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Abstract

The micromechanical and macromechanical behavior of idealized granular assemblies, made by
linearly elastic, frictionless, polydisperse spheres, are studied in a periodic, triaxial box geometry,
using the discrete element method. Emphasis is put on the effect of polydispersity under purely
isotropic loading and unloading, deviatoric (volume conserving) pure shear, and uniaxial compression
paths.

We show that scaled pressure, coordination number and fraction of rattlers, behave in a very
similar fashion as functions of volume fraction, irrespective of the deformation path applied. Inter-
estingly, they show a systematic dependence on the deformation mode and polydispersity via the
respective jamming volume fraction. This confirms that the concept of a single jamming point has
to be rephrased to a “wide range” of values, dependent on microstructure and history of the sample.

This behavior is confirmed when a simplified constitutive model involving structural anisotropy
is calibrated using the deviatoric simulations as the basic model parameters are found to depend on
the polydispersity of the sample through the jamming volume fraction.The predictive power of the
calibrated model is confirmed by comparison with an independent test, namely the uniaxial compres-
sion. The important features of the uniaxial experiment are captured and a qualitative prediction for
the evolution of stress and fabric is shown involving a “softening” regime in both stress and fabric –
stronger for the latter – that was not prescribed into the model a-priori.

Keywords: Polydispersity, Anisotropy, deformations, calibration, PARDEM.

1 Introduction and Background

Granular materials are widely used as raw materials in various industrial applications, including phar-
maceutical, mining, chemical, agricultural, household products and food sectors. Processes involving
milling, segregation, fragmentation, agglomeration, filtration and sieving, among others are common and
often lead to the generation of granular systems with large size ratios. The optimization of these systems
are exceptionally challenging and often require heuristic assumptions to be made. It is known, however
that polydispersity influences the micro-mechanical behavior of granular systems. For example, the shear
strength and packing fraction, which are important quantities in determining the stress state and re-
sponse of granular assemblies have been shown to be influenced by the size ratio of the packing (Göncü
& Luding, 2013; Shaebani et al., 2012).

On the other hand, the bulk macroscopic behavior of granular systems originates from the contact
force network between their constituent particles. The contact force networks, even for systems with
uniform size distribution, are mostly inhomogeneous leading to many interesting phenomena (Shaebani
et al., 2012). In recent studies involving the effects of polydispersity, emphasis has been placed on systems
with narrow size distributions – ostensibly to limit the effects of long-range structural order – with the
exception of a few cases where wider distributions have been reported (Dodds & Weitz, 2002; Ogarko
& Luding, 2012; Voivret et al., 2007, 2009). Additionally, a micromechanical description, which takes
into account the discrete nature of granular systems, is necessary and must be linked to the continuum
description, which involves the formulation of constitutive relations – for macroscopic fields. In recent
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years, several constitutive relations have been proposed in literature (Goddard, 1998, 2010; Kolymbas
et al., 1995; Maš́ın, 2012; Sun & Sundaresan, 2011; Thornton & Zhang, 2010), but only few take into
account the anisotropy that develops when granular systems are subjected to shear deformation (Luding
& Perdahcıoğlu, 2011; Magnanimo & Luding, 2011; Peyneau & Roux, 2008; Tejchman & Wu, 2007) and
no study, to our knowledge connects anisotropy and polydispersity.

When a granular assembly is subjected to shear deformation, a buildup of shear stress is observed,
along with an evolution of the structural anisotropy, which describes the creation and destruction of
contacts (Ai et al., 2013; Alonso-Marroquin et al., 2005; Azéma & Radjäı, 2012; Hareb & Doanh, 2012;
Kumar et al., 2013; Peyneau & Roux, 2008; Radjäı et al., 1999; Schröder-Turk et al., 2010; Walsh &
Tordesillas, 2004). In this sense, anisotropy represents a history-parameter for the granular assembly. For
anisotropic samples, scalar quantities are not sufficient to fully represent the internal direction dependent
contact structure; therefore an extra tensorial quantity has to be introduced, namely the fabric tensor
(Oda, 1972; Satake, 1982). To gain more insight into the microstructure of granular materials, numerical
studies and simulations on various deformation experiments can be performed, see Hanley et al. (2012);
Peyneau & Roux (2008); Thornton (2010); Thornton & Zhang (2006, 2010), among others.

In this study, we perform parametric studies with the goal of understanding the effect of polydispersity
on both microscopic and macroscopic behavior of granular assemblies under isotropic, uniaxial and devi-
atoric deformation conditions. As (scalar and tensorial) microscopic quantities, we investigate the effects
of polydispersity on coordination number, fraction of rattlers and fabric. The volumetric part of fabric is
the measure of the strength of contact network, while the deviatoric part gives insight on the orientation
of the contact network.On the macroscopic side, we consider the effects of polydispersity on the scaled
pressure and the deviatoric stress. Another goal is to calibrate a constitutive model using parameters
from deviatoric volume conserving pure shear simulations and test the predictive power of the calibrated
model on an independent test, namely uniaxial compression test. We propose an objective definition
for deviatoric stress and deviatoric fabric in a triaxial box and present findings on their behavior as a
function of deviatoric strain. The parameters obtained from pure isotropic and deviatoric deformations
are inserted into a constitutive model to predict uniaxial deformation.

This paper is organized as follows: The simulation method and parameters used and the generalized
averaging definitions for scalar and tensorial quantities are given in section 2. The preparation and test
procedures are explained in section 3. Polydispersity is introduced in subsection 4.1 and its effect on
the evolution of the non-scaled pressure, coordination number and fraction of rattlers for the different
deformation modes is discussed in subsection 4.2. In subsection 4.3, the macroscopic quantities (deviatoric
stress and deviatoric fabric) and their evolution are studied as functions of polydispersity, volume fraction
and deviatoric (shear) strain for the different deformation modes. Finally, these results are used to
obtain/calibrate the macroscopic model parameters. Section 5 is devoted to theory, where we relate the
evolution of the fabric anisotropy to that of stress and strain, as proposed in Luding & Perdahcıoğlu
(2011); Magnanimo & Luding (2011), to display the predictive quality of the calibrated model.

2 Numerical simulation

The Discrete Element Method (DEM) (Cundall & Strack, 1979) has been used extensively in performing
simulations in biaxial and triaxial geometries (Durán et al., 2010; Kruyt et al., 2010; Luding, 2005b; Sun
& Sundaresan, 2011) involving advanced contact models for fine powders (Luding, 2008; Tomas, 2001),
or general deformation paths, see Alonso-Marroquin et al. (2005); Thornton (2010); Thornton & Zhang
(2010) and references therein. In this work, however, we restrict ourselves to the simplest deformation
tests – namely isotropic, uniaxial and deviatoric –and to the linear contact model without friction. Since
DEM is a standard method, only the contact model parameters relevant for our simulation are briefly
discussed as well as the basic system parameters.

The simplest normal contact force model, which takes into account excluded volume and dissipation,
linear repulsive and linear dissipative forces, is given as fn = fnn̂ = (kδ + γδ̇)n̂, where k is the spring
stiffness, γ is the contact viscosity parameter, δ is the overlap and δ̇ is the relative velocity in the normal
direction n̂. An artificial background dissipation force, fb = −γbvi, proportional to the velocity vi of
particle i is added, resembling the damping due to a background medium, as e.g. a fluid. A short summary
of the values of the parameters used in DEM simulations is shown in Table 1.1 We waht to point out

1Note that the units are artificial and can be consistently rescaled to quantitatively match the values obtained from
experiments (due to the simplicity of the contact model used), as shown in (Luding, 2008).
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Parameter Symbol Value S.I. Units

Time Unit tu 1 1 µs

Length Unit lu 1 1 mm

Mass Unit mu 1 1 µg

Number of Particles N 9261 [–]

Average radius 〈r〉 1 1 mm

Polydispersity w = rmax/rmin varied [1 – 10] [–]

Particle density ρ 2000 2000 [kg/m3]

Normal stiffness k 105 108 [kg/s2]

Normal Viscosity γ 1000 1 [kg/s]

Background viscosity γb 100 0.1 [kg/s]

Table 1: Summary and numerical values of particle parameters used in the DEM simulations.

here that the choice of contact model (linear or non-linear) affects the collisional behavior between two
particles as well as the bulk behavior (Ji & Shen, 2006; Shäfer et al., 1996). When linear and hertzian
contact models are compared, a major difference is related to the initial contact stiffness, where the
former presents a finite constant value, while for the later, the stiffness is a function of the deformation,
namely it is zero at the beginning. However, the difference between the two models become smaller when
the consolidation pressure becomes higher, as is the case in this study.

