
Software Update

Mercury-DPM is a code for performing discrete particle
simulations. That is to say, it simulates the motion of particles,
or atoms, by applying forces and torques that stem either from
external body forces, (e.g. gravity, magnetic fields, etc…) or from
particle interactions. For granular particles, these are typically
contact forces (elastic, viscous, frictional, plastic, cohesive), while
for molecular simulations, forces typically stem from interaction
potentials (e.g. Lennard-Jones). Often the method used in these
packages is referred to as the discrete element method (DEM),
which was originally designed for geotechnical applications.
However, as Mercury-DPM is designed for simulating particles
with emphasis on contact models, optimized contact detection
for highly different particle sizes, and in-code coarse-graining (in
contrast to post-processing), we prefer the more general name
discrete particle simulation. The code was originally developed
for granular chute flows, and has since been extended to many
other granular applications, including the geophysical modeling of
cinder cone creation. Despite its granular heritage it is designed in
a flexible way so it can be adapted to include other features such as
long-range interactions and non-spherical particles, etc.

Why a new simulation code?
There are many open-source particle simulation packages, so
the question arises of why another? Mercury-DPM was originally
started as a joint collaboration between the Multi-Scale Mechanics
(MSM) and the Mathematics of Computational Science (MaCS)
groups (before 2011 they were called the Numerical Analysis and
Computational Mechanics) at the University of Twente in 2009.
The idea was to develop a code that could be used alongside the
existing MaCS group continuum solver hpGEM (http://wwwhome.
math.utwente.nl/~hpgemdev/) to approach problems using
various multi-scale computational methods. Around the same time
Vitaly Ogarko and Stefan Luding developed an advanced contact
detection method: the hierarchical grid. This novel algorithm
is quicker than existing methods for poly-dispersed flows (and
still the same speed for mono-dispersed). So the idea of a new
simulation code that had three core design aims was born:

1. It should be easy to use with minimal C++ knowledge.
2. It should be built around the new hierarchical grid detection

method.
3. It should be able to generate accurate continuum fields that

could be used with/alongside continuum solvers.

Actually, the name of the code emanates from the contact detection
method: hierarchical grid Hgrid Hg Mercury.

Features
Since it was first started it has evolved and gained many novel
features. The main features include:
1. Of course, the hierarchical grid: The neighborhood search

algorithm to effectively compute interaction forces, even for
highly poly-dispersed particles.

2. Built-in coarse-graining statistical package: it has an in-built
advanced statistics package to extract continuum fields such
as density, velocity, structure and stress tensors, either during
the computation or as a post-processing step.

3. Access to continuum fields in real time: The code can be
run in live statistics mode, which means it can respond to its
current macroscopic state. An illustrative example of using this
would be a pressure-release wall, i.e., a wall whose motion is
determined by the macroscopic pressure created by particle
collisions and moves such that its pressure (not position) is
controlled.

4. Contact laws for granular materials: many granular contact
force models are implemented, including elastic (linear or
Hertzian), plastic, cohesive, sintering (temperature/pressure/
time-dependent), and frictional (sliding/rolling/torsion) forces.

5. Simple C++ implementation: Mercury-DPM consists of a
series of C++ classes that are flexible, but easy to use. This
allows the user to generate advanced applications with only a
few lines of code.

6. Handlers: The code has handlers for particles, walls and
boundaries. Thus, each object type has a common interface,
even though individual objects can have completely different
properties. This also makes it easier for the user to create new
objects.

7. Complex walls: The code not only supports simple flat walls,
but also axial-symmetric, polyhedral and helical screw walls
are available. Additionally, due to the handler interface it is
easy for more advanced users to define new types of walls
themselves.

8. Specialized classes: Many specialized classes exist that reduce
the amount of code required by the user to develop standard
geometries and applications. Examples include chute flows,
vertically vibrated walls and rotating drums.

9. Species: Particles and walls each have a unique species, which

Mercury-DPM: Fast particle
simulations in complex

geometries

Newsletter EnginSoft Year 10 n°1 - 48

49 - Newsletter EnginSoft Year 10 n°1 Software Update

is hidden for basic use of the code; however, this feature can be
enabled by a single function call. Different particle properties
for each species and different interaction forces for each pair
of species can then be defined, allowing the simulation of
mixtures.

