
A review of recent work on the Discrete Particle Method at the
University of Twente: An introduction to the open-source

package MercuryDPM

Anthony Thornton, Dinant Krijgsman, Ate te Voortwis, Vitaliy Ogarko, Stefan Luding, Rudi
Fransen, Sebastian Gonzalez, Onno Bokhove, Olukayode Imole, Thomas Weinhart

University of Twente, The Netherlands

In this paper we review some recent advances in DEM (DPM) modelling undertaken at the
University of Twente. We introduce the new open-source package MercuryDPM that we
have been developing over the last few years.

MercuryDPM is an object-oriented program with a simple C++ implementation and in-
cludes: support for moving and complex walls, such as polyhedra or screw-threads; state-
of-the-art granular contact models; multi-species support; specialised classes, allowing the
easy implementation of common geometries like chutes, hoppers, etc.; common handler in-
terfaces for particles, walls and boundaries (so all type of objects are changed using the same
interfaces); restarting; large self-test suite and numerous simple demos; and, visualisation
support, both internal and using Visual Molecular Dynamics.

Additionally to these features, MercuryDPM has two major components that, to the best of
our knowledge, cannot be found in other DPM packages. Firstly, it uses a novel advanced
contact detection method that is able of dealing with multiple distinct granular components
with sizes ranging over many orders of magnitude: the hierarchical grid. We explain how
this algorithm works and demonstrate the speedup gained over the traditional linked cell
approach. This algorithm has lower complexity for poly-dispersed flows which means for
the first time large simulations with extremely wide size distributions are feasible.

Secondly, we present a novel way to extract continuum fields from discrete particle systems
that is applicable to mixtures as well as boundaries and interfaces. The particle data is
coarse grained in a way that is by construction compatible with the continuum equations
of mass-, momentum-, and energy balance. Boundary interaction forces are taken into
account in a self-consistent way and thus allow the construction of a continuous stress field
even within one particle radius of the boundaries. The method does not require temporal
averaging and thus can be used to investigate time-dependent flows as well as static and
steady situations. This coarse-graining method is available from MercuryDPM either as a
post-processing tool or it can be run in real time. In real-time mode, it not only reduces
the data which has to be stored but also allows boundary conditions etc. to be updated
depending on the current macroscopic state of the system, e.g. allowing the creation of a
pressure-release wall.

Finally, we illustrate these tools and a selection of other features of MercuryDPM via var-
ious problems including size-driven segregation in chute flow, rotating drums, and screw-
conveyer.

GENERAL INTRODUCTION

MercuryDPM is a code for performing discrete particle simulations. Often this method is referred to as the
discrete element method (DEM), which was originally designed for geotechnical applications [3]. However,
as MercuryDPM is designed for simulating particles with emphasis on contact models [8], optimised contact
detection for highly different particle sizes [9], and in-code coarse-graining (in contrast to post-processing)
[15], we prefer the name discrete particle method (DPM). The code was originally developed for granular
chute flows [11, 12, 14], and has since been extended to many other granular applications, including the
geophysical modelling of cinder cone creation, indentation of nanoparticles, vibrated granular systems, etc.
Despite its granular heritage it is designed in a flexible way so it could can be adapted to include other
features such as long-range interactions, non-spherical particles, etc.

- 50 - DEM6 - International Conference on DEMs

WHY A NEW SIMULATION CODE?

There are many open-source particle simulation packages, so the question does arise of why another? The
originally concept was to develop a code that could be used along side the University of Twente existing
continuum solver hpGEM [10] (see http://einder.ewi.utwente.nl/hpGEM/ for details). The aim was that
the coupled code could be used to approach problems using various multi-scale computational methods.
Additionally, also at the University of Twente, a novel contact detection method, the hierarchical grid, had
been developed [9]. This algorithm is quicker than existing methods for poly-dispersed flows and still the
same speed for mono-dispersed. So the idea of a new simulation code that had three core design aims was
born:

1. It should be easy to use with minimal C++ knowledge.

2. It should be built around the new hierarchical grid detection method;

3. It should be able to generate accurate continuum fields that could be used with/along side continuum
solvers.

FEATURES

Since it was first started it has evolved and gained many novel features. The main features include:

1. The hierarchical grid: The neighbourhood search algorithm to effectively compute interaction forces,
even for highly poly-dispersed particles.