2.1 Microscopic Variables

In order to link the macroscopic load carried by the sample with the active microscopic contact network,
all particles that do not contribute to the force network are excluded from the computation. Frictionless
particles with less than 4 contacts are thus ‘rattlers’, since they cannot be mechanically stable and hence
do not contribute to the contact network (Göncü et al., 2010; Imole et al., 2013; Madadi et al., 2004).
The simple definition of coordination number is C = M/N , where M is the total number of contacts and
N = 9261 is the total number of particles. If the overlap at a contact between two particles is greater
than or equal to zero, i.e., δ ≥ 0, the contact contribute to the force network. The corrected coordination
number is C∗ = M4/N4, where, M4 is the total number of contacts of the N4 particles with at least 4
contacts, and the rattler fraction is φr = (N −N4) /N .

The total volume of particles is
∑N

P=1 VP = 4πN〈r3〉/3, where 〈r3〉/3 is the third moment of the size

distribution discussed in detail in subsection 4.1 and the volume fraction is defined as ν = (1/V )
∑N

P=1 VP ,
where V is the volume of the box. Note that for the calculation of the total volume of particles, the
volume which should be subtracted due to particle overlaps is neglected.

2.2 Macroscopic variables

Here, we focus on defining averaged macroscopic tensorial quantities – including strain-, stress- and fabric
(structure) tensors – that reveal interesting bulk features and provide information about the state of the
packing due to its deformation.

For any deformation, we can describe the external applied strain through the infinitessimal strain
tensor E. Its isotropic part εv (Göncü et al., 2010; Imole et al., 2013) is defined as:

εv = ε̇vdt =
εxx + εyy + εzz

3
=

1

3
tr(E) =

1

3
tr(Ė)dt, (1)

where εαα= ε̇ααdt with αα = xx, yy and zz as the diagonal elements of E in the Cartesian x, y, z
reference system. The trace integral of 3εv, denoted as the volumetric strain εv is the true or logarithmic
strain, i.e., the volume change of the system relative to the initial reference volume, V0.
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From the DEM simulations, one can determine the stress tensor as

σσσ = (1/V )
∑
c∈V

lc ⊗ f c, (2)

which is an average over the contacts in the volume V of the dyadic products between the branch vector
lc and the contact force f c, where the contribution of the kinetic energy has been neglected (Imole et al.,
2013; Luding, 2005a). The isotropic component of the stress is the pressure P = tr(σσσ)/3.

Besides the stress, we will focus on the fabric tensor in order to characterize the geometry/structure
of the static aggregate, defined as

F = (1/V )
∑
P∈V

V P
∑
c∈P

nc ⊗ nc, (3)

where V P is the particle volume for particle P, which lies inside the averaging volume V , and nc is the
normal unit branch-vector pointing from center of particle P to contact c (Kumar et al., 2013; Luding,
2005a). The average isotropic fabric is Fv = tr(F) = g3νC, where ν and C are, respectively, the volume
fraction, the coordination number, and g3 is a function of moments of the size distribution (Göncü et al.,
2010; Shaebani et al., 2012), as explained in detail in subsection 4.1. We want to highlight here that a
different formulation for the fabric tensor considers simply the average orientation of contacts as follows
(La Ragione & Magnanimo, 2012; Oda, 1972; Satake, 1982):

Fs =
1

Nc

∑
c∈Nc

nc ⊗ nc , (4)

where Nc is the total number of contacts. The relationship between Eq. (3) and Eq. (4) is:

Fs =
F

g3νC
=

3F

Fv
. (5)

In addition to the isotropic components, we use the following definition to quantify the magnitude of
the deviatoric parts (Kumar et al., 2013) of tensors Q (stress σσσ, strain E or fabric F) :

Qdev = Fsgn (Q)

√
(Qxx −Qyy)

2
+ (Qyy −Qzz)

2
+ (Qzz −Qxx)

2
+ 6

(
Q2

xy +Q2
yz +Q2

zx

)
2

, (6)

where Qxx, Qyy and Qzz are the diagonal components, and Qxy, Qyz and Qzx are the off-diagonal
components of the symmetric tensor Q. Fsgn (Q) is the sign function with possible values as +1, 0 and
−1, whose definition depends on the deformation path (see section 4.3). In the case of stress, Eq. (6)
equals von Mises stress, σdev =

√
3J2, with J2 as the second deviatoric stress invariant J2.

When a biaxial or triaxial compression is performed, such that the strain, stress and fabric stay
almost coaxial with principal axes parallel to the initial reference system, the off-diagonal terms become
negligible and the diagonal terms coincide with the eigenvalues.

3 Preparation and test procedure

After the (common) initial isotropic preparation, the packing is deformed following three different proce-
dures, namely isotropic, uniaxial and deviatoric paths (a detailed procedure can be found in (Imole et al.,
2013)). For convenience, the definitions of the different modes will be based on their respective strain-rate
tensors. Also note that the deformations applied to systems are always ‘slow’ enough to maintain the
quasi-static regime and hence minimize the dynamical effects (Hanley et al., 2012; Imole et al., 2013).

3.1 Initial Isotropic preparation

Since careful, well-defined sample preparation is essential in any physical experiment to obtain repro-
ducible results, the preparation consists of three parts: (i) randomization, (ii) isotropic compression, and
(iii) relaxation, all equally important to achieve the initial configurations for the following analysis. (i)
The initial configuration is such that spherical particles are randomly generated in a 3D box without
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gravity, with low volume fraction and rather large random velocities, such that they have sufficient space
and time to exchange places and to randomize themselves. (ii) This granular gas is then isotropically
compressed, in order to approach a direction independent initial configuration with target volume fraction
ν0 = 0.64, sightly below the jamming volume fraction, i.e. the transition point from fluid-like behavior to
solid-like behavior (Majmudar et al., 2007; Makse et al., 2000; O’Hern et al., 2002; van Hecke, 2009). (iii)
This is followed by a relaxation period at constant volume fraction to allow the particles to fully dissipate
their energy and to achieve a static configuration in mechanical equilibrium, after sufficient relaxation
indicated by the drop in kinetic to potential energy ratio to almost zero.

3.2 Isotropic compression mode

Further isotropic compression (negative strain-rate in our convention) can now be used to prepare initial
configurations at different volume fractions, each one with subsequent relaxation, achieved at different
steps during loading and unloading, as displayed in Fig. 1. Furthermore, this path can be considered as
the isotropic element test by itself (Göncü et al., 2010). It is realized by a simultaneous inward movement
of all the periodic boundaries of the system, with diagonal strain rate tensor

Ė = ε̇v

 −1 0 0
0 −1 0
0 0 −1

 ,

where ε̇v (> 0) is the rate amplitude applied to the walls until the target maximum volume fraction
νmax = 0.82 is achieved. The simulations are continued with negative ε̇v in the unloading mode, until
the initial ν0 is reached. The unloading branch configurations are more reliable since this part of the
deformation is much less sensitive to the protocol and rate of deformation during preparation (Göncü
et al., 2010; Imole et al., 2013) – that is we will use those initial states for our analysis.
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Figure 1: Evolution of volume fraction as a function of time. Region A represents the initial isotropic
compression below the jamming volume fraction. B represents relaxation of the system to fully dissipate
the systems energy and C represents the subsequent isotropic compression up to νmax = 0.820 and then
decompression. Cyan dots represent some of the initial configurations, at different νi, during the loading
cycle and blue stars during the unloading cycle, at the same νi, which can be chosen for further study.