10. Self-test suite and demos: Mercury-DPM comes with a large
(over 100) self-tests and demo codes. These serve two
purposes: 1) they allow us to constantly test both new and old
features so we can keep bugs to a minimum; 2) they serve as
tutorials, for new users, of how to do different tasks.

11. Simple restarting: every time a code is run (and at intervals
during the computation) restart files are generated. Codes
can be restarted without recompilation simply by calling the
executable again with the restart file name as an argument. Also
the restart files are complete in the sense that they contain all
the information about the problem. In this way, small changes
can be made (e.g. with the individual particle density or the
coefficient of restitution) and the simulation can be rerun
without the need for recompilation of the code.

12. Visualization: The particles output can be visualized easily
using the free package VMD (visual molecular dynamics,
http://www.ks.uiuc.edu/Research/vmd/).

13. Parallel: Currently a parallel-distributed version of the code
is under development using MPI and this version should be
publicly available shortly.

Simple C++ implementation and handlers
Mercury-DPM is a very versatile, object-oriented C++ code,
which means new applications can be developed rapidly and easily.
It has been tested for several Linux distributions and Mac OS. It
consists of a core (kernel) that contains a series of C++ classes
onto which users can quickly build to develop their own application
(driver). The base class, Mercury3D, is flexible and contains the
basic functionality to define a simulation. Using this class, the
users specify the particulars of their simulations (initial positions,
inflow, outflow, walls, interaction parameters, etc.) in a single driver
file, which calls the kernel to perform the simulation. In addition to
the flexible base class many higher-level, more powerful classes
exist, which are tailored for common problems. A typical example
would be the class Chute. This automatically defines a bottom that
can be smooth or rough (of which we have three different types), an
inflow boundary, outflow conditions, sidewalls, etc. and gives the
user new access functions to perform standard tasks; for example:
set_ChuteAngle (which automatics rotates the gravity vector), and
set_InflowHeight (which changes the height of the particle layer
at the entry to the chute). These common functions allow the
simple setup of chute flow problems in just a few lines of code.
Many other high-level classes exist and a full up-to-date list can
be obtained from the website, http://www2.msm.ctw.utwente.nl/
MercuryDPM. As the code is fully object-oriented, many of the
classes build on each other adding extra levels of functionality.
An example would be the class ChuteWithHopper, which replaces
the inflow conditions in the original Chute class with a more
complicated hopper construction. In addition, it adds new access
functions, which allow the hopper properties to be set. Due to the
object-oriented nature of the code it is easy for users to change a
driver code from one class to a similar one. For example to change

a Chute problem to a ChuteWithHopper problem all the user has
to do is change the class he includes at the top of the code and
replace the access functions like set_InflowHeight to the hopper
equivalent i.e. set_HopperWidth, set_HopperHeight, etc. All the
code defining the geometry and dealing with particle properties
does not have to be changed and has exactly the same interface.

Another key feature of the Mercury-DPM design is the idea of
handlers. There are three handlers in Mercury-DPM: Particle, Wall
and Boundary. Handlers mean that all items of the same basic
type are stored in one place. This has several nice advantages the
primary being the flexibility, i.e., each particle, wall, etc., can have
completely different properties but as long as the basic properties
are defined the code can deal with the item. The user does not
have to look after the walls, particles and boundaries themselves;
they only have to create them. For example, to add a new particle
to the simulation the user defines the properties of the new particle
and passes them on to the ParticleHandler, then the code does the
rest. The user does not need to know anything about other particles
that have previously been created. The handler can also be queried
via its access function to obtain information like the number of
particles currently in the simulation, the smallest particle, etc.

Applications
Here we will illustrate some of the features of Mercury-DPM via
applications that have already been developed in the package.

Poly-dispersed segregation in a rotating drum
(S. Gonzalez, S. Luding, A.R. Thornton)
One of the most fascinating properties of granular matter is the
ability of appropriately driven mixtures to separate into their
individual components, despite the apparent lack of energetic or
entropic advantages of a segregated state. This often produces
brilliant patterns that give rise to a number of interesting problems
in nature and difficult challenges for the powder compressing.
The segregation of a binary mixture contained in a partially filled,
horizontal, rotating drum is an extensively studied problem of this
class; one with obvious industrial importance. One of its most
beautiful characteristics occurs when it segregates in the radial
direction, producing a core rich in small particles surrounded by
an outer layer of mainly big particles, and depending on the angular
velocity, rich patterns of segregation. Despite the great number
of studies involving two-components systems, poly-disperse
systems remain mainly unexplored, although they are more the
rule than the exception in nature. The importance of these systems
for industry is obvious; from a theoretical and computational point
of view, they present various and difficult challenges.

