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Abstract

The study of disorder induced frequency filtering is presented for one–
dimensional systems composed of random, pre–stressed masses interacting
through both linear and nonlinear (Hertzian) repulsive forces. An ensem-
ble of such systems is driven at a specified frequency and the spectral con-
tent of the propagated disturbance is examined as a function of distance
from the source. It is shown that the transmitted signal contains only low–
frequency components and the attenuation is dependent on the magnitude
of disorder, the input frequency, and the contact model. It is found that
increased disorder leads to a narrower bandwidth of transmitted frequen-
cies at a given distance from the source and that lower input frequencies
exhibit less sensitivity to the arrangement of the masses. Comparison of
the nonlinear and linear contact models reveals qualitatively similar fil-
tering behavior; however, it is observed that the nonlinear chain produces
transmission spectrums with a greater density at the lowest frequencies. In
addition, it is shown that random masses sampled from normal, uniform,
and binary distributions produce quantitatively indistinguishable filter-
ing behavior, suggesting that only knowledge of the distribution’s first
two moments is sufficient to characterize the bulk signal transmission be-
havior. Finally, we examine the wavenumber evolution of random chains
constrained to move between fixed end-particles and present a transfer
matrix theory in wave-number space, and an argument for the observed
filtering based on the spatial localization of the higher-frequency normal
modes.

1 Introduction

One–dimensional analogs of electronic, magnetic, and mechanical systems are
often employed for their use as simple models which have the potential to reveal
the physics of more general, higher dimensional systems [20]. As a subset of these
problems, chains of non–cohesive particles have received significant attention in
the literature. Linear arrangements of harmonic oscillators are common in the
introduction to lattice vibrations in solid state physics [11,41]. These treatments
are typically limited to infinitely repeatable unit cells containing one or two
particles/atoms for which dispersion equations relating the oscillation frequency
and wavelength are analytically accessible. It is from these periodic, linear
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systems that more recent studies on inhomogeneous, disordered, and nonlinear
chains originate.

The introduction of nonlinear (e.g., Hertzian) particle interactions resembles
most experiments with granular chains of pre–stressed elastic spheres, and leads
to novel behavior such as soliton–like nonlinear waves [2, 16, 22–24, 29, 35]. Sen
et al. [34] provides a detailed account of prior studies concerning solitary waves
in granular chains. Note that many studies focus on uncompressed chains where
particles are barely in contact. Additionally, there is significant attention placed
on the behavior of “designed” and ordered nonlinear chains, often motivated by
energy modification and shock–protection applications. Studies have employed
smoothly varying mass distributions [31], “decoration” (e.g. deliberate inser-
tion of different sized masses) [9, 12, 13], tapering [5, 25, 38, 40], and controlled
variation of the particle material [3, 14]. Combinations of both tapering and
decoration have also been employed [6, 12].

The inclusion of disorder through mass, size, or interaction (stiffness) varia-
tion (and combinations thereof) is a natural extension reflecting the disordered,
inhomogeneous state of many realistic discrete systems. One–dimensional sys-
tems provide a simple framework to study the basic effects of disorder without
consideration for the geometric complexity of higher dimensions, thus exclud-
ing the scattering of signals to other directions. Analysis of the spectrum and
density of eigenstates was the subject of many early studies in disordered one–
dimensional systems [4, 7, 26, 33]. In the context of quantum mechanical parti-
cles, Anderson [1] noted the localization of the wavefunctions in the presence
of sufficiently strong random potentials. This “Anderson localization” has been
confirmed in disordered mechanical systems of vibrating masses [19,32].

As with tapered and decorated chain arrangements, recent studies of ran-
dom granular arrays show an interest in the use of these systems to dissipate or
enhance energy propagation. Nesterenko [29] examined the downstream speed
and energy of particles in nonlinear random chains following an initial excita-
tion applied to one end of the system. It was reasoned that complex nonlinear
interactions between the chain members make the system behavior difficult to
predict in general. Manciu et al. [24] reports a spatially exponential decrease
of the incident kinetic energy for various amounts of mass disorder, with in-
creasing disorder leading to a faster energy loss. Fraternali et al. [8] employed
an evolutionary algorithm which generated random “protecting” chains whose
effectiveness was evaluated by the force transmitted at the end of the system.
It was noted that temporally short and high amplitude pulses were transformed
to low amplitude, longer wavelength (temporally longer) signals at the down-
stream receiver. Ponson et al. [30] employs a nonlinear chain of two–particle
unit cells which are randomly oriented, as in a spin system, and studies the ef-
fect of their disorder parameter on the spatial decay of the force transmitted by
such systems. Harbola et al. [13] decorate monodisperse chains with randomly
sized small masses and investigate the propagation time and decay of the pulse
velocity as a function of system penetration.

Studies concerning the frequency–filtering effects of disorder have received
less attention than energy or force attenuation. Jia et al. [15] reports experi-
mental studies on ultrasound propagation through three–dimensional packings
of glass beads. The time and frequency analysis of the transmitted signal reveals
the appearance of an initial pulse close to the source that contains relatively
low frequencies with respect to the input spectrum. The initial pulse is followed
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by an irregular signal, i.e. the “coda”, that contains the higher frequencies,
consistent with the lower phase velocity of higher frequency components. The
spectrum of this irregular signal seems to indicate more attenuation of the high
frequency components. Judge et al. [17] numerically examine the spectra of dis-
ordered micromechanical oscillators, focusing on frequency filtering within the
passband of ordered arrays. They note the significant change in the transmitted
spectrum with increasing disorder and the propagation of frequencies associated
with the natural frequency of the individual oscillators. The low–pass filtering
seen does not seem to be observed, likely due to the short length of the arrays
considered (5 oscillators). Mouraille and Luding [27,28] numerically studied the
high–frequency filtering present in three–dimensional packings perturbed from
their perfect crystalline geometry by a small random variation in the particle
sizes. Following a delta–like pulse of the boundary, only the low–frequency
components of the excitation are observed to propagate a significant distance.
The polydispersity introduced is quite small with respect to the particle length
scale (0.2% variation), but as this change is comparable to the contact length
scale remarkable differences in the propagation characteristics of the medium
are observed.

It is worth noting that nonlinear particle interactions permit frequency mix-
ing behavior. Given excitations at frequencies ω1 and ω2, a component at the
difference–frequency |ω2−ω1| is generated, among others. For sufficiently close
magnitudes, this is a low–frequency component. In realistic materials, the high–
frequencies are attenuated and only the difference–frequency is seen to propagate
a significant distance. Tournat et al. [39] observe the propagation of these low–
frequency signals in nonlinear chains, terming it self de–modulation. However,
such behavior is due to nonlinear interaction and is not a mass–disorder induced
effect. Frequency mixing due to disorder was also noted by Mouraille [27].

In this paper we study the effect of disorder and non–linearity on the trans-
mission of signals in one–dimensional systems. We consider initially static,
pre–stressed configurations with given disorder magnitude that are subjected
to a harmonic perturbation of the boundary. Prescribing a perturbation fre-
quency, we average over many configurations of the chain to observe ensemble
averaged behavior. In section 2 we derive the equations of motion that govern
the idealized system. In particular, the linear and Hertzian force models are
given in sections 2.1.2 and 2.1.3, respectively. Using these relations, we examine
the effects of disorder on the high–frequency filtering behavior in section 3, and
summarize and conclude in Section 4.