3.3 Uniaxial compression mode

Uniaxial compression is one of the element tests that is initiated at the end of the “preparation”. The
uniaxial compression mode in the triaxial box is achieved by a prescribed strain path in the z-direction,
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while the other boundaries x and y are non-mobile. During loading (compression) the volume fraction
increases, like for isotropic compression, from ν0 = 0.64 to a maximum volume fraction of νmax = 0.820
(as shown in region C of Fig. 1), and reverses back to the original volume fraction ν0 during unloading.
Uniaxial compression is defined by the strain-rate tensor

Ė = ε̇u

 0 0 0
0 0 0
0 0 −1

 ,

where ε̇u is the strain-rate (compression > 0 and decompression/tension < 0) amplitude applied. The
negative sign (convention) of Ėzz corresponds to a reduction of length, so that tensile deformation is
positive. Even though the strain is imposed only on the mobile “wall” in the z-direction, which leads to
an increase of compressive stress on this wall during compression, also the non-mobile walls experience
some stress increase due to the “push-back” stress transfer and rearrangement of the particles during
loading, as discussed in more detail in the following sections. This is in agreement with theoretical
expectations for solid materials with non-zero Poisson ratio. However, the stress on the passive walls is
typically smaller than that of the mobile, active wall, as consistent with findings from laboratory element
tests using the biaxial tester (Morgeneyer & Schwedes, 2003; Zetzener & Schwedes, 1998) or the so-called
λ-meter (Kwade et al., 1994a,b).

3.4 Deviatoric deformation mode

The preparation procedure, as described in subsection 3.1, provides different initial configurations with
volume fractions νi. Starting from the values νi in the unloading branch of isotropic configurations as
shown in Fig.1, we perform volume conserving deviatoric deformations with the strain-rate tensor

Ė = ε̇D2

 1 0 0
0 0 0
0 0 −1

 ,

where ε̇D2 is the strain-rate (compression > 0) amplitude applied to the wall with normal in z-direction.
The chosen deviatoric path is on the one hand similar to the pure-shear situation2, and on the other
hand allows for simulation of the biaxial experiment (with two walls static, while four walls are moving
(Morgeneyer & Schwedes, 2003; Zetzener & Schwedes, 1998)), in contrast to the more difficult isotropic
compression, where all the six walls are moving. Different types of volume conserving deviatoric defor-
mations can be applied to shear the system, but very similar behavior has been observed (Imole et al.,
2013).

4 Polydispersity

Most granular materials are highly polydisperse in nature. It is known that size polydispersity affects the
mechanical behavior of granular systems (e.g., shear strength) as well as their space-filling properties (e.g.,
packing fraction) (Göncü & Luding, 2013; Ogarko & Luding, 2012), which are crucial in many engineering
applications like road construction or soils liquefaction problems (see (Anderson, 1996; Belkhatir et al.,
2012, 2011) and references therein). Nevertheless the attention has been restricted so far to monodisperse
or binary mixtures or narrow size distribution. Here we use samples with different degrees of polydispersity
to study the effect of increasing polydispersity on the evolution of microscopic and macroscopic parameters
during various deformation modes.

4.1 Polydispersity

We define polydispersity in terms of the width w = rmax/rmin – where rmax and rmin represent the radius
of the largest and smallest particles in the overall ensemble of a distribution uniform in size (Göncü et al.,

2Pure shear is here used to identify constant volume deviatoric loading with principal strain axis keeping the same
orientation as the geometry (cubical) of the system for the whole experiment. In this case, there is no rotation (vorticity)
of the strain principal axis and no distortion/rotation of the sample due to deformation.
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2010; Göncü & Luding, 2013):

f(r) =
w + 1

2(w − 1)〈r〉
Θ

(
2w〈r〉
w + 1

− r

)
Θ

(
r − 2〈r〉

w + 1

)
, (7)

with step function Θ(x ≥ 0) = 1 and Θ(x < 0) = 0. From the distribution of radius, one can calculate
the parameter g3 that describes the polydispersity of a 3D spherical system, (Göncü et al., 2010) as:

g3 ≈
1−B2 + C2 + (B2 − 2C2)

〈r4〉
〈r〉〈r3〉

+ C2
〈r5〉

〈r〉2〈r3〉

1 + C2

[
〈r2〉
〈r〉2

− 1

] , (8)

where the constants B2 = 1.077 and C2 = 0.2629 are described in (Göncü et al., 2010) and 〈rn〉 is the
nth moment of r up to the 5th degree. Only for the monodisperse case, the simplification g3 = 1 holds.
Otherwise, it increases with polydispersity w and saturates at high values about 1.627.

Figure 2: Snapshots of three systems with polydispersity (i) 1.5, (ii) 2 and (iii) 5 respectively with the
same volume fraction ν = 0.82 . The color code indicates the contacts of the particles : (red: big contacts,
blue: no contacts).

In order to study the effect of polydispersity on micro-macro behavior of granular assembly, we prepare
different packings with polydispersity ranging from w = 1 to 10. These packings are deformed following
the paths described in section 3. As an example, we show in Fig. 2 isotropic samples with w = 1.5, 2 and
5 for constant volume fraction ν = 0.82. Note that for the same volume fraction ν, the volume of the box
is higher for higher polydispersity, since 〈r3〉 increases with w for fixed 〈r〉 = 1. For higher polydispersity,
particles of smaller size fill more efficiently the pore space between larger particles. However, lower
polydispersity in packings of granular materials is associated with alterations in the structural order
(Ogarko & Luding, 2012; Voivret et al., 2007). 3

4.2 Effect of polydispersity on isotropic quantities

In the following, we will study the influence of polydispersity on scaled pressure, coordination number
and fraction of rattlers, during the three deformation paths described above.

4.2.1 Confining pressure

Starting from Eq. (2), we define the non-dimensional pressure (Göncü et al., 2010; Imole et al., 2013) as

p =
2〈r〉
3k

tr (σ) , (9)

with 〈r〉 the first radius moment (average radius) and k the spring stiffness defined in section 2, while
the scaled pressure is:

p∗ =
pνc
νC

= p0(−εv) [1− γp(−εv)] (10)

3Note that here results for a uniform radius distribution are presented. The trend will be different if the type of
distribution is different e.g., uniform surface or uniform volume distribution.

7



where p0, γp, and the critical volume fraction νc are fit parameters. When comparing the two expressions
of non-dimensional and scaled pressure, we notice that in Eq. (10), the pressure is normalized by “νC”,
that is the contribution of the density of contacts and is cancelled and p∗ is then only proportional to
the average deformation (overlap) of the particles at a given volume fraction and to the distance from
jamming point through νc.
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Figure 3: Evolution of non-dimensional pressure p with volume fraction ν for the isotropic (•, red),
uniaxial (H, green) and deviatoric (�, blue) deformation modes, as shown in the legend. Small symbols
represent w = 1.5 and big symbols represent w = 5. Inset is the zoomed-in area near the jamming volume
fraction.

In Fig. 3, we plot the evolution of the non-dimensional pressure p with volume fraction ν during
isotropic, uniaxial and deviatoric deformation for polydispersities w = 1.5 and 5. Note that p increases
with ν starting from νc, with slight differences related to different modes, as discussed in (Imole et al.,
2013). For a given volume fraction, we observe a decrease in the pressure with increasing polydispersity.
Better insights on this feature are given by looking at the the distribution of overlaps δ(r)/〈r〉 as a function
of the scaled particle radii rsc, as shown in Figs. 4(a) and 4(b) for two volume fractions, ν = 0.686 and
ν = 0.82. The particle radii are scaled such that rsc = 0 and rsc = 1 represent the smallest and largest
particle in the configuration, respectively. A first observation is the unsurprising increase in the average
overlap for all modes and polydispersities with increasing compression from ν = 0.686 in Fig. 4(a) to
ν = 0.82 in Fig. 4(b), in agreement with Fig. 3. Based on this, we can claim that P/k ∝ δ(r)/〈r〉, at
least for small deformations and for linear contact model. In addition, for both volume fractions shown,
the overlap increases with increasing particle radii.

Focusing on the deformation modes trend, for both polydispersities, deviatoric deformation leads to
the highest pressure, followed by the uniaxial and isotropic modes, respectively. This trend is clearly
visible at lower volume fractions – as shown in the inset of Fig. 3, while for increasing volume fraction,
the effect of the deformation mode reduces, as evident by the collapse of data in Fig. 4(b). The agreement
is confirmed by observing the average overlap 〈δ〉 in Figs. 4(a) and 4(b), with the data from uniaxial
compression lying between the isotropic and deviatoric datasets. The trend observed in the evolution
of the scaled pressure and distribution of the average overlaps are consistent with the fact that the
isotropic and deviatoric modes are pure modes, while the uniaxial mode is a superposition of isotropic
and deviatoric modes (Luding & Perdahcıoğlu, 2011).