One of the key reasons why poly-dispersed flow has not been
investigated in the past is the computational cost. Traditionally,
particle simulation codes use a linked list system for contact
detection. This method has a complexity of order N for mono-
dispersed flows, where N is the total number of particles.
This means that if you double the number of particles the total
computational time doubles. However, for poly-dispersed flows
this nice scaling is lost and in the extreme limit of one very large
particle and the rest containing small particles, the complexity

Newsletter EnginSoft Year 10 n°1 - 50 Software Update

becomes order N2. Yet due the hierarchical grid contact detection
algorithm that forms Mercury-DPM’s heart this problem is still
order N within Mercury-DPM. This is why highly poly-dispersed
and wide-size distributions can be easily tackled for the first time,
in an open source environment.

Our simulations consist of spherical particles with different size
distributions. Fixing particles to the surface of a given geometry
makes the walls of the rotating tumblers. An easier way is to define
finite walls; this is done in the driver. Turning the angle of gravity
simulates the rotation of the tumbler. This makes the simulation
with finite walls easier, and since the speed of rotation is quite low,
the approximation is valid. For higher speeds, centrifugal forces
have to be considered or the walls moved (which is possible
within Mercury-DPM). Figure 1 shows an example of one of these
poly-dispersed simulations. In this simulation every particle is
of a different size, with a uniform volume distribution. The color
represents the size of the particles with red the smallest and blue
the largest. The ratio of the smallest to largest particle is ten to one
in this simulation. The image is taken after two revolutions of the
drum, and a strong segregation pattern can be observed with the
small particles located in the center of the drum.

Granular flow through a contraction
(D. Tunuguntla, A.R. Thornton, T. Weinhart,
O. Bokhove)
As a stepping-stone towards analyzing complex granular
flows in industry, we analyzed flow in an inclined channel
with a contraction. In order to simulate steady-state flow
through the contraction, the flow should be in steady state
when entering the contraction. Regular inflow conditions
such as the insertion of particles at the boundary or
through a hopper would require us to simulate a large
stretch of flow before the contraction to obtain steady flow
at the beginning of the contraction. In order to reduce the

computational costs to a minimum, a new special type of inflow
has been designed that produces steady uniform flow directly at
the contraction entrance. This is done using a small periodic box
in the inflow regions, the downstream wall of which both mirrors
and transmits the particles into the main chute. That is, each time
a particle moves through the downstream periodic wall, a copy
is created which ignores the periodic walls and thus flows into
the contraction. This inflow type was named maser, as it acts as
a material laser, creating a steady uniform inflow of particles.
Meaning that a small cheap steady-state periodic-box simulation
can be used to seed the much larger simulation through the
contraction. Details of this kind of inflow will be presented in a
later publication. An illustration of this inflow is shown in Figure
2, here the flow is visualized in VMD (visual molecular dynamics,
http://www.ks.uiuc.edu/Research/vmd/); Mercury-DPM contains
wrappers to view its output in this package.

Mercury-DPM contains an implementation of arbitrary convex
polyhedral walls. These walls have been carefully designed to
ensure that the collision with each face, edge, or corner of the
wall is treated correctly. The main difficulty here is to determine
the nearest face, edge or corner, and the normal direction of each
collision. In a particle-face collision, the normal always equals
the face normal; whereas, the normal of an edge-particle collision
depends on the position of the particle with respect to the edge;
finally, the collision with a corner is equivalent to colliding with an
infinite mass particle.
Figure 3 shows a simulation of the granular flow through a
contraction formed by two polyhedral walls. Once the particles
flowing down the channel enter the contraction, jumps/shocks

Fig. 1 - Poly-dispersed segregation in a rotating drum. Colour denotes particle size

Fig. 2 - Illustration of the Mercury inflow maser. Colours indicate particle speed, with
blue low and red high speed. Lines indicate the modified periodic boundaries.