2 Modeling

In this section the equations of motion are derived employing a general nonlinear
force–displacement relation. Two specific cases follow, corresponding to the
harmonic (linear) and Hertzian models.

2.1 Compressed chain

In this study we consider one–dimensional arrays of (N + 2) random mass par-
ticles which interact with only their immediate neighbors in a purely repulsive
manner. In addition, we consider chains that are pre–compressed such that
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there is some initial strain associated with the equilibrium configuration. The
absolute position, radius, and mass of a general particle j are given by x̃(j),
r̃(j), and m̃(j), respectively. Anticipating an appropriate scaling of the problem,
we employ the tilde symbols to denote dimensional quantities. The interaction
force between neighboring particles i and j is modeled as,∣∣∣F̃(i,j)

∣∣∣ = κ̃(i,j)δ̃
1+β
(i,j), δ̃(i,j) ≥ 0, (1)

where κ̃(i,j) is a “stiffness” that changes with the value of β and depends, in
general, on the properties of the contacting bodies. The particle overlap is
given as δ̃(i,j) = r̃(i) + r̃(j) − |x̃(j) − x̃(i)| such that it is strictly non–negative
for contacts. The Hertz and linear models are given by β = 1/2 and β = 0,
respectively [18, 21, 29]. Choosing a length scale ˜̀ (to be determined later) we
scale the particle overlap: ∣∣∣F̃(i,j)

∣∣∣ = κ̃(i,j) ˜̀
1+βδ1+β(i,j), (2)

where δ(i,j) ≡ δ̃(i,j)/˜̀. Compressing the chain by an applied force P̃ , the dimen-
sionless initial particle overlap at the contact between i and j is,

∆(i,j) =

(
P̃

κ̃(i,j) ˜̀1+β

)1/(1+β)

. (3)

Associated with the length scale ˜̀, we have a characteristic mass m̃o, which we
take as the mean particle mass of the system. Dimensional analysis yields a
time scale,

t̃c =
1

˜̀β/2

√
m̃o

κ̃o
, (4)

where κ̃o functions as the characteristic stiffness of the system. This will be
defined with respect to the contact of two identical particles of the mean mass,
m̃o. In the nonlinear cases (β 6= 0) ˜̀ factors into this time scale. We may write
an equation of motion for the general particle i (i = 1, . . . , N) as:

m̃(i) d
2x̃(i)

dt̃2
= κ̃(i−1,i) ˜̀

1+βδ1+β(i−1,i) − κ̃(i+1,i)
˜̀1+βδ1+β(i+1,i). (5)

We denote the displacement of particle i from its equilibrium position x̃
(i)
o as

ũ(i) = ˜̀u(i) = x̃(i) − x̃(i)o . Thus, for a contact between i and j (with j > i)
the scaled overlap is δ(i,j) = ∆(i,j) − (u(j) − u(i)). With dimensionless mass

b(i) ≡ m̃(i)/m̃o and time τ ≡ t̃/t̃c we write

b(i)
d2u(i)

dτ2
= κ(i−1,i)

[
∆(i−1,i) − u(i) + u(i−1)

]1+β
−κ(i+1,i)

[
∆(i+1,i) + u(i) − u(i+1)

]1+β
, (6)

where the stiffness ratio κ(i,j) = κ̃(i,j)/κ̃o has been defined implicitly.
For the particles 1 and N we write equations of motion associated with the

imposed boundary conditions. We harmonically displace particle 0 at angular
frequency ωo = ω̃ot̃c and fix particle (N + 1):

u(0)(τ) = ε sinωoτ, (7)

4



u(N+1)(τ) = 0, (8)

where ε = ε̃/˜̀ is the scaled oscillation amplitude. Thus, the coupled system
of differential equations governing the modeled system is given by (6) with
substitution of (7) and (8) for i = 1 and i = N , respectively.

There are various choices available for the length scale ˜̀. One could use the
particle size or the driving amplitude. However, we choose the length scale to
be related to the overlap of a characteristic contact in static equilibrium. As
in defining the characteristic stiffness, we consider the contact of two identical
particles of the mean mass. Under the applied compressive force, the initial
overlap between such particles provides us with ˜̀ = ∆̃o (∆o = 1). In a typical
simulation, the scaled driver amplitude ε� ∆o is chosen so as not to cause an
opening of contacts. However, we explore driver amplitudes that approach the
contact length scale under the restriction that particles remain in contact at all
times. Note that ε incorporates the pre–compression of the system through (3):

ε =
ε̃

∆̃o

= ε̃

(
κ̃o

P̃

)2/3

. (9)

Since κ̃o is set by the size of the particles (see Appendix B), small values of ε
represent systems with small driving and/or a large pre–stress through P̃ .

2.1.1 Linearized equations of motion:

Here we linearize the general force–displacement relation about the equilibrium
configuration. The non–dimensional phrasing of (1) is given by

F(i,j)(δ(i,j)) = κ(i,j)δ
1+β
(i,j), (10)

Expanding about the equilibrium position ∆(i,j) we obtain,

F(i,j)(δ(i,j)) = κ(i,j)∆
1+β
(i,j) + κ(i,j)(1 + β)∆β

(i,j)(δ(i,j) −∆(i,j)) +

κ(i,j)β(1 + β)∆β−1
(i,j)

2
(δ(i,j) −∆(i,j))

2 + . . . (11)

Assuming small displacements from equilibrium, we retain only the constant
and linear terms. With δ(i,j) = ∆(i,j) − (u(j) − u(i)) for particle indices such
that j > i we obtain

F(i,j)(δ(i,j)) = κ(i,j)∆
1+β
(i,j) − κ(i,j)(1 + β)∆β

(i,j)(u
(j) − u(i)), (12)

which is the linearized force of particle i on particle j for j > i. The equation
of motion for a general particle i is then,

b(i)
d2u(i)

dτ2
= κ(i−1,i)∆

β
(i−1,i)

[
∆(i−1,i) − (1 + β)(u(i) − u(i−1))

]
−κ(i+1,i)∆

β
(i+1,i)

[
∆(i+1,i) − (1 + β)(u(i+1) − u(i))

]
. (13)
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2.1.2 Linear coupling: β = 0

In the case of β = 0 we recover the harmonic chain with linear springs between
the mass elements. The linear contact model is appropriate for chains with
sufficiently high confining force; Sinkovits et al. [37] show that the frequency
spectrum of oscillations approaches that of a harmonic chain with increasing
compressive force. As expected, the general equations of motion (6) and the
linear expansion (13) match exactly. We may compactly express the N linear
equations in the matrix form

M
d2u

dτ2
= Ku + f , (14)

where M is a diagonal matrix with the random mass ratios b(1) through b(N)

on the diagonal, and K is a symmetric, tri–diagonal matrix. The sub– and
superdiagonal elements are given by K(i, i − 1) = κ(i−1,i) and K(i, i + 1) =
κ(i+1,i), respectively. The diagonal entries are K(i, i) = −(κ(i−1,i) + κ(i+1,i)).
Since the stiffnesses depend on the contacting particles, these values are random
in general. The forcing vector f has only one non–zero entry, which is f1(τ) =
ε sinωoτ in the first position. Other entries cancel by the equilibrium condition
κ(i−1,i)∆(i−1,i) = κ(i+1,i)∆(i+1,i).