Figs. 5(a – c) show the effects of varying polydispersity on the scaled pressure in Eq. (10), where p∗

is plotted against volumetric strain −εv for isotropic, uniaxial and deviatoric deformations. For a single
deviatoric deformation the volume fraction is constant during the path and hence the pressure remains
practically constant. In this work the data describing deviatoric mode will always refer to the values in
the critical state, after large deformation (see Imole et al. (2013) for more details), unless stated otherwise.
In the small strain region, for all deformation modes, the datasets collapse on each other. Only with
increasing −εv, a small deviation of the simulation data is observed for the isotropic and deviatoric modes,
due to the non-linear correction that shows up at large strain in Eq. (10). The analytical expression of the
scaled pressure in Eq. (10) fits the simulation data well for all three deformation modes and polydispersity,
in agreement with findings in Göncü et al. (2010); Göncü & Luding (2013); Imole et al. (2013).
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Figure 4: Average overlap δ per particle for a radius range scaled by average radius 〈r〉, plotted against
a scaled radius axis rsc = (r − rmin)/(rmax − rmin) for the isotropic (•, red), uniaxial (H, green) and
deviatoric (�, blue) deformation modes. Small symbols represent w = 1.5 and big symbols represent
w = 5. Volume fractions are (a) ν = 0.686 (b) ν = 0.82. Solid and dashed horizontal lines are average
overlap 〈δ〉 in the system for the three modes for w = 1.5 and w = 5 respectively. Note that the y-axis
range is different in the two plots.

Mode ν0c ν∞c

ISO 0.6710 0.6967

UNI 0.6675 0.6956

DEV 0.6647 0.6913

Ogarko & Luding (2012) 0.65 0.6828

Table 2: Summary of parameters ν0c and ν∞c using Eq. (11) presented in Fig. 7, for the isotropic, uniaxial
and deviatoric deformation modes.

The comparison of Figs. (3) and (4) puts in evidence a very interesting feature in the behavior of
pressure. When the contact density νC is scaled out in p∗, the curves collapse irrespective of polydispersity
leading to the conclusion that this factor affects the contact network while the deformation mode (and
the distance from jamming) influences the evolution of average overlap. The fit parameters for p∗ in Eq.
(10) are given in Fig. 6 (and Table 4 in the appendix). The parameter p0 is fairly constant with increasing
polydispersity, with p0 values higher for the isotropic case and uniaxial and deviatoric p0 being very close.
This is in agreement with expectations, as in both uniaxial and deviatoric deformations, anisotropy
develops along the path, and the value of the non-dimensional pressure is increasing with respect to
the (pure) isotropic case. The non-linear contribution from γp fluctuates for smaller polydispersity and
becomes significant for higher w.

From the analysis of the pressure behavior by fitting Eq. (10), we can extract the dependence of the
jamming volume fraction νc on the polydispersity w and the deformation mode, as shown in Fig. 7. The
jamming volume fraction increases with increasing polydispersity, with νc for the isotropic case giving
highest values. The νc law for the ‘mixed’ uniaxial mode is bordered on both sides by the isotropic and
deviatoric datasets. This is consistent with findings in Imole et al. (2013) where νISOc > νUNI

c > νDEV
c . In

this case a similar argument holds as mentioned for p0, related to developing anisotropy during the over-
compression, that explains the trend of the jamming point between isotropic, deviatoric and uniaxial.
This confirms that the jamming volume fraction is not a single value but depends on the deformation
history of the packing.

A theoretical prediction for the variation in νc under isotropic compression of polydisperse hard
spheres is presented by Ogarko & Luding (2012):

νc(w) = ν∞c −
(
ν∞c − ν0c

) (
3w−2 − 2w−3

)
, (11)
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Figure 5: Effect of polydispersity w on scaled pressure p∗, coordination number C∗, and fraction of
rattlers φr for the three deformation modes namely, isotropic compression (first column), uniaxial com-
pression (middle column) and deviatoric deformation (right column). The solid lines are the fits to the
corresponding macroscopic properties using Eqs. (10), (12) with C0 = 6, α = 0.60 for the three modes,
and (13). The arrows indicate the increasing polydispersity. The solid black line in the p∗ plot is Eq.
(10) without the non-linear term. All the fit parameters are presented in Table 4 in the appendix.
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Figure 6: Comparison of the fit parameters (a) p0 and (b) γp with polydispersity w for the analytical
equations of scaled pressure p∗ using Eq. (10) for the isotropic (•, red), uniaxial (H, green) and deviatoric
(�, blue) deformation modes. The fit parameters are presented in Table 4 in the appendix.

where ν0c and ν∞c are the jamming volume fractions for w = 1 and w → ∞ respectively. We apply Eq.
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Figure 7: Evolution of jamming point νc with polydispersity w for the deformation modes considered.
Corresponding solid lines are the theoretical predictions for different modes using Eq. (11). Note that the
fit is applied only to w > 1.2, since local crystallization (Ogarko & Luding, 2012; Schröder-Turk et al.,
2010) might happen at lower polydispersity causing νc values much higher than the disordered, random
prediction.

(11) to the three deformation modes, and in Fig. 7 we show the prediction for hard spheres together
with the νc simulation data for the three modes, and the fitting curves, where the parameters ν0c and
ν∞c are presented in Table 2. Besides the quantitative disagreement due to the difference between hard
and soft spheres, both systems show a very similar trend, the predictions working well for all the three
modes. The simulations in Ogarko & Luding (2012), leading to Eq. (11), were carried out by very slow
isotropic compression from the low density collisional regime, where the fluctuation velocities were not
relaxed as done in this study. The strong kinetic energy fluctuations represent a type of ‘tapping’ that
allows the system to relax to better packed configurations with larger νc. The data in Fig. 7 from Ogarko
& Luding (2012) thus represents an upper limit of optimal compaction, which is not reached by e.g.
slow over-compression to νmax = 0.82. Eq. (11) can then capture the evolution of νc with polydispersity,
irrespective of the deformation modes, when the fit parameters are properly defined. This interesting
feature shows that νc acts as a state variable, able to describe the configuration of the assembly and thus
represent its history, as also reflected by the overlaps in Fig. 4.

4.2.2 Coordination Number

It has been shown in Göncü et al. (2010); Imole et al. (2013) that under isotropic deformation, the
corrected coordination number, C∗ follows the power law:

C∗(ν) = C0 + C1

(
ν

νc
− 1

)α

, (12)

where C0 = 6 is the isostatic value in the frictionless case. α and C1 are fit parameters, while we use
νc from p∗ extrapolation analysis as input value, leading to one less fit parameter for C∗. We observe a
very small variation (3 %) of α with polydispersity and deformation modes (Imole et al., 2013) but for
simplicity we set it to a fixed value of 0.60 in this work (Peyneau & Roux, 2008). Only C1 is then the
residual free fit parameter.

In Figs. 5(d – f), we compare the evolution of the corrected coordination number C∗ as a function
of volume fraction ν during isotropic, uniaxial and after deviatoric loading and show its dependence on
polydispersity. The behavior is qualitatively similar for all the three deformation paths: contacts close
and the coordination number increases with increasing volume fraction. Moreover, for the three modes,
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configurations with lower polydispersity result in a higher number of contacts per particle. The data are
well fitted by Eq. (12) with the fit parameter C1 as function of w shown in Fig. 8(a). A systematic
decrease in C1 is observed with increasing polydispersity. The C1 values of the ‘mixed’ uniaxial mode lie
between the isotropic and deviatoric datasets.
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Figure 8: Comparison of the fit parameters for the analytical equations of coordination number C∗ and
rattler fraction φr using Eqs. (12) with C0 = 6, α = 0.60, and (13), respectively, for the isotropic (•,
red), uniaxial (H, green) and deviatoric (�, blue) deformation modes. (a) Effect of polydispersity w on
coordination number C∗ fit parameters : C1. (b – c) Effect of polydispersity w on rattler fraction φr fit
parameters : φc and φv. The fit parameters are presented in Table 4 in the appendix.

Further increase in the polydispersity beyond w = 4.5 did not lead to a further change of C1 –
evidenced also by the collapse of the C∗ lines on each other. This suggests that uniform size polydispersity
influences the micromechanics only within a certain limit. For highly polydisperse packings (w > 5), the
limit is approached because the critical volume fraction νc saturates (see Fig. 7).