Fig. 3 - 380,420 particles flowing through a contraction. Colours indicate particle speed.

51 - Newsletter EnginSoft Year 10 n°1 Software Update

in depth and velocity profiles are observed. The interaction of the
particles with the sidewalls of the contracting channel can be seen
in Figure 3, where the colour denotes the speed. The blue region
illustrates the jump in the velocity profile of the flow.

Granular jet impacting of an inclined plane
(R.H.A. Fransen, A.R. Thornton, S. Luding, T. Weinhart)
Here, we simulate a granular jet impacting an inclined plane
using Mercury-DPM. This problem was first investigated both
experimentally and via the continuum approach by Johnson and
Gray.

The novelties in the implementation are
the construction of inflow conditions
through a funnel and the modeling of
a rough surface. Finally, the depth-
averaged height and velocity are
extracted from the simulation using our
coarse-graining toolbox.

To obtain a jet of particles, a funnel is
created using fixed particles placed onto
a conical shape. Particles are inserted
into the top third of the funnel whenever
a free space is detected, see Figure 4 top left. The roughness of the
funnel wall is necessary to create a velocity profile that keeps the
developing jet from spreading.

To obtain the strong frictional effects observed in experiments, the
plane needs to be rough as well. Therefore, a disordered layer of
fixed particles is created. To prevent particles from falling through,
a planar wall is placed below the fixed particles. Using the frictional
rough walls allows us to observe similar profiles of the impact and
fast-flowing zones as in the experiments, see bottom left and right
in Figure 4.

Particles are removed from the simulation when they reach the end
of the plate. This leads to a low pressure at the outflow, which can
affect the flow on the plate. In Mercury-DPM the user can define
a removal condition. If this is set to be a few cm below the plate,

that is, when the particles are in a free flowing jet, off the end of
the plate, it has been shown not to have an affect on the main flow.

One of the major novel features of Mercury-DPM is its coarse-
graining toolbox, which constructs a continuous macroscopic field
from the discrete particle data. This toolbox can be both run as
either a post-processing step or live during the simulation. Careful
attention has been paid to the boundary areas, and this package is
even able to produce continuum fields within one particle diameter
of a boundary. Examples of the results of the course-graining
package for the jet problem are shown in Figure 5.

In order to obtain the height of the flow we assume that the density
of the flow is constant over height, and that the flow is steady and
uniform enough to have a lithostatic stress profile, see Figure 5.
Thus, the height can be defined using the depth-averaged stress
and density as plotted in Figure 5. Once the height is known, a
depth-averaged velocity and the Froude number can be defined.
A Froude number larger than unity denotes supercritical flow,
otherwise the flow is subcritical. This allows us to determine the
location of the shock (black line in right panel of Figure 3).

Screw feeder and conveyor
(D. Krijgsman)
The final feature of Mercury-DPM we will illustrate in detail is
the helical screw. This highlights the flexibility of the versatile
handlers, they are common in many industrial apparatuses. The
difficulty of these simulations lies in the interaction between the

screw and the particles. The approach that is used
in most similar particle simulation packages is to
triangulate the screw and do collision detection
between the particles and small segments of the
screw. The major disadvantage of this method is
that for accuracy the single screw element has to
be divided into a large number of triangles. All
possible combinations of these triangles with the
particles have to be checked for contacts, resulting
in high computational costs. To circumvent this,
in Mercury-DPM the screw is modeled as a single
parametric surface.

In Mercury-DPM the screw is treated as ‘just another
wall’ so all the user has to do is to create a screw
and pass this screw to the WallHandler. The code
automatically deals with the collision detection and

Fig. 4 - Top left shows the flow in the hopper, bottom left the impact region, middle schematic of the original
experiment, right the top view of the full particle simulation (~500k particles). Black particles indicate fixed
particles; all other colours indicate speed, with blue low and red high speed.

Fig. 5 - Course grained macroscopic fields created using Mercury-DPM’s coarse-graining toolbox. Left shows the height of
the flow in millimetres and right the local Froude number of the flow. The white lines indicate velocity streamlines; the black line
indicates the location of a hydraulic jump/shock.