Since we look to examine the effect of mass disorder alone, we take all cou-
pling stiffnesses to be independent of the contact (κ(i,j) = 1). Accordingly, all
initial overlaps are equal with ∆(i,j) = 1. With this assumption, the stiffness
matrix simplifies, with K now having entries of −2 on the diagonal and entries
of +1 on the sub and superdiagonal.

We examine the solutions of the linear system (14) in section 2.2.

2.1.3 Nonlinear Hertzian coupling: β = 1/2

With β = 1/2 we obtain the Hertz contact model and the equations of motion
are given by (6), (7), and (8). The interparticle forces are dependent on the size
and material properties of the constituent particles (see Appendix B). We find
that the scaled stiffness κ(i,j) and initial overlap ∆(i,j) are given by

κ(i,j) =

√
2

b(i)1/3 + b(j)1/3

(
b(i)b(j)

)1/6
, (15)

and
∆(i,j) = κ

−2/3
(i,j) . (16)

As in the linearized version of the Hertz chain of given by (14), the nonlinear
chain of polydisperse spheres is, in general, disordered in both mass and coupling
stiffness.

2.1.4 Creation of mass–disordered, monodisperse chains

A general polydisperse chain of masses will be disordered in mass and interpar-
ticle contact stiffness. If we wish to remove the effects of this “contact disorder”
(as present in the Hertzian model) one may consider the modification of particles
to create a monodisperse (size) chain of varied mass. In this manner we isolate
the effect of mass disorder. Numerically incorporating such a construction is
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trivial; the equations of motion are given by (6), (7), and (8) and we assign
κ(i,j) = 1 and ∆(i,j) = 1 for all contacts (i, j). In an experimental realization,
one may imagine creating such a monodisperse, mass–disordered chain by the
removal of material from the particle centers or the inclusion of denser cores.
Since the Hertz model is based on deformations local to the contacting surfaces,
this change of mass should have a negligible effect on the contact stiffnesses
provided the modification is sufficiently far from the surface.

2.2 Linear model– analysis

With the goal of solving for the general motion of the linear chain under the
imposed boundary conditions, we look to state (14) in its eigenvector basis. This
transformation decouples the equations of motion into N independent relations,
facilitating the process of finding a general solution. Upon determination of the
solution in the eigensystem, a simple linear transformation yields the motion of
the particles.

Thus we first seek to determine the eigenvectors and eigenfrequencies associ-
ated with (14). We set f = 0 and assume that for each normal mode all masses
oscillate with a particular frequency ω. Defining A ≡ −M−1K (not symmetric,
in general) we arrive at the familiar eigenvalue problem:

Au = ω2u. (17)

This may be solved numerically to determine the set of N orthonormal eigen-
modes {s(j)} and eigenfrequencies {ω(j)}. We normalize the eigenvectors to
have the following orthonormality conditions (see Appendix A):

sT(i)Ms(j) = δij , (18)

where δij is the usual Kronecker delta symbol.
We sort the eigenvectors by increasing order of their associated eigenvalues

(frequencies) and assemble the (N × N) matrix S such that the jth column is
eigenvector s(j). Using S−1 as the transformation matrix between the particle
displacements u and the eigenmode amplitudes z, we have z = S−1u. We also
note the similarity transform S−1AS = D, where D is a diagonal matrix with
the (increasing) eigenvalues along the diagonal.

With the use of S we transform the general equation of motion (14) and
obtain the decoupled form:

d2z

dτ2
= −Dz + h, (19)

where h = S−1M−1f . In our specific case of harmonic driving, the transformed
forcing vector h may be rephrased as follows. Since f = ε sinωoτe1 (e1 =
[1 0 . . . 0]T ) we have

h = S−1M−1ε sinωoτe1 = ε sinωoτy, (20)

where b(1)y ≡ S−1e1 is the first column of S−1. Exploiting the orthogonality
given in (18) we left–multiply y by STMS = I and find y = STe1. Thus y is
the first row of S.
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The general solution to (19) is then,

z = C(1)a(1) + C(2)a(2) + ε sinωoτc, (21)

where C(1) and C(2) are diagonal matrices with (j, j) entries sinωjτ and cosωjτ ,
respectively. The vectors a(1) and a(2) are determined from the initial conditions
of the displacement u(0) = uo and velocity u̇(0) = vo. Vector c has jth entry
S1j/(ω

2
j − ω2

o). Employing the initial conditions we obtain,

a(1) = W−1S−1vo − ε ωoW−1c, (22)

a(2) = S−1uo. (23)

Here, W−1 is a diagonal matrix with 1/ω(j) as the (j, j) entry. If we specify
initial conditions uo = vo = 0 and transform back to displacement space via S,
we obtain the displacement history of particle p,

u(p)(τ) = ε

N∑
j=1

SpjS1j(
ω2
(j) − ω2

o

) (sinωoτ −
ωo
ω(j)

sinω(j)τ

)
. (24)

For a given chain arrangement, we may calculate the displacement history from
(24) and this way investigate the frequency spectrum at a particular location in
the chain. Discussion of the terms in (24) is deferred to section 3.3.

We finally note that in the case of an undriven (ε = 0) monodisperse linear
chain, we obtain the dispersion relation [41],

ω(k) = 2 sin(k∗), (25)

where k∗ = d0k = 2πd0/λ is the dimensionless wavenumber (purely real) scaled
by the particle diameter. This sets the cutoff frequency for propagative waves
at ω ≤ ωmax = 2. At ωmax = 2.0 we have the minimum scaled wavelength
λ∗min = λ/d0 = 2. That is, signal frequency components in the passband of 0 <
ω ≤ 2 propagate without attenuation. Frequencies above the cutoff are termed
evanescent waves as the wavenumber has an imaginary component which causes
the signal to exponentially decay with distance. Since our random chains contain
masses distributed about the monodisperse system of b(i) = 1 we will consider
driving frequencies ωo on the order of ω = 2, in the range [0.1ωmax, 1.6ωmax].

3 Results and Discussion

In this section we present results on the high–frequency filtering effects of ran-
dom chains.

Section 3.1 discusses the construction of the random systems for several mass
distributions. We also introduce our definition of the disorder parameter.

Section 3.2.1 contains results for the chain with linear contact forces, with
masses chosen from a normal mass distribution and uniform contact stiffness,
examining the effects of disorder and driving frequency. A comparison of mass
distributions is shown in 3.2.2, and section 3.2.3 investigates the role of coupling
(contact stiffness) disorder in harmonic chains.

Results related to the nonlinear chain are presented in section 3.4. Similar
to the linear chain we perform a parameter study in section 3.4.1 and examine
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the effect of disorder and driving frequency. The driving amplitude is also
considered. We follow this in section 3.4.2 with results for the nonlinear chain
featuring uniform contact interactions, which isolates the effect of mass disorder.