In order to further investigate the behavior of the coordination number C∗ we study the distri-
bution of contacts per particle radius fraction. In Figs. 9(a) and 9(b), we plot the average num-
ber of contacts (excluding the rattlers) for a radius range, defined as C∗(r), versus the scaled radius
rsc = (r − rmin)/(rmax − rmin) for ν = 0.686 and ν = 0.82 for the three deformation modes. C∗(r)
increases with increasing rsc for all the three modes, that is the number of contacts is bigger for bigger
particles. This is expected because the bigger particles have larger surface area and thus can be in contact
with more particles. A similar argument explains the relation between the particle coordination number
C∗(r) and polydispersity: smaller w leads to higher number of contacts for the smallest particles and to
a weaker variation of C∗(r) with rsc. The crossover rsc value shifts towards the left for higher volume
fractions. As expected, for higher volume fractions, C∗(r) increases faster with rsc, as shown in Fig. 9(b),
since more contacts are formed as the volume of the box becomes smaller. Comparing the deformation
modes, only very minimal differences appear, visible for low volume fraction, ν = 0.686, as shown in
Fig. 9(a) and negligible for high volume fraction, ν = 0.82, as seen in Fig. 9(b), in agreement with the
argument proposed in Section 4.2.1 for p∗. The average values for isotropic deformation are smaller,
larger for deviatoric, and the mixed uniaxial deformation mode lies in between the two (Imole et al.,
2013).

4.2.3 Fraction of rattlers

The analytical expression for the fraction of rattlers is proposed in (Göncü et al., 2010; Imole et al., 2013)
as

φr(ν) = φc exp

[
−φv

(
ν

νc
− 1

)]
, (13)

where φc and φv are fit parameters, and νc is the jamming volume fraction inferred from Eq. (10) for
the different deformation modes. We show the effect of polydispersity on the fraction of rattlers under
isotropic, uniaxial and deviatoric deformation in Figs. 5(g – i) and the fit parameters variation with w
in Figs. 8(b) and 8(c) (numerical values are reported in Table 4 in the appendix). A first observation is
that the fraction of rattlers decreases exponentially with increasing volume fraction (Imole et al., 2013) in
agreement with Eq. (13). Furthermore, the increase of polydispersity leads to an increase of the fraction
of rattlers in the system. This is not surprising since the volume occupied by finer/smaller particles is
smaller in highly polydisperse systems. Contacts of these smaller particles are transient since they have
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Figure 9: Average contacts per particle excluding the rattlers C∗(r) for a radius range, plotted against a
scaled radius rsc = (r − rmin)/(rmax − rmin) for the isotropic (•, red), uniaxial (H, green) and deviatoric
(�, blue) deformation modes. Small symbols represent w = 1.5 and big symbols represent w = 5.
Volume fractions are (a) ν = 0.686, and (b) ν = 0.82. Solid and dashed horizontal lines are the average
coordination numbers 〈C∗(r)〉 = C∗ in the system for the three modes, for w = 1.5 and w = 5 respectively.
The y-axis range is different in the two plots.

more freedom to move within the system (for this size distribution – not in general). In some cases, they
may become ‘caged’ between larger particles without having sufficient (four or more) contacts with their
neighbors. This leads to a drop in the coordination number and an increase in the fraction of rattlers.

Also interesting is the evolution of the parameters of Eq. (13), φc and φv which represents the initial
point and the slope, respectively. A systematic increase in φc with increasing polydispersity is observed,
whereas the slope φv decreases with increasing polydispersity. This indicates that even though the
fraction of rattlers in highly polydisperse systems is higher, the rate at which rattlers are lost in these
systems during compression decreases with w. This again is related with the ‘cage’ argument, as very
small particles are caged by big particles and need a high compression degree to gain new contacts with
respect to medium sized particles (see Figs. 9(a) and 9(b)). Interestingly, both parameters φc and φv,
as presented in Fig. 8, are seemingly unaffected by the deformation mode, stating that the history of the
sample can be fully represented by νc, when the fraction of rattlers is analyzed.
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(H, green) and deviatoric (�, blue) deformation modes as shown in the legend. Small symbols represent
w = 1.5 and big symbols represent w = 5. Inset is the zoomed-in area near the jamming volume fractions.

Finally, we plot in Fig. 10 the evolution of the isotropic fabric Fv = g3νC versus volume fraction
during isotropic compression. Fv increases with volume fraction and polydispersity w and shows a trend
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opposite with respect to the corrected coordination number C∗ in Figs. 5(d – f). This can be explained
by observing the rattlers: when particles with less than four contacts are included in the calculation of
C, the values of Fv grow with increasing w and ν. For both polydispersities, near the jamming volume
fraction, deviatoric deformation has the highest Fv, isotropic deformation has the lowest and the mixed
uniaxial mode is in between the two – as shown in the inset of Fig. 10. This variations disappear for large
volume fractions. However, the differences between the three modes for Fv are smaller compared to the
isotropic part of stress p, as it is related to small differences in the average contact number per particle,
as shown in Figs. 9(a) and 9(b).

4.3 Effect of polydispersity on deviatoric quantities

In this section, we present the effects of polydispersity on the evolution of deviatoric stress and deviatoric
fabric during uniaxial and deviatoric deformation paths. The former, a macroscopic property quantifies
the stress anisotropy (Imole et al., 2013), while the latter is a microscopic property related to the orien-
tation of the contact network. Here, we focus on the simulation results for the uniaxial and deviatoric
deformation modes (since the deviatoric quantities are only fluctuating around zero for the isotropic
mode). Later in section 5, we will use the information obtained from the above mentioned quantities to
calibrate a constitutive model. In the end, we will test the predictive power of the calibrated constitutive
model on an independent uniaxial compression test.

4.3.1 Deviatoric stress

In Fig. 11(a), we plot the deviatoric stress ratio (sdev = σdev/P ) as a function of deviatoric strain εdev
during deviatoric deformation for packings with three different polydispersities. The volume fraction ν
is 0.751 in all cases, and stays constant during the numeric experiments. The deviatoric stress grows
initially with rate βs from random initial values (note the small random initial anisotropy present in each
sample) until an asymptote, smax

dev at steady state is reached, where it remains fairly constant, in agreement
with results in Cui & O’Sullivan (2006); Imole et al. (2013); Kumar et al. (2013); Luding (2004). The
steady state value increases with polydispersity (the highly fluctuating values are in the range 0.11±0.02,
0.12± 0.03 and 0.15± 0.035 for w = 1.5, 2 and 5, respectively). Surprisingly, while the deviatoric stress
σdev is practically unaffected by w, the pressure P decreases with increasing polydispersity (see Fig.
3), leading to the dependence of the ratio σdev/P on w as observed. On the other hand, the slope βs,
proportional to the shear stiffness (scaled by pressure) of the initial isotropic configurations, is a function
of the isotropic fabric Fv, as shown in the inset of Fig. 11(a). The relation between isotropic fabric
and polydispersity, extensively discussed in (Göncü et al., 2010) and reported in Fig. 10, makes βs a
decreasing function of w.

Furthermore, in Fig. 12(a) we plot the deviatoric stress as a function of deviatoric strain during uniaxial
compression, for packings with different polydispersity w = 1.5, 2 and 5. The uniaxial test starts from
initial volume fraction νi = 0.72 (the same value used for the previous deviatoric simulations), and reaches
the maximum volume fraction νmax = 0.82. As for the deviatoric simulations, higher polydispersity
leads to higher smax

dev at steady state also for the uniaxial deformations. The same argument about the
dependence of pressure on polydispersity holds and explains the behavior in Fig. 12(a). We observe
larger fluctuations for the uniaxial deformation mode with respect to the deviatoric one, with averages
and errors smax

dev ≈ 0.10 ± 0.025, 0.11 ± 0.035 and 0.15 ± 0.04 for w = 1.5, 2 and 5, respectively. We
relate the increasing fluctuations to the non-conserved volume (Imole et al., 2013) and more “violent”
rearrangements. Note that different sign conventions are used in Eq. (6) to calculate the deviatoric stress
for deviatoric and uniaxial simulations, since the definition of the sign function Fsgn depends on the
deformation mode, as discussed in section 2, i.e. the strain eigen-system. Since the latter is parallel to
x, y, z, the sign function for uniaxial compression (negative strain components versus positive stress and
fabric) is

Fsgn (Q) = sgn (Qzz − 0.5 (Qxx +Qyy)) ,

where the z-wall is moving and the x− and y-walls are not. For deviatoric deformation

Fsgn (Q) = sgn (Qyy −Qxx) ,

with x-wall expanding, y- compressing and a non-mobile z-wall. The sign convention explains the different
initial values associated to the same initial packings in Figs. 11(a) and 12(a).