Software Update

Fig. 7 - Snapshot of the screw feeder simulation coloured by particle velocity. The screw
pushes the particles out of the box into the tube. Colours indicate particle speed.

even rotation of the screw, if the user calls the move method. The
screw is defined by a length, a maximum radius, the total number
of twists, and a blade thickness. The mathematics of the definition
of the surface will be omitted here, but they can be found in the full
documentation of the code.

To check for collisions between a particle and the screw we have
to find the point on the screw with minimum distance to the
particle. This minimum is not analytically defined and Newton’s
method is used to quickly iterate to it. We then use this minimum
to check if the screw and particle are in contact. Again, full details
of this process can be found in the documentation of the code.
The important points are: this process is invisible to the user; it is
quicker than the triangulation method (if more than a hand full of
triangles are used); it is more accurate, even in the limit of a large
number of triangles; and, this method has no artificial numerical
constants i.e. the number of triangles used for approximation of
the actual screw.

Two standard industrial applications are used to illustrate the
screw: Figure 6 shows an example of a screw conveyor, in this
case, as the screw turns and particles are transported along its
length, i.e., from left to right. In industry, screw conveyors are often
used to transport particles to the next processing step. Figure 7
shows a screw feeder simulation, where the screw is positioned in
a box, with a circular tube attached at the front end. The purpose of
the feeder is to push the particles from the container into the tube
to possibly feed another machine. Industrial apparatus simulations
are able to provide detailed information on the flow inside the
machine, which are difficult to obtain from experiments. With this
detailed information one is able to investigate the optimization of
these processes.

Parallel Mercury-DPM
(A. te Voortwis)
As the number of particles in a system increases it becomes
unavoidable to solve the problem in a parallel manner. Therefore a
parallel version of Mercury-DPM is currently under development.
The implementation consists of a spatial domain decomposition
in which the simulation domain is split up into several smaller

domains, each of which is simulated in a separate process, such
that each process can be seen as a ‘standalone’ simulation.
This approach allows for the parallel implementation to be very
transparent; it is simply a layer between the driver-codes and the
kernel. The necessary communication (i.e. particles moving from
one domain to another) between the different domains is done
through the MPI protocol, and the communication overhead is
minimized by ensuring that, in general, domains only communicate
with their direct neighbors.

This approach ensures the proper scaling of the performance
with an increasing number of processors. The bottleneck in this
implementation would be the output of the result data, since this
traditionally requires the sending of all data to a single process
which writes the output. To overcome this issue, the HDF5 binary
file-format is used for the file output because the library of this file-
format allows each process to write its data in parallel, minimizing
the overhead. The combination of the flexible spatial domain
decomposition and the parallel file-output ensures that Mercury-
DPM scales very well from an average desktop PC up to large scale
parallel high performance computer systems. With the introduction
of the new HDF5 format, also the serial code has to undergo some
significant changes. For this reason, the launch of the parallel
version is due for the next major release of Mercury- DPM.

If you are interested in Mercury-DPM?
Hopefully, by now you are interested in trying out Mercury-DPM
for yourself. If you would like more information about the code, it
can be found on the Mercury-DPM website http://www2.msm.ctw.
utwente.nl/MercuryDPM. Alternatively, you can obtain updates and
information about the code by joining the mailing list. To do so,
simply send an e-mail to listserv@lists.utwente.nl with subject:
subscribe and Body: MERCURY-USER <your full name>. This
is a low volume mailing list and typically you will receive no more
than one e-mail a month. The code itself is available for a public
svn repository and details of how to obtain and install it can also be
found on the website.

Mercury-DPM was originally started as a research code at the
University of Twente, to meet a local need for a tool that was not
available in existing simulation codes. Since then it has grown
and gained a few tens of external users, until now purely by word

Newsletter EnginSoft Year 10 n°1 - 52

Fig. 6 - Snapshot of the screw conveyor simulation coloured by particle velocity. This
transports the particles trough the tube. Colours indicate particle speed.

Software Update

of mouth. Therefore, we have decided to make an official public
release of the code, which will coincide with the publication of
this article.

