

to our out-of-plane anisotropy via η∗ = 6a/(4 s). The data has confirmed that this relation is not

limited to simple shear flow, but is valid for each of the planar flow types studied.

The parameter a in our model can be fitted against the magnitude of the strain rate tensor as

a = ca s
3/2, with ca = 0.1113. The data for a and the corresponding fit are shown in Figure 4,

where the fit slightly deviates from the data at small values of s. The inset indicates that the

out-of-plane anisotropy a is almost perfectly proportional to the pressure dilatancy p− p0, where

the ratio between the out-of-plane viscous stresses and the pressure dilatancy a/(p−p0) approaches

a constant value at large s. The ratio ca/cp is expected to be much smaller than unity for every

planar flow. While the out-of-flow-plane anisotropy tends to zero for s → 0, the ratio between a

and p− p0 diverges close to s = 0, since the denominator tends to zero faster than the numerator.

The divergence turns out to be strongly related to the discrepancy at small s between the data

for a and the fit of the data and is thus not considered to be physically meaningful. Alternative,

better fits are not discussed here for the sake of brevity.

So far we have found that the parameters p, η and a are independent of the flow type and

only depend on the state point of the fluid and on s. We next study ∆φ. Figure 5 shows the

orientation angles of the strain rate tensor φS , the pressure tensor φP and the difference (lag)
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FIG. 4: The parameter a as a function of the magnitude of the strain rate tensor (ρ = 0.8442, T = 0.722).

The inset shows the normalized anisotropy of the pressure tensor.

between both angles ∆φ, given in degrees. The lag angle is very small relative to the orientation

angles, which makes it hard to measure with high accuracy. This difference is caused by distortion

of the pair distribution function, which affects the configurational part of the pressure tensor,

while the kinetic part of the pressure tensor remains isotropic. Note that the orientation of the

distorted pair distribution function is by no means identical to that of the pressure tensor because

the contribution that each interaction has to the pressure tensor depends not only on the relative

position of the atoms, but also on the absolute distance between them to determine the magnitude

of the interaction force. Figure 5(b) shows that the lag angle divided by the magnitude of the

vorticity ω = γ̇/2 collapses onto a single profile. Note that for small ω (and many of the data

points with small values of s) the inaccuracy in the ratio ∆φ/ω becomes large. The profile is

inversely proportional to s+ b, where b is a constant that is inversely proportional to a time scale

of the fluid in equilibrium, and thus related to the state point of the fluid. We can write the angle

difference as ∆φ = cφω/(s+ b), with fitting variables cφ = 1.5883 and b = 0.1824.

Evans et al.51 suggested that the distortion of the microstructure of the fluid out of equilibrium

should be proportional to a phenomenological relaxation time of the fluid. Similarly to the non-

equilibrium structure of the fluid, also the viscoelastic lagging should be proportional to the relax-

ation time, such that we can write ∆φ = cφ ω/(s+ b) = τω, with τ ∝ cφ/(s+ b) = 1/(ατ−1s + τ−10 ),

where τ0 = cφ/b and τs are competing equilibrium and non-equilibrium time scales and α is a

proportionality constant. Different relaxation times can be defined and calculated. Many equi-

librium and non-equilibrium relaxation times can be defined, for example related to the transient

response of the pressure tensor,52 distortion of the pair distribution function,53 or to the collision
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FIG. 5: Principal orientation angles (a) as a function of the magnitude of the strain rate tensor (ρ = 0.8442,

T = 0.722), the inset shows the lag angle. In (b), the lag angle is scaled by the vorticity ω, such that the

data collapses onto a single profile.

frequency.54 For a fluid at equilibrium, for example, τ1 ≡ Ψ1,0/(2η0) = 0.69/(2× 2.32) = 0.15 was

defined.37

3. Constitutive model for non-Newtonian fluid

In summary, the pressure tensor for a WCA fluid near the LJ triple point and under an arbitrary

planar flow field in the thinning regime can be expressed in terms of four state variables

∆p = cp s
3/2 , (24)

η = η0/(1 + cη1 s
2)cη2 , (25)

a = ca s
3/2 , (26)

∆φ = cφ ω/(s+ b) , (27)

where each quantity represents a deviation from Newtonian behavior, i.e., pressure dilatancy, strain

thinning, out-of-plane pressure tensor anisotropy and viscoelastic lagging. Substituting these pa-

rameters into Eq. (22) completes the presented model. With the fitted parameters, the pressure

tensor can be predicted for a WCA fluid near the LJ triple point for any given planar velocity

gradient. The model contains a total of six fitting parameters (some of which can be interpreted

as relaxation times) if the equilibrium fluid properties p0 and η0 are known. Alternatively, these

also could be included as fitting parameters, which brings the total number to eight. The latter

has been tried with our data as well (not shown). The fitted values for η0 and p0 were consistent,
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i.e., within the statistical uncertainty of our calculated values from EMD simulations.