3.1 Chain generation

We introduce mass disorder to the chains by randomly sampling from a specified
probability distribution. A seeded random number generator with the appro-
priate statistical properties is created to generate the masses. In this study we
consider normal f (n)(b), uniform f (u)(b), and binary discrete f (d)(b) distribu-
tions, where b is the scaled mass.

For the normal distribution of masses, we prescribe the mean b̄ = 1 and
standard deviation ξ, which will be used to quantify the disorder of the system.
When sampling masses to create the normally distributed random chains, we
enforce a lower cutoff such that b > 0. No such cutoff is implemented for
the largest masses. In Figure 1 we plot the ensemble–averaged 〈bmin〉 and
〈bmax〉. For each figure we average over a set of 105 chains sampled from a
normal distribution, with each chain containing 2000 particles. We note that
the restriction of b > 0 causes the ensemble–averaged minimum mass values to
be bounded as we increase the width of the distribution (disorder) ξ. Values of
the largest ensemble–averaged masses increase linearly with ξ, as expected.

(a) (b)

Figure 1: Ensemble–averaged minimum and maximum masses. The masses are
sampled from a normal distribution with mean b̄ = 1 and standard deviation ξ.
Each chain contains 2000 particles and the ensemble has 105 chains.

For comparison between the three distributions, we match the first two mo-
ments of the theoretical probability density functions. By employing three dif-
ferent mass distributions that have the same moments, we may compare the
filtering behavior of these systems and investigate the role of the mass distri-
bution. In general, the nth moment of a given distribution f (q)(b) is defined
as,

M (q)
n =

∫ ∞
−∞

bnf (q)(b) db, (26)
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where q is used to identify the specific distribution type. Since only positive
masses are permitted, the lower limit of integration may be changed to zero.

With M
(n)
1 = 1 and M

(n)
2 = 1 + ξ2, we calculate the corresponding limits of the

uniform distribution to be 1±
√

3ξ. For the binary distribution the masses are
placed at 1 ± ξ. For the binary distribution to be symmetric about the mean,
large and small masses are selected with equal probability; the probability of
there being j or greater successive equal masses is ≈ 2−j . Long monodisperse
sections which might significantly affect the transmission properties of the chain
are thus unlikely.

When comparing the various mass distributions we restrict ξ ≤ 0.5, ne-
glecting ≈ 2.3% of the normal distribution where b < 0. In the context of
our parameter study employing only normally distributed masses, we consider
ξ ≤ 1.

3.2 Linear chain filtering

Given an array of (N + 2) random masses (where the end particles have pre-
scribed motion), we numerically solve the eigenvalue problem as described in
section 2.2, yielding the (N ×N) eigenvector matrix S and the N eigenfrequen-
cies {ω(j)} (j = 1, . . . , N). With equation (24) we calculate the displacement

history u(p)(τn) of particle p at discrete time steps τn = ndτ on the interval
τ = [0, τmax]. The time window is sufficiently large and the scaled time step dτ
is chosen to be small enough to permit sampling at the frequencies of interest.
We then perform a discrete Fourier transform to obtain the spectrum of this
signal. In particular, we examine the absolute value of the Fourier components,
U (p)(ω). This calculation is performed for particles p = 1, . . . ,M . The length
of the chain (N + 2), the sampling region length M , and the time window τmax
are chosen such that the disturbance signal has not reached the end-particle
p = N + 1 and thus is not reflected back, preventing interference from reflected
waves. Additionally, the parameters are chosen such that the high frequencies
(with corresponding lower phase velocity) have been given sufficient time to
propagate through the sampling region; if the time duration were too short,
then the “filtering” could, in fact, only be a measurement artifact.

The spectra of oscillations for the sampled particles may be compactly visu-
alized by the use of a three–dimensional plot projected into a two–dimensional
plane. Here we plot in the (p, ω) plane and represent the values of the absolute
Fourier components |U (p)(ω)| in greyscale. At each location p, the |U (p)(ω)|
array of values is normalized to unity (which allows to compare their relative
contribution). In our convention, darker shades correspond to larger values with
the scaling set such that black corresponds to a Fourier component ≥ 0.2. This
is applied for all of the following figures. For two particular chain arrangements,
we obtain Figure 2. We will later show averages over 200 different realizations.
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(a) (b)

Figure 2: Frequency propagation spectrum as a function of distance (in mean
particle diameters) from the source for two instances of a single realization of
a normally distributed disordered chain with uniform linear coupling. ξ = 0.5,
ωo = 3, dτ = 0.0667, τmax = 546.41, N = 500, M = 200.

In both of Figures 2a and 2b we note a rapid decrease of the input frequency
within several particle diameters from the driver. Following this, we observe
the persistence of several lower frequencies (ω < ωo) which are dependent on
the particular chain arrangement. However, by p = 200 we note that the fre-
quency content of the two arrangements is more comparable and frequencies
ω ' 0.5 have absolute Fourier components that are relatively small with respect
to ω / 0.5. This range of propagated frequencies is dependent on the disorder
parameter, as investigated in Section 3.2.1.

Examining the evolution of a particular frequency component ω∗ as it prop-
agates down the chain, we note the dark and light oscillations (“stitching”)
apparent for certain frequencies in both plots of Figure 2. For lower frequen-
cies, the wavelengths of these features match closely with those obtained from
the dispersion relation (25) for the perfect chain, as shown in Figure 3. Here, for
a single chain realization, we compare the features of the dispersion relation to
the spatial filtering behavior. To construct this figure we perform a discrete dou-
ble Fourier transform of the u(p)(τ) signal. With this plot we may examine the
wavelength λ of the stitching as ω∗ is varied. Note the close agreement between
the analytical result (black circles) and the data in the low–frequency/long–
wavelength limit (ω < 0.5). As the frequency increases, there is significant
deviation of the disordered system from the monodisperse chain. The dark hor-
izontal lines change with the particular chain arrangement and correspond to
strong, but spatially short excitations, indicating localization of the oscillations
at frequency ω∗.
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(a) (b)

Figure 3: The dispersion relation (a) obtained from the simulation displayed in
(b). The black circles are obtained from the perfect chain (ξ = 0) dispersion
relation (25) at 20 equidistant k∗ values. Darker shades correspond to greater
magnitude Fourier components.

The light areas of the stitching thus correspond to nodes of the wave, where
the magnitude of oscillations at a particular frequency ω∗ are insignificant.
Based upon the chain arrangement this behavior is more visually apparent at
certain frequencies, but Figure 3 confirms that there is a “selected” wavelength
associated with the oscillations for intermediate to low frequencies. We note that
the stitching is a consequence of the wave component interactions since it is not
present in our simulations with perfect chains; in such cases a monochromatic
horizontal line is observed to propagate without change (if in the passband
ω ≤ 2). Simulations of perfect chains produce dispersion plots that exactly
match the black circles plotted in Figure 3.

3.2.1 Frequency–filtering of the monodisperse linear chain: nor-
mally distributed masses

Here we employ a normal distribution of masses and perform a parameter study
on the effects of disorder magnitude ξ and source frequency ωo. For each set
of data, we generate an ensemble of 200 random chains (with different random
masses; however, for the equal-mass chain, this has no effect due to lack of
random disorder, i.e. ξ = 0). Each chain contains N = 500 particles and we
examine the displacement signal for particles 1 through M = 200. Selection of
the chain length N and the value of M is based on examining the results of
longer systems; for relatively high disorder (ξ = 0.5) we note minimal change
in the spectrum of transmitted frequencies beyond approximately 200 particles
from the excitation source.