2. Built-in coarse-graining statistical package: It has an in-built advanced statistics package to
extract continuum fields such as density, velocity, structure and stress tensors, either during the com-
putation or as a post-processing step.

3. Access to continuum fields in real time: Continuum field can be evaluated at run-time, which
means it can respond to its current macroscopic state. An illustrative example of using this would be
a pressure-release wall, i.e., a wall whose motion is determined by the macroscopic pressure created
via by particle collisions and moves such that its pressure (not position) is controlled.

4. Contact laws for granular materials: Many granular contact force models are implemented, in-
cluding elastic (linear or Hertzian), plastic, cohesive, temperature/pressure/time-dependent (sintering)
temperature/pressure/time-dependent, and frictional (sliding/rolling/torsion) forces.

5. Simple C++ implementation: MercuryDPM consists of a series of C++ classes that are flexible,
but easy to use. This allows the user to generate advanced applications with only a few lines of code.

6. Handlers: The code has handlers for particles, walls and boundaries. Thus, each object type has
a common interface, even though individual objects can have completely different properties. It also
makes it easier for the user to create new objects.

7. Complex walls: The code not only supports simple flat walls, but also axially symmetric, polyhedral
and helical screw walls are all available by default. Additionally, due to the handler interface it is easy
for more advanced users to define new types of walls themselves.

8. Specialised classes: Many specialised classes exist that reduce the amount of code required by the
user to develop standard geometries and applications. Examples include chute flows, vertically vibrated
walls and rotating drums.

9. Species: Particles and walls each have a unique species, which is hidden for basic use of the code; how-
ever, this feature can be enabled by a single function call. Different particle properties for each species
and different interaction forces for each pair of species can then be defined, allowing the simulation of
mixtures.

10. Self-test suite and demos: MercuryDPM comes with a large number of (over 100) self-tests and
demo codes. These serve two purposes: 1) they allow us to constantly test both new and old features
so we can keep bugs to a minimum; 2) secondly, they serve as good example, for new users, of how to
perform different tasks.

11. Simple restarting: Every time a code is run, and at intervals during the computation, restart files are
generated. Codes can be restarted without recompilation simply by calling the executable again with
the restart file name as an argument. Also the restart files are complete in the sense they contain all
the information about the problem. Therefore small changes can be made (e.g. the individual particle

- 51 - DEM6 - International Conference on DEMs

density or coefficient of restitution) and the simulation can be rerun without the need for recompilation
of the code.

12. Visualisation: The particles output can be visualised easily using the free package VMD (visual
molecular dynamics, http://www.ks.uiuc.edu/Research/vmd/) as well as the in-house visualisation
tool xballs.

13. Parallel: There is currently a parallel-distributed version of the code under development using MPI
and this version should be publicly available shortly.

INTRODUCTION TO THE HIERARCHAL GRID

Traditionally, particle simulations codes use a linked list system for contact detection [1, 6]. The method
divides the domain into small cells whose size equals the diameter of the largest particle and exploits the
fact that all possible contact can only be from particles in neighbouring cells. This method has a complexity
of order N for mono-dispersed flows, where N is the total number of particles. This means that if you
double the number of particles you are simulating the total computational time doubles. However, for poly-
dispersed flows this nice scaling is lost and in the extreme limit of one very large particle and the rest small
particles, the complexity becomes order N2. Due the hierarchical grid contact detection algorithm that
forms MercuryDPM’s heart this problem is avoided within MercuryDPM. Therefore highly poly-dispersed
and wide-size distributions can be easily tackled for the first time, in an open-source environment.

The hierarchal grid consists of a number of regular grids with different cell sizes. The grids are ordered
such that the cell size in each level is smaller than the level above (note, the grid cell size in higher levels are
not necessarily integer multiples of the lowest grid cell size). The algorithm consist of two phases: building
the grid (mapping) and contact detection.