14



-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

s d
e
v

ε
dev

1.5
2
5

 30

 40

 50

 60

 7  7.5  8  8.5

β s

F
v

(a)

-0.04

 0

 0.04

 0.08

 0.12

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

F
d
e
v

ε
dev

1.5
2
5

 25

 30

 35

 40

 45

 7  7.5  8  8.5

β F

F
v

(b)

Figure 11: (a) Deviatoric stress ratio sdev = σdev/P plotted against deviatoric strain from the deviatoric
(volume conserving) mode for three polydispersities w = 1.5, 2 and 5 as shown in the legend. The data
points are the simulation results while the solid lines through them represent fits to the data using Eq.
(16). The volume fraction is ν = 0.75. (b) Deviatoric fabric Fdev plotted against deviatoric strain for the
same cases as in (a). The data points are simulation results while the solid lines through them are fits
to the data using Eq. (17). The corresponding inset shows the behavior of growth rates βs and βF with
isotropic fabric Fv for different w.
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Figure 12: (a) Deviatoric stress ratio sdev = σdev/P plotted against deviatoric strain from the uniaxial
mode for three polydispersities w = 1.5, 2 and 5 as shown in the inset. The data points are the simu-
lation results while the solid lines through them represent a prediction to the data using Eq. (16). The
starting volume fraction is νi = 0.72 and the maximum volume fraction is ν = 0.82 for all the cases of
polydispersity. (b) Deviatoric fabric Fdev plotted against deviatoric strain for the same cases as in (a).
The data points are simulation results while the solid lines through them are the prediction using Eq.
(17).

4.3.2 Effect on deviatoric Fabric

The evolution of the deviatoric fabric, Fdev as a function of the deviatoric strain εdev is shown in Fig.
11(b) for the same deviatoric simulations as above. Fdev builds up from different random (small) initial
values with rate βF to different saturation values Fmax

dev . Interestingly, the slope βF seems to be constant
(besides large fluctuations), irrespective of different polydispersity of the initial configurations. This is
surprising, as the initial samples have different contact network density Fv, due to polydispersity, and
leads to the interesting conclusion that the incremental response of deviatoric fabric only depends on Fdev

and volume fraction as state variables, while the role of the isotropic contact network is negligible. The
critical value Fmax

dev shows a different trend from βF , but similar to smax
dev as it increases with polydispersity
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Figure 13: Deviatoric fabric per particle radius fraction Fdev(r), plotted against a scaled radius rsc =
(r − rmin)/(rmax − rmin) for the deviatoric deformation mode, after large shear strain εdev = 0.40. Small
symbols represent w = 1.5 and big symbols represent w = 5. Volume fractions are (a) ν = 0.686, and (b)
ν = 0.82.

w. This is reasonable, when we think of the kinematics at small scale: particles with a large difference in
size have more freedom to rearrange and modify the contact network during compression. The behavior
of Fmax

dev is consistent with the decrease of C∗ in Figs. 5(e-f), as a lower coordination number is usually
associated with a higher anisotropy (La Ragione & Magnanimo, 2012).

In order to further investigate the anisotropic behavior of the material, we study the deviatoric fabric
Fdev(r) per particle radius for the volume conserving deviatoric tests focusing on the large shear strain
configurations, i.e. εdev = 0.40. In order to focus only on the contact orientation and not on the particle
radii, we slightly modify Eq. (3) such that this quantity stays bin independent. For each radius r, we
calculate

Fdev(r) = (1/V )

∑
Vr∑
V P

∑
P∈Vr

V P
∑
c∈P

nc ⊗ nc, (14)

where the value of fabric is scaled by the ratio Vr/V
P between the total volume of the particles having

radius r and the total volume of the particles. Please notice that Eq. (14) coincides with Eq. (3) when all
the radii are considered and

∑
Vr =

∑
V P . In Figs. 13(a) and 13(b), we plot Fdev(r) versus the scaled

radius rsc = (r − rmin)/(rmax − rmin) for ν = 0.686 and ν = 0.82. Fdev(r) increases with increasing rsc,
meaning that the bigger particles form a sub-network, whose orientation follows the applied shear strain.
These are the particles that belong to the force chains (Radjäı et al., 1999) and carry the majority of the
applied load. On the other hand, Fdev(r) is small for small rsc, as the small particles arrange randomly,
i.e. isotropically and ‘caged’ in the voids among the bigger particles, as already mentioned in section
4.2.2. Large fluctuations do not allow to clearly read how the behavior of Fdev(r) vs. rsc depends on
polydispersity w.

The evolution of the deviatoric fabric under uniaxial deformation is presented in Figure 12(b) for
different polydispersity. In a similar fashion to deviatoric stress ratio, Fdev builds up from different
(random, but small) initial values and reaches different maxima for different polydispersity, with w = 5
showing the highest peak, while the slope βF stays unaffected by w. For larger strain, the structural
anisotropy decreases rapidly towards zero (data not shown). This indicates that more new contacts are
created in the axial direction compared to the perpendicular isotropic plane at the beginning of the
loading path while at higher deviatoric strain, the fabric behaves in an opposite fashion as new contacts
are created in the horizontal direction rather then in the vertical one, where most available neighbors
already have come into contact. The ‘softening’ in deviatoric fabric does not correspond to any decrease
in deviatoric stress that grows monotonically until saturation is reached (see Fig. 12(a)). The origin of
this interesting feature in the uniaxial simulation, where stress and fabric show non-colinearity, and the
strain eigen-system is prescribed by the wall motion, will be presented elsewhere (Imole et al., 2013).
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5 Calibration of the continuum model and prediction

In this section, we will present the microscopic simulation results with a short review of an anisotropy
continuum model as introduced in Luding & Perdahcıoğlu (2011). We will calibrate the free parameters in
the model as function of polydispersity w and volume fraction ν, using the isotropic and purely deviatoric
deformation experiments. Finally, using the model, a prediction of an independent test, i.e. the uniaxial
deformation mode will be presented.

5.1 Reduced theoretical model

Most standard constitutive models with wide application fields, like elasticity, elasto-plasticity, or fluid-
/gas-models of various kinds, were applied also to granular flows – sometimes with success, but typically
only in a very limited range of parameters and flow conditions; for overviews see Bauer et al. (2004); Einav
(2012); Göncü & Luding (2013); Imole et al. (2013); Jiang & Liu (2007); Luding & Perdahcıoğlu (2011);
MiDi (2004); Tejchman & Wu (2007). While most of these theories can be and some have been extended
to accommodate anisotropy of the microstructure, only very few models account for an independent
evolution of the microstructure as for example Goddard (2006); Luding & Perdahcıoğlu (2011); Sun &
Sundaresan (2011).

We use the constitutive model, as proposed in Luding & Perdahcıoğlu (2011), generalized for a D-
dimensional system:

δP = DBδεv +ASδεdev,

δσdev = Aδεv +DGoctSδεdev,

δA = βAsign(δεdev)(A
max −A)δεdev. (15)

The model involves three moduli, namely, the classical bulk modulus B (Göncü et al., 2010), the octahe-
dral shear modulus Goct, and the “anisotropy modulus” A. Due to the modulus A, the model provides a
cross coupling between the two types of stress and strain in the model, namely the hydrostatic and the
shear (deviatoric) stresses react to both isotropic and deviatoric strains. S = (1−sdev/s

max
dev ) is an abbre-

viation for the stress isotropy with the stress ratio sdev already introduced in section 4.3. The parameter
smax
dev resembles the macroscopic friction (depending on our definition, sdev = 3q = 3sinϕ, where q is the
shear stress ratio and ϕ is the internal friction angle as in Azéma et al. (2009) and others while βs is
the growth rate of sdev. The parameter Amax in the evolution equation of A represents the maximum
anisotropy that can be reached at saturation, and βA = βF determines how fast the asymptote is reached
(growth rate) when a material is subjected to deviatoric strain εdev (Imole et al., 2013). Both Amax and
βA are model parameters and can be extracted from fits to the macroscopic simulation results. In a
nutshell, the anisotropy model is based on the basic postulate that an independent evolution of stress
and structure is possible and the macroscopic modulus A accounts for the deviatoric deformation history,
being proportional to the microscopic rank-two deviatoric fabric Fdev. More detailed explanations about
the constitutive model and its parameters can be found in Imole et al. (2013); Luding & Perdahcıoğlu
(2011); Magnanimo & Luding (2011).