By requiring that the signal does not reach the fixed end–particle p = (N+1),
a sampling time interval τ = [0, τmax] is approximately determined from the
analysis of several chain arrangements (“microstates”). If the fixed end is indeed
reached in a particular microstate, the reflected signal certainly does not have
sufficient time to propagate backwards to the sampling region, p < M .
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With τmax set, we divide the time span into q steps such that dτ = τmax/q
is small enough to detect the relevant large frequencies in a given signal. As
stated in Section 2.2, a monodisperse linear chain will propagate normalized
frequencies ω ≤ 2 and we drive the disordered chains at frequencies of this
order. We select q = 8192 time steps which yields dτ u 0.0667 for the given
time interval. We note that this time step permits detection of frequencies
ω / 47.1, which is many times greater than the largest eigenfrequencies.

For each realization in the ensemble of disordered chains, we calculate the
motion and the Fourier transform for the particles in the sampled region p < M .
To obtain the ensemble frequency content, we subsequently average over the
Fourier transform data for each microstate.

We emphasize that for Sections 3.2.1 through 3.2.2 we are concerned with
systems where only the masses are disordered. The coupling stiffnesses κ(ij) = 1
are the same for all contacts in the chain. In section 3.2.3 we vary the contact
stiffnesses along with the particle masses.

13



Fix ωo, vary ξ: Here we set the driving frequency ωo = 3.0 to a constant
value and vary the disorder parameter ξ as shown in Figure 4. In this manner
we may examine the effect of disorder on the transmitted frequencies. We
note that the greyscale values for each subplot are the same, with the absolute
Fourier component of magnitude 0.0 corresponding to white and 0.2 or greater
appearing black.

(a) ξ = 0.0 (b) ξ = 0.1 (c) ξ = 0.2

(d) ξ = 0.35 (e) ξ = 0.5 (f) ξ = 0.55

Figure 4: Variation of the disorder parameter ξ. The source frequency ωo = 3.0
and the other parameters are the same as in Figure 2.

From Figure 4 we note that as the disorder parameter increases (from sub-
figures 4a to 4f) there is an associated decrease in the transmission of the rela-
tively higher frequency components. For ξ in the range [0.1, 0.65], we examine
the ensemble–averaged spectrum of particle p = 200, 〈|U (200)(ω)|〉. In accor-
dance with the filtering behavior, the more disordered chains have a greater
proportion of their content in the low–frequencies. The inset of Figure 5 depicts
〈|U (200)(ω)|〉 for ξ = 0.3. Less disordered chains have a flatter profile with the
decay occurring closer to ω = 2.0 while more disordered chains display a higher
peak and sharper decay. To quantify the effect of disorder on the spectrum
width, we measure the frequency ω1/2 at which the curve reaches half its nomi-
nal/peak value, depicted in the inset by the dotted lines. This is performed for
10 ensembles at each ξ and plotted in Figure 5.
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Figure 5: Spectrum–width measure ω1/2 for ξ, obtained from the ensemble–

averaged profiles 〈|U (200)(ω)|〉. Inset shows the profile of 〈|U (200)(ω)|〉 for ξ = 0.3

As suggested by the images in Figure 4, increasing ξ leads to an initially
rapid change in the bandwidth of transmitted frequencies; as the disorder is
increased further, the (ξ, ω1/2) curve flattens and the spectrums appear quite
similar. Despite the proportionally greater number of small particles accompa-
nying greater disorder, their presence does not appear to significantly affect the
ensemble–averaged signal transmission properties.filtering of the system. This
is discussed further in Section 3.3.
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Fix ξ, vary ωo: Here we set the disorder parameter at a constant ξ = 0.3
and vary the source frequency ωo. For each driving frequency we employ the
same ensemble of 200 normally–distributed random mass chains. Results for six
input frequencies are shown in Figure 6.

(a) ωo = 3.2 (b) ωo = 3.0 (c) ωo = 2.4

(d) ωo = 2.0 (e) ωo = 1.6 (f) ωo = 1.2

Figure 6: Variation of the source frequency ωo, for disorder parameter ξ = 0.3
and other parameters as in Figure 2.

As suggested by the plots of Figure 4, lower frequency signal components are
not as affected by the presence of mass–disorder. This is clearly shown in Figure
6 where the frequency components corresponding to the excitation are shown
to propagate further into the system for decreasing ωo. As evidenced by Figure
3, low frequency (long wavelength) oscillations of disordered arrangements cap-
ture the dispersion behavior of ordered systems and thus low frequency inputs
propagate similar to the perfect chains. This is discussed further in Section
3.3. Qualitatively similar results are obtained for other values of the disorder
parameter ξ.
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3.2.2 Frequency–filtering of the linear chain: comparison of mass
distributions

Here we compare the results for different mass distributions. As detailed in
Section 3.1 we employ normal, uniform, and binary distributions such that the
first two moments are matched for a given disorder parameter ξ. In each row
of Figure 7 we plot the results for a given distribution.

(a) ξ = 0.1 (b) ξ = 0.3 (c) ξ = 0.5

(d) ξ = 0.1 (e) ξ = 0.3 (f) ξ = 0.5

(g) ξ = 0.1 (h) ξ = 0.3 (i) ξ = 0.5

Figure 7: Comparison of normal [(a), (b), (c)], uniform [(d), (e), (f)], and binary
mass distributions [(g), (h), (i)] for ξ = 0.1, 0.3, 0.5, driven at ωo = 3.0

Aside from small differences close to the source we observe that the spec-
trum of transmitted frequencies is approximately the same for the three mass
distributions studied at ξ ≤ 0.5. The binary distribution shows more isolated
frequencies penetrating the near–field, giving the figure a “rougher” appearance,
but plotting the frequency spectrum 〈|U (p)(ω)|〉 for p > 150 (data not shown)
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reveals no discernible difference between the distributions. The quantitative
similarity of the transmission profiles for the binary mass system (as compared
to the normal and uniformly distributed systems) suggests that the intermedi-
ate mass particles do not have a significant effect; the bulk filtering behavior is
related to the interaction between the largest and smallest masses, quantified by
the moments of the mass distribution. It is worth noting that higher disorder
ξ > 0.65 does indeed result in a difference in the profiles 〈|U (p)(ω)|〉 for the
binary and normal distributions. However, this is expected, as greater ξ values
lead to a significant cutoff of the Gaussian tail where b > 0; the theoretical
moments no longer correspond to the sampled distribution and comparison is
no longer appropriate.
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3.2.3 Frequency–filtering of the mass– and contact–disordered linear
chain

Here we present results for the linearized approximation to the general nonlinear
governing equations as valid for small amplitude oscillations. This is equivalent
to a linear chain where the mass and contact stiffness are both disordered. The
non–dimensional contact stiffness is related to the sizes of the contacting parti-
cles as given in (15). Comparison of Figures 8a–8c with the corresponding plots

(a) ξ = 0.3, ωo = 3.0 (b) ξ = 0.3, ωo = 2.0 (c) ξ = 0.3, ωo = 1.2

Figure 8: Mass– and contact–disordered chain for ξ = 0.3 and ω = 3.0, 2.0, 1.2

of Figure 6 reveals that the addition of contact disorder leads to a more rapid
spatial decay of the input frequency ωo. We also note that the bandwidth of
transmitted frequencies is marginally reduced for the contact–disordered chains,
as evidenced by plotting the profiles at various downstream locations (plots not
shown). However, the shape of the profiles are qualitatively comparable to those
of Figure 6.
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3.3 Disorder and localization

In this section we discuss how disorder in the one–dimensional chain leads to
spatial localization of the eigenmodes. Through the use of a simple fixed–end,
non–driven chain, we show that this localization is responsible for the observed
filtering behavior of the chains presented above. Although we mainly consider
driven chains in this study, the fixed–end chain provides a convenient model
system for our heuristic argument concerning high–frequency filtering.