The Mercury-DPM release philosophy and
guarantees to users
Mercury-DPM is an actively developed open-source scientific
research tool, which works on a kernel and driver pattern. Some
of the authors have used these types of packages before and have
often run into the problem to spend time developing the driver,
and then a new version of the kernel comes out and nothing works
anymore. Then you have to spend time rewriting your driver to get
back to a square one.
We are already quite happy with our interfaces in Mercury-DPM
and expect them to change very little in the future. However, we
will also give the following two guarantees. Any driver code written
for version 1.x will work in each version 1 and 2 kernels. New
interfaces and modifications to interfaces will initially be introduced
in parallel to the old interfaces. The use of an old interface will
throw a warning to the users that the interface is to be withdrawn
in the next major kernel update and will explain how to convert to
the new improved interface. Secondly, there will not be more than
one major kernel update per year. This means that any driver code
written in the current version of the kernel is guaranteed to work in
all new versions for the next two years, at least. Moreover, if after
every major kernel update, i.e. once a year, you spend a little time
responding to the warning your code generates, it will always work
in the future version of the Mercury-DPM kernel.

Mercury-DPM is still actively developed, and we have many grand
plans for future features and extensions. These include added
smooth particle hydrodynamics, direct coupling with continuum
solvers, a graphics interface to aid ease of use, etc. Finally, if
Mercury-DPM does not have a certain feature you need, we are
always open to collaborate and to add such a feature. Actually,
some of our current features arose in exactly this fashion; for
example, the helical rotating screw wall.

Code development acknowledgement
Mercury-DPM was started by Anthony Thornton and Thomas
Weinhart, and is currently actively developed by Thomas Weinhart,
Anthony Thornton and Dinant Krijgsman, with input from Stefan
Luding and Onno Bokhove. Stefan Luding provided a complete
working particle simulation code with a state-of-the-art set of
contact models that has been used as both a validation tool and as a
reference guide for various features of Mercury-DPM. Additionally
he has provided a great amount of theoretical and technical support
in the area of (advanced) contact laws for granular materials and
coarse graining. Rudi Fransen developed the current support for
visualizing the output of the code using VMD. Ate te Voortwis is
currently working on the parallel distribution of Mercury-DEM.

Financial Support
The development of Mercury-DPM has benefited from financial
support provided by grants primarily obtained by Stefan Luding
and Onno Bokhove. A full list of the grants that have (in part)
supported the development is:

(1) the late Institute of Mechanics, Processes and Control, Twente
(IMPACT) as part of the research program “Superdispersed
multiphase flows”;

(2) STW project 11039.
(3) NWO VICI grant 10828;
(4) DFG project SPP1482 B12;
(5) FOM project 07PGM27
(6) STW MuST project 10120.

We would like to thank all parties for the essential financial support
they have provided to this project.

Anthony Thornton, Dinant Krijgsman, Rudi Fransen, Sebastian Gonzalez,
Deepak Tunuguntla, Ate te Voortwis, Stefan Luding, Onno Bokhove,

Thomas Weinhart

LA DEFORMAZIONE
PLASTICA DELL’ACCIAIO:
I PRODOTTI LUNGHI
EnginSoft ospiterà a Bergamo il 13 Marzo p.v., presso il proprio
Competence Center all’interno del Kilometro Rosso, una tappa
del Corso Itinerante organizzato da AIM – Associazione Italiana
di Metallurgia, a tema: “La deformazione plastica dell’acciaio: i
prodotti Lunghi”.
L’iniziativa tecnico-formativa dell’Associazione si articolerà in 6
appuntamenti a partire dal 6 Marzo p.v. ed è strutturata in una
parte teorica, sui principi metallurgici di deformazione plastica
dell’acciaio, e una pratica che contempla processi e macchinari.
Il ruolo degli ingegneri di EnginSoft, specialisti in simulazione
virtuale, sarà fondamentale nell’illustrare ai corsisti avanzate
soluzioni tecnologiche CAE dedicate alla laminazione dell’acciaio.
Marcello Gabrielli e Andrea Pallara, in veste di tutor,
presenteranno, con il supporto di AFV Beltrame, con casi
concreti, l’approccio al problema di laminazione attraverso la
simulazione di questo processo metallurgico al fine di affinare
la progettazione dei manufatti così ottenuti ottimizzandone il
disegno e il relativo ciclo di produzione.

Per informazioni: Segreteria AIM
Tel.02.76021132; e-mail: info.aim@aimnet.it

53 - Newsletter EnginSoft Year 10 n°1