The reduced model, with some simplifying assumptions as introduced in Imole et al. (2013); Luding
(2004, 2005b), reduces to only two independent evolution equations for the deviatoric stress ratio sdev,
and the deviatoric fabric Fdev, where the former is given by:

sdev = smax
dev − (smax

dev − s0dev)e
−βsεdev , (16)

where s0dev and smax
dev represent the initial and maximum values of sdev and βs is its growth rate. Similarly,

the deviatoric fabric is approximated by:

Fdev = Fmax
dev − (Fmax

dev − F 0
dev)e

−βF εdev , (17)

where F 0
dev and Fmax

dev represent the initial and maximum (saturation) values of the deviatoric fabric, and
βF is its rate of change.

5.2 Calibration for polydisperse samples

In the following, we use these two equations as empirical fit functions, since they are special cases of
the complete constitutive model with anisotropy, to deduce the model parameters as functions of volume
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Figure 14: Comparison of evolution parameters for normalized deviatoric stress sdev and Fdev with
polydispersity w for the deviatoric deformation mode. (a) The maximum normalized deviatoric stress
smax
dev plotted against volume fraction ν. (b) The maximum deviatoric fabric Fmax

dev plotted against volume
fraction ν. The arrow indicates the increasing w. The corresponding dashed lines are the fit using Eq.
(18).

fraction ν from various volume conserving deviatoric simulations (Imole et al., 2013). In particular, the
influence of polydispersity w on the fitting parameters is studied. As an example, the deviatoric data for
w = 1.5, 2 and 5 are fitted using Eqs. (16) and (17) and the four parameters smax

dev , βs, F
max
dev and βF are

extracted. The procedure is applied to the full set of polydisperse packings with many different ν (not
shown).

Figs. 14(a) and 14(b) show the variation of smax
dev and Fmax

dev respectively with ν, for different w. Both
smax
dev and Fmax

dev decreases with increasing volume fraction ν and saturate towards a finite limit for large
volume fractions. This is because for higher volume fractions, the motion of spheres is more constrained
by more contacts and hence the anisotropy developed during the deformation is smaller. Moreover, with
increasing polydispersity, the steady state values of smax

dev and Fmax
dev increase, as explained in detail in

section 4.3.
Figs. 15(a) and 15(b) show the variation of βs and βF respectively with ν relative to the jamming

volume fraction, i.e. ν/νc−1, for different w from the same deviatoric simulations as above. A decreasing
trend is seen for βs versus ν/νc − 1, with larger scatter when compared with smax

dev . With increasing
polydispersity, the trend in the growth rate βs with polydispersity w is minimal (this can be seen by
looking at the inset in Fig. 11(a) since Fv in that dataset depends only on polydispersity), so we
neglect this variation in this work. A similar decreasing trend in βF with ν/νc − 1 is seen, while besides
fluctuations, βF is weakly dependent on w (see inset in Fig. 11(b)). In Figs. 14 and 15, we also report
the values of the four parameters for the monodisperse packing, w = 1. We note that when βs and βF

are plotted in Figs. 15(a) and 15(b), the data for w = 1 show anomalously large values. This is probably
due to partial, local crystallization (Schröder-Turk et al., 2010) present in the monodisperse case.

A clear difference between the fit parameters of deviatoric stress and deviatoric fabric, namely the
steady values smax

dev , Fmax
dev (Figs. 14(a) and 14(b)), and the growth rates βs and βF (Figs. 15(a) and

15(b)) can be seen. This confirms that stress and fabric indeed evolve independently with deviatoric
strain (Imole et al., 2013; La Ragione & Magnanimo, 2012), as is the basic postulate for the anisotropy
constitutive model.

We propose a generalized analytical relation to fit the stress parameters smax
dev , βs and the fabric

parameters Fmax
dev , βF , obtained from various different volume conserving deviatoric simulations. Their

dependence on volume fraction ν (see. Imole et al. (2013), for w = 3), is well described by the general
relation:

Q = Qmax (w) +Qv (w) exp

(
−α (w)

(
ν

νc (w)
− 1

))
, (18)

where Qmax (w), Qv (w) and α (w) are the fitting parameters dependent on polydispersity w, with values
presented in Table 3, ν is the volume fraction and νc (w) is the jamming volume fraction for the deviatoric
deformation mode dependent on w (see Fig. 7). For all four parameters, Qmax (w) is the limit value for
large volume fraction, Qc = Qmax (w) +Qv (w) represents the limit at ν → νc (w), and α (w) is the rate
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Figure 15: The growth rates (a) βs of sdev and (b) βF of Fdev plotted against scaled volume fraction,
(ν/νc − 1). Scaled (c) smax

dev and (d) Fmax
dev with components Qmax and Qv (see Table 3) plotted against

scaled volume fraction, (ν/νc − 1). The corresponding solid lines are the scaled parameters using Eq.
(18) with data taken from Table 3.

of variation (decay) with the volume fraction.
Here we study and discuss the four cases separately. (1) For smax

dev , from Fig. 14(a) the variation of
Qmax with w is systematic and the curves are parallel. Hence Qv and α can be considered independent
of w. When the curves in smax

dev are scaled with the respective Qmax by (smax
dev −Qmax (w)) /Qv, this leads

to a collapse, as shown in Fig. 15(c). (2) For βs, in this work, we neglect its weak variation with w and
assume constant values for the fit parameters Qmax, Qv and α.

When looking at the structural anisotropy, we assume, as consistent with the data, that both (3)
Fmax
dev and (4) βF tend to 0 as the volume fraction increases, therefore we set Qmax = 0 in their fitting

functions. We observe in Fig. 14(b), that the variation of Qv with w is systematic for (3) Fmax
dev . When

Fmax
dev is scaled with Qv by Fmax

dev /Qv (w), the data collapse as shown in Fig. 15(d). Since the curves have
the same trend α is set constant independent of w. As reported in the inset of Fig. 11(b), (4) βF is
independent of the initial configuration, that is w, and we set constant Qv and α in this case.

Interestingly, we can reduce Eq. (18) in a very compact form by expressing the two w-dependent
parameters Qmax (w) for (1) s

max
dev , and Qv (w) for (3) F

max
dev as functions only of νc = νc (w) :

smax
dev (ν, w) = Qmax (νc) +Qvexp(−α (ν/νc − 1)), (19a)

βs(ν, w) = Qmax +Qvexp(−α (ν/νc − 1)), (19b)

Fmax
dev (ν, w) = Qv (νc) exp(−α (ν/νc − 1)), (19c)

βF (ν, w) = Qvexp(−α (ν/νc − 1)), (19d)

with Qmax = −1 + 1.7νc for (1) smax
dev and Qv = −0.9 + 1.6νc for (3) Fmax

dev . Using these two equations,
everything in Eq. (19) can be expressed as either constant, or as function of νc, that become a unique
state variable able to describe the history of the material due to its deformation mode. Using these
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smax
dev Fmax

dev βs βF

w νc Qmax Qv α Qv α Qmax Qv α Qv α

1.0 0.6389 0.0888 0.1308 – – – – –

1.3 0.6427 0.0935

0.11 12

0.1386

4.8 31 116 22 72 6

1.5 0.6444 0.0976 0.1491

2.0 0.6500 0.1106 0.1684

2.5 0.6557 0.1164 0.1741

3.0 0.6587 0.1226 0.1789

3.5 0.6599 0.1303 0.1830

4.0 0.6609 0.1292 0.1810

4.5 0.6614 0.1278 0.1777

5.0 0.6620 0.1279 0.1782

10.0 0.6634 0.1273 0.1751

Table 3: Fitting coefficients for the parameters in Eqs. (16) and (17),using Eq. (18)) with νc (w), extracted
from Table 4 using the deviatoric deformation mode, for various w.

equations, together with νc data from Table 2, and constant parameters from Table 3, we can describe
the variation in the model parameters smax

dev , βs, F
max
dev and βF with volume fraction ν and polydispersity

w, and use them to predict the behavior during uniaxial deformation.

5.3 Prediction of uniaxial deformation for polydisperse samples

Figure 12(a) shows the deviatoric stress ratio sdev plotted against deviatoric strain εdev for uniaxial
deformations, compared with the predictions of Eq. (16) with coefficients smax

dev (ν, w) and βs(ν, w) taken
from Eqs. (19a) and (19b). The proposed model, although in its simplified version, is able to properly
capture the behavior of the material qualitatively, sdev approaching exponentially a maximum value and
then decreasing due to the volume fraction and polydispersity dependence of the parameters.