3.3.1 Density of states

In Figure 9 we plot the density of states for various values of the disorder pa-
rameter. The eigenvalues for 2000 states of a 500 particle chain are numerically
calculated and the density of states is normalized such that the sum of values
(for each ξ) is unity, i.e. it represents the probability density function of modes
as function of ω. The numerical results are plotted with the analytical result
for a perfect chain as given by Sheng [36],

ρ(ω) ∼ 1√
4− ω2

. (27)

Figure 9: Density of states for mass–disordered chains. The curve ρ(ω) is the
analytical result (27) for the density of states in a monodisperse chain. Inset
displays the density of states for a single chain with ξ = 0.1.

In Figure 9 the density of states increases as we approach the cutoff frequency
ω = 2.0 of the ordered chain. As the disorder is increased, the smaller masses
permit higher frequency oscillations and the density of states for frequencies
ω > 2 accordingly increases. One may observe in Figures 2 and 4 that there is
(limited) transmission of frequencies ω > 2.0 for higher disorder; when ξ = 0,
we see a very sharp cutoff at ω = 2.0.
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3.3.2 Localization

From Section 2.2 we recall the eigenvalue problem (17) for the general linear
chain. In the case of monodisperse particles, the eigenvectors are sinusoids sub-
ject to the condition that the ends remain fixed. This imposes the requirement
that the eigenmode wavenumbers are scalar multiples of π/L, where L is the
chain length between the pinned ends. For the disordered chain, we observe
that eigenmodes of increasing frequency exhibit spatial mode localization. This
so–called “Anderson” localization has been observed in many physical contexts
including mechanical systems of vibrating masses [19,32].

Numerically solving the eigenvalue problem for three particular arrange-
ments of a 500 particle random chain (ξ = 0.5, uniform stiffness) we plot sam-
ple eigenvectors for modes j = 2, 30, 100, 200, 300, 500 in Figure 10. The low
frequency modes (e.g. Figures 10a and 10b) are similarly shaped for the differ-
ent chains and are “extended” in nature – the displacements are not localized
about a portion of the chain as seen in the higher frequency modes (10c to 10f).
In addition to the increased localization of higher frequency modes, we note
that the displacements are located at different positions in the chain, indicating
sensitivity to the particular mass arrangement. The highest frequency modes
approach Dirac–delta functions where only a single particle has a significant
displacement (Figure 10f). Physically, the highest frequency modes correspond
to smaller mass particles oscillating between two relatively large neighbors. We
note that the large peak in the kth highest frequency eigenmode corresponds to
the location of the kth smallest mass.

To investigate the effect of mode localization on the filtering behavior of
random chains, we simplify the modeling by removing the driving excitation of
the end particle. With this fixed–end chain, we consider the time evolution of
an initially specified waveform uo. The general solution derived in Section 2.2
reduces to

u(x, τ) = SCS−1uo, (28)

where C is a diagonal matrix with cosω(j)τ as the (j, j) entry. Recall S to be

the matrix of eigenvectors and ω(j) as the frequency of the jth eigenmode.

3.3.3 Wavenumber spectra evolution with time

Just as high frequencies are observed to be filtered with distance from the driving
source, high wavenumber/short wavelength content is observed to decay with
time and only long wavelengths persist. Given the displacement history (28) we
perform a spatial discrete Fourier transform (DFT) to obtain the wavenumber
content by application of the DFT matrix 1 F:

Υ(k, τ) ≡ Fu(x, τ) = FSCS−1uo. (29)

One may also differentiate Eq. (29) with respect to time (the only time depen-
dence hidden in C = C(τ)) to phrase this in the form of a master equation

dΥ

dτ
= QΥ, (30)

1Using e.g. the matlab function dftmtx.
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(a) j = 2 (b) j = 30

(c) j = 100 (d) j = 200

(e) j = 300 (f) j = 500

Figure 10: Eigenmode shapes for modes j = 2, 30, 100, 200, 300, 500. Each sub-
figure displays the mode shape for three different random chain arrangements
with disorder parameter ξ = 0.5.
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where Q(τ) ≡ FSHS−1F−1, and H = H(τ) = (dC/dτ) C−1 is a diagonal
matrix with (j, j) entry −ω(j) tanω(j)τ . The transition between wavenumber
states is determined by the transition matrix Q.

To examine the evolution of a particular wave component, we imagine pre-
scribing the initial displacement to be a perfect sinusoid, subject to the fixed
boundary conditions. Restricting attention to (29), we decompose this initial
waveform into the sum of an eigenvector sj and a difference vector χ. Thus, we
write

Υ(k, τ) = FSCS−1 (sj + χ) , (31)

which simplifies to

Υ(k, τ) = cos (ωjτ) Fsj + FSCS−1χ . (32)

If the initially inserted waveform has a long wavelength as compared to
the constituent particle sizes, see Fig. 10(a,b), the decomposition suggests that
sj ≈ u0 and χ is relatively insignificant, leaving Υ ≈ cos (ωjτ) Fsj . The product
Fsj , yielding the distribution of Υ in k–space, would only feature contributions
from a small number of long wavelengths and the wavenumber content remains
qualitatively similar – oscillating in time with frequency ωj .

Conversely, if we consider inserting a small wavelength/high frequency sinu-
soid u0, the first term of (32) is the Fourier transform of an (arbitrary) high–
frequency eigenmode (e.g. Figure 10f), which contains contributions from all
wavenumbers (due to its peaked, localised nature). Thus, we observe the ten-
dency of a high–frequency mode wave to spread (distribute) its wavenumber
content across all wavenumbers. Since a strongly localized sj features very few
non–zero entries, one has χ = u0 − sj ≈ u0, and the second term of (32) is
approximately equal to FSCS−1u0, while the first is rather insignificant (alter-
natively one could have started directly with setting the first term to zero).