In order to test the limits and predictive value of our model, we have performed simulations of a

fluid under a larger deformation rate than that of the previous simulations. The model is tested for

a fluid under a planar elongational flow with ε̇ = 1.0, such that s = 2. The orientation angle of the

pressure tensor should be zero for planar elongational flow, the simulation result gives φP = 0.0160,

with a larger relative uncertainty. The agreement between the model and the simulation results

for pressure, viscosity and anisotropy are −0.6%, −3.0% and +0.8%, respectively. This shows that

the model predicts the pressure tensor with high accuracy even at larger deformation rates. We

increase the deformation rate a little further and test the model for a fluid under planar mixed

flow with γ̇ = ε̇ = 1.0, corresponding to s =
√

5 and φS = 13.28 ◦. The predicted values for p, η, a

and ∆φP are all within 4% of the simulation results.

We have also performed simulations for γ̇ = ε̇ = 0.01 (s =
√

5× 10−4) to verify the convergence

towards Newtonian behavior near equilibrium. We have measured η = 2.33 ± 0.02 and p =

6.3897± 0.0004, which means that both quantities agree within the standard error with the values

calculated with EMD simulations. Deviations from the Newtonian limiting behavior are too small

to be measured accurately from NEMD simulations very close to equilibrium unless significantly

more statistics is accumulated, or alternative techniques are used to enhance it.11

V. SUMMARY AND CONCLUSIONS

We have presented a framework to predict the pressure tensor for a fluid under arbitrary steady

homogeneous planar flows. The framework describes the full pressure tensor in terms of four

variables, which is the minimum number of variables required. The variables involve a quantitative

description of non-Newtonian phenomena, being: strain-rate thinning viscosity, pressure dilatancy,

viscoelastic lagging and out-of-plane pressure tensor anisotropy.

Steady-state non-equilibrium molecular dynamics simulations have been performed for a WCA

fluid near the LJ triple point. Simulations for shear flow, planar elongational flow and combined

shear and elongation show the same deviations from Newtonian behavior. All of these results, when

expressed in terms of functions of the driving field strength s, the vorticity ω and the equilibrium

fluid properties, collapse onto master curves. This shows that the pressure tensor can be predicted

for each planar flow, making it possible to predict the full pressure tensor for a simple fluid under

various types of planar flow without having to produce these flows explicitly in a simulation or

experiment. Prior knowledge is required about the equilibrium properties and the non-equilibrium
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scaling of the fluid at the state point of interest. This can be easily obtained from one series of

simple shear flow simulations, only varying s.

We have found that the principal pressure tensor for a simple atomic fluid is solely dependent

on the scalar magnitude of the flow field, at the chosen state point of the fluid. This was shown

in Figure 3. The Cartesian pressure tensor is also dependent on the shear rate, the vorticity and

the principal orientation of the strain rate tensor. However, the orientation of the pressure tensor

is defined relative to the orientation of the strain rate tensor, not explicitly dependent on the

Cartesian coordinate system.

The non-Newtonian fluid model is calibrated with results from various simulations over a wide

range of deformation rates. Furthermore, the model was used to predict (extrapolate) the pressure

tensor for simulations much further away from equilibrium and very close to equilibrium. The

predictions were very accurate for all model variables up to large deformation rates.

The model is valid for the spatially homogeneous systems used here, but the same framework

should be equally beneficial for the study of shear-banding or confined fluids if the model is proven

to be locally valid too. Inhomogeneity creates a complicated problem, since the state point of

the fluid, and thus also the flow properties, become functions of position. The possibility of

applying a similar framework to a confined fluid problem has been investigated in Ref. 26. It

can also straightforwardly be applied, for example, to polymeric fluids, colloidal systems, ionic

liquids or granular fluids,27 where insight in non-Newtonian behavior would be of great benefit.

Especially in polymeric rheology, many complicated empirical models exist that require many more

parameters and do not explicitly quantify the deviations from Newtonian behavior in a compact

formulation and for arbitrary planar velocity gradients, as presented here. Our model could simplify

the description of molecular rheology dramatically, although modifications of the model would be

required to appreciate the underlying structures that are . For example, the lagging angle of a

molecular fluid would be highly affected by the orientation and stretching of molecules, and thus

related to the size and internal structure of molecules.

All data presented in this work correspond to a single density and temperature. The functional

forms of all of the non-Newtonian quantities have been validated at five different state points

(data not shown here). It was found that the (fitting) parameters depend strongly on the state

point of the fluid. An extensive study at various state points could provide more insight in the

dependence of the non-Newtonian rheology on density and temperature. This study is currently

being undertaken.

A possible next step towards a ‘complete’ description of the non-Newtonian pressure tensor
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should be an extension of the model to allow for transient or time-dependent flows. This would

require an extensive study of relaxation dynamics to non-equilibrium steady states and to equi-

librium after cessation of steady flow. Preliminary studies at a range of deformation rates and

flow types show consistent relaxation behavior in the linear response regime, but distinctive differ-

ences when the response is a non-linear function of the deformation rate (i.e., in the shear thinning

regime). The range of deformation rates considered in this study is far into the non-linear regime,

where transient behavior is extremely complicated. In order to attempt an extension towards a

time-dependent description of the pressure tensor, a study with lower deformation rates is advised.
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