Figure 12(b) shows the evolution of deviatoric fabric, Fdev, with deviatoric strain, εdev, for uniaxial
deformations – as above – together with the predictions of Eq. (17), with parameters taken from Eqs. (19c)
and (19d). The model is still able to qualitatively describe the behavior of the deviatoric fabric, but with
order of 30% over-prediction for large strain. Note that the softening present in some of the deviatoric
DEM data, is on purpose not plugged into the model as a constraint, which renders the weak softening
present in some of the uniaxial data as a valuable prediction of the model. For better understanding, the
complete coupled model needs to be used and possibly improved, as will be presented elsewhere.

6 Summary and Outlook

We use the discrete element method to investigate the behavior of three-dimensional frictionless granular
assemblies characterized by different polydispersities and subjected to various deformation paths. In
particular isotropic loading/unloading, deviatoric (pure) shear, and uniaxial compression are studied.

The main goal is to analyze and understand the reciprocal influence of polydispersity and deformation
history on the response of the material, where the structural/bulk effects are highlighted by using the
simplest linear visco-elastic contact model. The evolution of the scaled pressure as a function of volumetric
strain (relative to the jamming volume fraction νc) is well described by an analytical (linear, to very
good approximation) scaling equation (10). This shows that the isotropic fabric is proportional to the
isotropic stress – when proper parameters depending slightly on the deformation mode are included.
Notably, only the jamming volume fraction, among the fit parameters for the pressure, describes the
role of both polydispersity and deformation history on the material behavior. As reported earlier in
(Imole et al., 2013), the isotropic jamming volume fraction νc is not a single value for a particular
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system configuration but it is strongly dependent on the deformation mode and history of the packing.
Moreover, νc increases with polydispersity, following the behavior described in Ogarko & Luding (2012),
with the isotropic and deviatoric tests giving the highest and lowest values, respectively, while the uniaxial
dataset lies in between. On the contrary, the shear jamming volume fraction, slightly below the isotropic
jamming volume fraction, has been confirmed as a lower limit value in recent studies, independent of
the deformation path (Bi et al., 2011). The detailed simulations by Ogarko & Luding (2012), using hard
instead of soft spheres, represent lower or upper bounds to νc if they are carried out extremely fast or slow,
respectively. However, the relation between these distinct results has to be further studied elsewhere.

When the micromechanics is analyzed, the coordination number decreases with polydispersity, while
the fraction of rattlers displays an opposite trend, increasing with w. In these cases, the evolution of
the state variables can be predicted by using the evolution equations from (Göncü et al., 2010), with
parameters dependent on the polydispersity of the packing, while the laws for the critical volume fraction
νc(w) as extrapolated from the pressure behavior are used. Interestingly, the free fit parameters are not
affected by the deformation modes in the case of the micromechanical quantities, that is they are fully
described by the evolution of the critical volume fraction, acting as history variable for the sample.

The behavior of polydisperse systems are predicted by Ogarko & Luding (2012), to depend on the
moments of their size distribution, after the rattlers are excluded. Since for larger w, the moments (scaled
by 〈r〉) do not change much above w ≈ 3 − 4, which explains the saturation of many quantitities – for
the uniform size distribution used in this work.

During deviatoric and uniaxial deformations, both deviatoric stress ratio and deviatoric fabric evolve
with the deviatoric strain, reaching saturation values that increase with polydispersity. The initial growth
rate of stress, βs, weakly depends on polydispersity, due to the relation between the shear stiffness of
isotropic samples and the volumetric fabric Fv(w). On the other hand the growth rate of deviatoric fabric
βF is fairly independent of polydispersity (besides fluctuations), showing that the incremental response
of the granular deviatoric fabric is not directly related to its isotropic state Fv.

The DEM data of the volume conserving deviatoric tests are used to calibrate a simple constitutive
model that involves anisotropy as proposed in 2D by Luding & Perdahcıoğlu (2011); Magnanimo &
Luding (2011). The four parameters that characterize the model smax

dev , βs Fmax
dev and βF are expressed

as functions of volume fraction and polydispersity. They show a very similar behavior decreasing with
an exponential law from a maximum value at the jamming volume fraction to a saturation minimum.
Also in this case, where only two parameters are depending on w and thus νc(w), the dependence on
polydispersity can be fully described through the established variation of the jamming volume fraction
νc(w) with w.

As final step, the constitutive model calibrated on deviatoric data is used to predict both stress
and fabric evolution under uniaxial deformation – with very good qualitative success and within 70-
80% quantitative agreement. The prediction of the uniaxial test shows promising perspectives for future
research. The basic qualitative features are captured by the model, even though it is used in a very
idealized and short form, with the single anisotropy modulus. In the future, the coupled equations have
to be solved and additional formulations/terms that relate anisotropy (possibly a second anisotropy
modulus) with the deviatoric fabric will also be investigated. Moreover, it would be interesting to
look deeper into different distributions of polydispersity like constant volume fraction, or log-normal
distributions.
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w νc p0 γp C1 φc φv

ISO

1.0 0.6478 0.0430 0.2131 9.0622 0.0171 46.7722

1.3 0.6491 0.0432 0.2010 9.0053 0.0220 40.5552

1.5 0.6514 0.0430 0.1698 8.9759 0.0309 35.2452

2.0 0.6577 0.0428 0.1299 8.8795 0.0650 28.6337

2.5 0.6624 0.0421 0.0499 8.7233 0.1010 20.2312

3.0 0.6648 0.0419 0.0720 8.5585 0.1559 17.6338

3.5 0.6668 0.0419 0.1481 8.4082 0.1818 13.4036

4.0 0.6674 0.0425 0.1882 8.2977 0.2049 10.5633

4.5 0.6675 0.0424 0.2409 8.1672 0.2417 9.8332

5.0 0.6680 0.0428 0.2825 8.1636 0.2513 8.0380

10.0 0.6696 0.0444 0.3992 8.1674 0.3210 4.6514

UNI

1.0 0.6423 0.0398 0.0776 8.7464 0.0212 39.8092

1.3 0.6440 0.0399 0.0808 8.6618 0.0254 35.2456

1.5 0.6463 0.0393 -0.0025 8.6241 0.0309 32.7265

2.0 0.6525 0.0387 -0.0840 8.5253 0.0734 26.0018

2.5 0.6576 0.0383 -0.1974 8.3847 0.1148 20.3461

3.0 0.6605 0.0376 -0.1962 8.2066 0.1640 16.0260

3.5 0.6625 0.0384 -0.0793 8.1357 0.2018 13.2581

4.0 0.6634 0.0388 0.0086 7.9881 0.2359 10.8769

4.5 0.6644 0.0390 0.0081 7.9333 0.2531 9.2102

5.0 0.6647 0.0386 -0.0527 7.8750 0.2622 7.9085

10.0 0.6662 0.0416 0.2482 7.9177 0.3342 4.4610

DEV

1.0 0.6389 0.0363 -0.0954 8.6689 0.0281 46.0916

1.3 0.6427 0.0405 0.1771 8.6137 0.0249 42.2059

1.5 0.6444 0.0399 0.1223 8.5451 0.0476 39.7536

2.0 0.6500 0.0387 -0.0215 8.4097 0.0744 27.1618

2.5 0.6557 0.0396 0.0594 8.3101 0.1028 19.4110

3.0 0.6587 0.0396 0.0924 8.1634 0.1453 15.2955

3.5 0.6599 0.0386 0.0382 7.9801 0.1881 12.3952

4.0 0.6609 0.0388 0.0744 7.8672 0.2131 9.8732

4.5 0.6614 0.0393 0.1539 7.7965 0.2336 8.5445

5.0 0.6620 0.0396 0.1793 7.4895 0.2492 7.3233

10.0 0.6634 0.0419 0.3617 7.7373 0.3114 3.8805

Table 4: Summary of parameters used in Eqs. (10), (12) with C0 = 6, α = 0.60 for the three modes, and
(13) with polydispersity w.
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Radjäı, F., Roux, S., & Moreau, J. J. (1999). Contact forces in a granular packing. Chaos, 9 (3), 544–550.

Satake, M. (1982). Fabric tensor in granular materials. In Proc., IUTAM Symp. on Deformation and
Failure of Granular materials, Delft, The Netherlands.
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