The product S−1u0 yields a vector q(u0) describing the linear combination
of eigenvectors comprising the original waveform (for a particular chain arrange-
ment). Writing out the terms of this matrix product, we see

FSCS−1u0 = [q1 cos(ω1τ)] Fs1 + . . .+ [(qN cos(ωNτ)] FsN . (33)

Thus, the coefficients q1, . . . , qN determine the amplitude of oscillations for each
term and Fsj describes how the term’s wavenumber content is distributed in
k–space. To observe the relative magnitude of the coefficients over a range of
input u0, we calculate q(u0) for 200 chains of N = 500 particles with ξ = 0.5. In
Figure 11 we plot the results in greyscale, where darker shades represent larger
absolute values of the components. Increasing k along the horizontal axis corre-
sponds with shorter wavelength initial waveforms. Vertical cross–sections (fixed
k) yield the components q for the inserted waveform. The sharp, dark diago-
nal in the bottom left of the figure confirms that the coefficients corresponding
to lower frequencies/longer wavelengths have greater absolute value and that
long wavelengths persist. As the input wavelength is decreased, however, the
relative magnitude of the coefficients is decreased and the distribution becomes
spread, consistent with simulation observations in both the fixed–end and driven
chains. Thus, from this simple decomposition, it is clear that mode localiza-
tion is responsible for the filtering of high–frequency content in the presence of
mass–disorder.

23



Figure 11: Absolute values of the components of q (see text) for varied input
waveforms uo, which for increasing k along the horizontal axis become wider
spread out (lower shades of grey) across the eigenmodes. Results are produced
for an ensemble of 200 chains of N = 500 particles with ξ = 0.5

3.4 Frequency–filtering of the nonlinear chain

Similar to the linear chain, in Section 3.4.1 we perform a parameter study of ξ
and ωo for a system of normally–distributed masses with Hertzian interaction.
Due to the nonlinearity in the contact law, we also consider the driving ampli-
tude ε. We note that the nonlinear chain is, in general, disordered in both mass
and contact properties. In Section 3.4.2 we investigate nonlinear chains with
uniform contact coupling, isolating the effect of mass–disorder.

3.4.1 Frequency–filtering of the nonlinear chain: normally distributed
masses

Fix ωo, vary ξ: Here we set the driving frequency ωo = 3.0 and present the
spectra for three values of the disorder parameter ξ in Figure 12.

We may compare this nonlinear chain with the results of 3.2.3, where a linear
contact model is employed for the mass– and contact–disordered chain. As ob-
served in the linear system, increased disorder leads to stronger filtering of the
high–frequency components. However, the profiles of transmitted frequencies
are qualitatively different for the nonlinear chain. In Figure 13 we plot the trans-
mission profiles 〈|U (200)(ω)|〉 for a general nonlinear (with contact–disorder), a
contact–ordered nonlinear (see Section 3.4.2), and a contact–disordered linear
chain (Section 3.2.3).

We observe that the profiles for the nonlinear chains display a sharp peak
at the low frequencies, while the linear chain exhibits a flatter profile. The
magnitudes of the intermediate frequency components are accordingly less in the
nonlinear chain. However, we note that by changing ε the oscillation amplitudes
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(a) ξ = 0.1 (b) ξ = 0.3 (c) ξ = 0.5

Figure 12: Variation of disorder parameter ξ for a normal distribution of masses
and Hertzian contact. Source frequency is ωo = 3.0 and the relative driving
amplitude is moderate, ε = 0.05; for a comparison of different ε, see Fig. 16.

Figure 13: Frequency spectrum at particle p = 200 for contact–disordered non-
linear, contact–ordered nonlinear, and contact–disordered linear chain. Param-
eters are ξ = 0.5, ωo = 3.0 and ε = 0.05 for the nonlinear chains.
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will decrease such that we approach behavior that is captured by the linearized
model. This is examined later, see Fig. 16.

An apparent feature of the nonlinear spectra is the “zig–zag” for ω < 0.2.
This is not an artifact of the sampling rate or time period and the feature
persists upon ensemble–averaging. At a particular ξ and ωo the only simulation
parameter that affects the height of the peaks is the driving amplitude ε (see
Figure 16), which characterizes the strength of the nonlinearity through the
displacements from equilibrium. In Figure 14 we alter ξ and ωo to show that
changing the disorder (at fixed ωo) does not have any effect on the ω location of
the zig–zags. Similarly, changing ωo does not appear to have a significant effect
on the locations for ω < 0.2. The reason for the particular locations remains an
open question.

Figure 14: Ensemble–averaged frequency spectrum at particle p = 200 for the
nonlinear chain with ε = 0.05. Note that changes in ξ and ωo do not have a
significant effect on the location of the “zig–zag” features for low frequencies.
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Fix ξ, vary ωo Here we set the disorder parameter to ξ = 0.5 and change the
driving frequency ωo. Results are plotted in Figure 15.

(a) ωo = 3.0 (b) ωo = 2.0 (c) ωo = 1.0

Figure 15: Variation of source frequency ωo. Disorder parameter is ξ = 0.3 and
and ε = 0.05.

As in the linear chain we see that lower frequency signals are not as sensitive
to the disorder of the chain and the input frequency propagates further into the
system. In Figure 15c we note the appearance of a harmonic at ω = 2ωo. This
frequency doubling harmonic (among others not visible due to the greyscale
selection) is a general feature of nonlinear oscillations and is observed in all the
simulations. Again we see that the nonlinear chain with an appropriately large
excitation (ε = 0.05 in this figure) experiences a sharp profile for ω � 1. The
penetration distance of the input frequency (e.g. for ωo = 2.0) is not affected
by the driving amplitude ε as varying this parameter over several orders of
magnitude resulted in negligible difference in the decay of this component.
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Different driving amplitudes Here, the value of the non–dimensional driv-
ing amplitude ε is varied over several orders of magnitude: ε = 0.1, 0.05, 5 ×
10−3, 5 × 10−4. As noted with respect to equation (9), the non–dimensional
value of ε measures the strength of the agitation provided by the driving with
respect to the compressive external force on the chain. Thus, small values of
ε correspond to systems with small driving and/or large confining stress. The
largest driving amplitudes are set by the requirement that no contacts may
open in the chain, giving εmax to be on the order of the characteristic overlap
length scale. Simulations check this contact condition to avoid the nonlinearities
associated with transient interactions.

Since the greyscale plots are qualitatively similar to prior figures (e.g. Fig
12c) and do not resolve the fine details of the transmission profiles, we plot
〈|U (200)(ω)|〉 in Figure 16. We note that by decreasing the driving amplitude
ε, we decrease the magnitude of the lowest frequency components. For ε → 0,
the profiles approach that seen in the linear chain (shown in Figure 13), which
is consistent with the linearization performed about the equilibrium positions.
The asymptotic approach to linear behavior of a compressed granular system
was noted experimentally by Sinkovits et al. [37]. It is also apparent that greater
ε causes the height of the “zig–zag” peaks for ω < 0.3 to grow, enforcing that
this is an effect associated with the contact nonlinearity.

Figure 16: Frequency spectrum at particle p = 200 for varied driving amplitude
ε. Source frequency is ωo = 3.0 and ξ = 0.5.