In the building phase every particles is placed on the highest grid level, that the cell size is below the
particle’s diameter. Note, the grid is not rebuilt every time step, but only when enough time-steps have
passed that it is possible for a particle to have fully moved out of its original cell.

The contact detection phase has two steps. Firstly, contacts within the currently level are checked for
using the classical linked list methods. Next the second cross level search step, where each particle potential
contacts at levels lower than the level of insertion are checked for. This implies that the particle will be
checked only against the smaller ones, thus avoiding double checks for the same pair of particles. The net
effect of this is a vast reduction in the number of checks undertaken. Details of the algorithm and the
speed up gained for poly-dispersed size-distributions is discussed in more detail in [9] and a consideration
for bi-dispersed in [13].

Here, we demonstrate the power of the hierarchal grid using the example of poly-dispersed particles in a
rotating drum. One of the key reasons that poly-dispersed flow has not been investigated in the past is the
computational cost. Figure 1 shows an example of one of these poly-dispersed simulations. In this simulation
every particle is of a different size, with a uniform volume distribution. The colour represents the size of
the particles, with red the smallest and blue the largest. The ratio of the smallest to largest particle is ten
to one in this simulation. The image is taken after two revolutions of the drum and a strong segregation
pattern can be observed with the small particles located in the centre of the drum.

INTRODUCTION TO COARSE GRAINING

To obtain macroscopic fields, we use the coarse-graining statistical methods as described in [2, 4], extended
to incorporate external boundary forces [15]. For this statistical method a coarse-graining function, W, has
to be defined that spatially smears the discrete data. MercuryDPM has many predefined coarse-graining
functions and common choices are Gaussian or Lucy functions.

The method has several advantages over other methods because: (i) the fields produced automatically
satisfy the equations of continuum mechanics, even near the flow base; (ii) it is neither assumed that the
particles are rigid nor spherical; and, (iii) the results are even valid for single particles as no averaging over
groups of particles is required. The only assumptions are that each particle pair has a single contact region
i.e., the particle shapes are convex), the contact area can be replaced by a contact point i.e., the particles
are not too soft, and that collisions are not instantaneous.

- 52 - DEM6 - International Conference on DEMs

Figure 1: Poly-dispersed segregation in a rotating drum. Colour denotes particle size.

Here we will give a quick overview of the key ideas. Vectorial and tensorial components are denoted by
Greek letters in order to distinguish them from the Latin particle indices i, j. Bold vector notation will be
used when convenient. Assume a system given by Np particles. From statistical mechanics, the microscopic

mass density of the flow, ρmic, at a point r at time t is defined by

ρmic(r, t) =

Np∑
i=1

miδ (r − ri(t)) , (1)

where δ(r) is the Dirac delta function and mi is the mass of particle i. The following definition of the
macroscopic density of the flow is used

ρ(r, t) =

Np∑
i=1

miW (r − ri(t)) , (2)

thus replacing the Dirac delta function in (1) by an integrable ‘coarse-graining’ function W whose integral
over space is unity.

Next we will demonstrate how to obtain other fields of interest with the simple equation of momentum
vector field. The coarse grained momentum density p(r, t) is defined by

pα(r, t) =

Np∑
i=1

miviαW(r − ri), (3)

where the viα’s are the velocity components of particle i. The macroscopic velocity field V (r, t) is then
defined as the ratio of momentum and density fields, Vα(r, t) = pα(r, t)/ρ(r, t). It is straightforward to
confirm that equations (2) and (3) lead to the continuity equation

∂ρ

∂t
+
∂pα
∂rα

= 0, (4)

with the Einstein summation convention for Greek letters.
Using the coarse-gaining method it is possible, but more involved, to produce formulae for other macro-

scopic fields. Common fields like kinetic stress, contact stress, fabric, temperature, displacement, traction,
collisional heat flux, density, flow height, etc. are already available from the coarse-graining tool box included
as part of MercuryDPM. For the interested reader formulas for the other fields can be found [2, 4, 5, 14, 15].

DEM6 - International Conference on DEMs