3.4.2 Removal of contact disorder

In a numerical realization of the monodisperse, mass–disordered setup proposed
in Section 2.1.3 we remove the contact disorder in the Hertzian chain by setting
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all interaction stiffnesses to κ(i,j) = 1. The frequency spectra for p = 200 were
previously plotted in Figure 13. Inspection of the corresponding curves reveals
that contact disorder reduces the magnitude of the frequency components in
the intermediate frequency range. The profiles are quite comparable for the
smallest frequencies, but for ω > 0.4 the spectrum for constant contact stiffness
lies slightly above that of the contact–disordered case. As noted prior, similar
results were obtained for the linear chains when the effects of contact disorder
were considered.
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4 Conclusions

In this study we examined the frequency transmission properties of driven, dis-
ordered one–dimensional systems. Beginning from a general power law force–
displacement relation, we investigated the behavior of pre–compressed chains,
where particles interact through linear or nonlinear (Hertzian) contacts. Dis-
ordered chains behave like a low–pass frequency filter, permitting the propa-
gation of low frequency signals while the higher frequency components decay
with distance from the source. The signal transmission is studied as a function
of the input frequency, disorder magnitude, and the choice of contact model
(i.e. linear, Hertzian). As more disorder is imposed on the system we observe
that the higher relative frequencies are filtered closer to the source/driver and
only low–frequencies propagate in the chain. However, the results also sug-
gest that there exists a threshold disorder after which only small changes in
the ensemble–averaged properties are noted. By driving systems at various fre-
quencies we observe that lower–frequency signals are less sensitive to the chain
arrangements and the input signal propagates further. In the context of the
linear chain, we relate the filtering behavior to the localization of eigenmodes
in the presence of disorder. One may imagine applications exploiting disorder
effects could be pursued in the spirit of [5, 9, 12, 13, 25, 31, 38, 40] where such
systems were engineered to produce a desired output.

Chains composed of random, linear, contact–ordered masses sampled from
different (normal, uniform, and binary) mass–distributions were compared. The
disorder parameter was restricted to ξ ≤ 0.5 to ensure that only a small portion
of the normal distribution (b < 0) was neglected. The quantitative agreement
between the ensemble–averaged results between the binary and continuous dis-
tributions suggests that knowledge of the first two moments of the mass distri-
bution is sufficient for characterizing the bulk filtering properties of these simple
systems; the effect of intermediate masses is minimal.

Comparison of the nonlinear and linear systems reveals that both systems fil-
ter high frequencies in a similar manner with a decaying envelope of transmitted
frequencies. However, the nonlinear chains have frequency spectra that contain
much larger relative contributions from the lowest frequency components, indi-
cated by the dramatic difference in the spectra at locations downstream from
the driver. By altering the non–dimensional driving amplitude ε, we were able
to affect the strength of the nonlinearities present; with a sufficiently small value
(corresponding to small driving amplitude and/or large external compression),
we recover the linear system behavior.

We examined the effect of isolated mass–disorder and the combination of
mass– and contact–disorder in both linear and nonlinear chains. Results were
qualitatively similar to systems with only mass–disorder; in both cases the in-
clusion of contact disorder was relatively small, leading to slightly lower relative
magnitudes of transmitted frequencies.

In comparing the high–frequency filtering properties of the random one–
dimensional systems to the three–dimensional packings of Mouraille and Lud-
ing [28] we note the importance of the contact geometry in their observations.
Beginning from a perfect crystalline geometry, small perturbations in particle
size are introduced, which created significant and dominating disorder effects
in the system. The disorder (as quantified here by the distribution of parti-
cle masses) was indeed very small (ξ ≈ 0.007) and our simulations on one–
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dimensional systems with disorder of this magnitude reveal no difference from
perfect, monodisperse systems. This underlies the strong nonlinear effect of
minimal compression and potentially transient contacts. In our consideration
of compressed chains, we have avoided geometry–induced disorder. However, if
the chains were subject to very little pre–compression (approaching Nesterenko’s
sonic vacuum) [10,29,34], the length scale of the particle–size perturbation and
the contact overlap length scale would be of the same order and strong nonlin-
earities could be introduced. We emphasize that we did not pursue such weakly
confined systems.

Our observations about disordered one–dimensional systems may furnish
clues about the role of disorder in higher–dimensional physical systems, namely
the relative importance of geometry and the connection between microscale
(e.g. contact length scale) properties and those at the system length scale. The
investigation of this micro–macro connection and a host of nonlinear effects
associated with weak pre–compression and geometrical disorder remains a rich
area warranting further study.
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A Appendix 1: Orthogonality proof

In direct notation, for eigenvalue/eigenvector j the statement of the dimension-
less eigenvalue problem is,

As(j) = ω2
j s(j). (34)

With A = −M−1K we have

M−1Ks(j) = −ω2
j s(j) (35)

or,
Ks(j) = −ω2

jMs(j) (36)

Similarly for eigenvector k, we have

Ks(k) = −ω2
kMs(k) (37)

Taking the transpose of (37),

sT(k)K
T = −ω2

ks
T
(k)M

T (38)

Since both K and M are symmetric drop the transpose and then right multiply
by s(j),

sT(k)Ks(j) = −ω2
ks
T
(k)Ms(j) (39)

Similarly, left multiply (36) by sT(k)

sT(k)Ks(j) = −ω2
j s
T
(k)Ms(j) (40)

Subtract (40) from (39), (
ω2
j − ω2

k

)
sT(k)Ms(j) = 0 (41)
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If ω2
k 6= ω2

j we are left with the orthogonality statement,

sT(k)Ms(j) = 0 (j 6= k) (42)

If j = k, the quantity sT(j)Ms(j) = d(j) 6= 0. Scaling each eigenvector s(j) by√
d(j), we generate an orthonormal set.

B Appendix 2: Hertz contact model

With β = 1/2 we obtain the Hertz contact model and the interparticle forces
are dependent on the size and material properties of the constituent particles
in the following way [18]:

κ̃(i,j) = Ỹ(i,j)

[
r̃ir̃j
r̃i + r̃j

]1/2
, (43)

where

Ỹ −1(i.j) =
3

4

(
1− ν2i
Ẽi

+
1− ν2j
Ẽj

)
. (44)

Ẽi and νi are the elastic modulus and Poisson’s ratio, respectively, of the ma-
terial composing particle i. The formulation was presented for spheres but is
noted to be appropriate for non–spheres as well [18]. In what follows we choose
the same material for all particles and Ỹ(i,j) = Ỹ is independent of the contact
in consideration,

Ỹ −1 =
3

2

(
1− ν2

Ẽ

)
. (45)

We have previously defined the characteristic length ˜̀ = ∆̃o to be the equilib-
rium contact overlap of two particles of the mean mass m̃o. We first find the
characteristic stiffness of this contact,

κ̃o =
Ẽ

1− ν2

[
2m̃o

243πρ̃

]1/6
. (46)

With the initial overlaps defined by (3), we have,

∆̃o =

(
P̃

κ̃o

)2/3

(47)

The characteristic time is,

t̃c =
1

∆̃
1/4
o

√
1− ν2

Ẽ

[
243πρ̃m̃5

o

2

]1/12
. (48)

The scaled stiffness ratio at contact (i, j) simplifies to,

κ(i,j) =
κ̃(i,j)

κ̃o
=

√
2

b(i)1/3 + b(j)1/3

(
b(i)b(j)

)1/6
. (49)
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For a general contact, the equilibrium overlap given by (3) is,

∆̃(i,j) =

(
P̃

κ̃(i,j)

)2/3

. (50)

Dividing by our length scale ∆̃o, the characteristic contact overlap in equilib-
rium,

∆(i,j) = κ
−2/3
(i,j) . (51)
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