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Prediction of polydisperse hard-sphere mixture
behavior using tridisperse systems†

Vitaliy Ogarko* and Stefan Luding
How many state-variables are needed to predict the equation of

state and the jamming density of polydisperse mixtures in glassy,

non-equilibrium compressed states? We propose to define equiva-

lent andmaximally equivalent systems as those thatmatch three and

five moments of a given polydisperse size distribution, respectively.

Fluids can be represented well by an equivalent system with only

s ¼ 2 components (bidisperse). As little as s ¼ 3 components (tridis-

perse) are enough to achieve a maximally equivalent system. Those

match macroscopic properties in glassy states, but also the volume

fraction of rattlers, suggesting strong microstructural equivalency

too. For many soft and granular systems, tridisperse, maximally

equivalent systems allow for a closed analytical treatment and well-

controlled industrial applications, while our proposal waits for

experimental validation.
The hard-sphere model is one of the simplest representations of
so condensed matter systems where strong repulsions domi-
nate the weak, or negligible attractive forces. It can be applied
with some success for studying disorder–order transitions, the
glass transition, colloids, granular materials, amorphous
metals, and phase transitions or nucleation in simple gases and
liquids.1–4 Despite its simplicity, more complicated (so) inter-
actions of spheres can be approximated with the hard-sphere
model.5

Inmany experimental or industrially relevant circumstances,
the particular components (spheres) of a system are not uniform
in size but rather display some distribution of sizes or “poly-
dispersity”.6 Interesting phenomena arise in the presence of a
wide polydispersity,7 but due to the wide size distribution across
many scales, it is difficult to provide simple accurate statistical
models8,9 for such systems. In many uid-based theories, for
example, Percus–Yevick integral equation theory,10,11 scaled-
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particle theory,12 Boubĺık, Mansoori, Carnahan, Starling, and
Leland (BMCSL) equation of state (EOS),13,14 Rosenfeld’s funda-
mental measure theory,15 A. Santos’ approaches,16–18 and
others,19–21 it is assumed that the dependence of the polydisperse
pressure of N hard spheres on the 2N � 1 degrees of freedom
(volume fraction plus N � 1 size ratios and N � 1 independent
mole fractions) can be encapsulated into the dependence of only
three parameters, i.e., the volume fraction and the second and
third scaled moments (divided by the rst moment, with the
appropriate power). In this case, the equivalent mapping poly-
disperse-to-bidisperse is sufficient, because matching the rst
three moments of any radii distribution requires only two
differently sized components. At the same time, the two-species
kinetic theory is particularly simple, since two coupled equations
for each species can be written down explicitly, whereas the
multi-species theory is much less convenient.

A bidisperse equivalentmapping, while being very useful over
a wide range of uid volume fractions, nf( 0.56, has limitations
for extremely large densities in glassy, metastable states near the
jamming transition. Equivalent bidisperse systems show
(partial) crystallization for densities around nf already and, in
general, do not perform well for n > nf, due to the overwhelming
presence of one species.22 The open question is whether another
mapping polydisperse-to-nite-number of components works,
starting from as little as a three-component mixture.

We consider s-component mixtures of Ni hard spheres of
radius ai enclosed in a volume V, with i¼ 1,., s. In the case of a
polydisperse size distribution, s¼ N and each sampled ai can be
different from the others. The composition of such mixtures is
quantied by the radii ai and the partial volume fractions, ni ¼
(4/3)pNiai

3/V, i.e., one has 2s degrees of freedom (dof). The total

volume fraction n ¼
Xs

1
ni and the arbitrary unit of length leave

2s � 2 independent dof. We dene equivalent systems as those
that have the same rst two scaled moments, k ¼ 2,3, withMk ¼
haki/haik, with moments, haki ¼ Ð

akf (a)da, of their normalized
size distribution functions f (a). Furthermore, maximally equiv-
alent systems are those that have the same rst four scaled
This journal is ª The Royal Society of Chemistry 2013



Fig. 1 Estimated jamming density, fest
J , plotted against volume fraction, n, (a,

top) for systems with N ¼ 4096 and uniform size distribution (dark curves – dark
green, dark orange-red, dark magenta, etc.) and their tridisperse maximal
equivalents with the same N (light curves – green, orange-red, magenta, etc.), and
(b, bottom) for the system with uniform size distribution with u ¼ 3 (dark blue)
and some tridisperse equivalents with different b2. Given in the inset of (a) are the
size ratios u corresponding to curves with increasing fest

J . The values of b2 in (b)
are marked with arrows (for b2 ¼ 1.8 both tri- and polydisperse data are practi-
cally overlapping). In the inset of (b) the maximal reached volume fraction is
plotted against the kurtosis b2, where the error bars indicate the standard devi-
ation of three different runs with random initial particle positions and velocities.
The fluid theory (BMCSL EOS) is plotted as a dot-dashed line.
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moments, k ¼ 2–5, of their size distribution functions. Without
loss of generality, it can be more convenient,†20 to use central
moments mk ¼ h(a � hai)ki.

The larger the s, the more moments of the size distribution
can be adjusted, and due to more efficient packing it is possible
to reach considerably higher jamming densities as compared to
mono- or bidisperse cases. Perfectly space-lling (e.g., Apollo-
nian) packings are beyond the reach of tridisperse packings,23

as well as innitely slow routes to equilibrium states,‡ due to
nite simulation times.

We perform event-driven molecular dynamics simulations
using systems of hard spheres with periodic boundary condi-
tions. Starting from zero volume fraction we compress the
system towards a jammed state using a modication of the
Lubachevsky–Stillinger algorithm,25,26 which allows the diam-
eter of the particles to grow linearly in time with a dimension-
less rate G,§ while the kinetic energy, E, is kept constant using a
re-scaling thermostat procedure.22 An alternative growth
method would decrease G with increasing density,27 however,
the used compaction process is well-dened nevertheless, and
the resultant (non-equilibrium) states too – as conrmed by
some different initial congurations – albeit subject to statis-
tical uctuation and ensemble averaging for small nite
systems. The growth rate used in most simulations is slow, G ¼
16 � 10�6, if not explicitly stated otherwise. A few runs with ten
times smaller G are consistent. The compressibility factor Z h
pV/NkBT (dimensionless combination of pressure p and kinetic
temperature kBT ¼ 2E/3N) is calculated from the total
exchanged momentum in all interparticle collisions during a
short time period. The following types of particle size distri-
butions are used: (i) uniform size (rectangular); (ii) uniform
volume, i.e., the probability distribution of the volume of the
particles is constant; (iii) tridisperse systems, equivalent to the
aforementioned polydisperse systems. The considered poly-
disperse distributions are characterized by their width, i.e., the
ratio u between the maximum and the minimum particle
radius. (For details see the ESI,† where the log-normal distri-
bution is also discussed.)

Our simulations conrm that in the uid regime, i.e., at
volume fractions n < 0.54, the agreement in the compressibility
factor Z between all considered systems and the BMCSL equa-
tion of state is better than 1% (data not shown).22 When the
density is further increased, the compressibility factor deviates
from the uid theory prediction that involves a maximum
volume fraction of unity due to the density expansion involved,
while the maximum solid volume fraction has to be lower due to
the excluded volume. Z increases very rapidly at densities higher
than the freezing point, so that we instead plot the estimated
jamming density fest

J (n) ¼ n/[1 � 3/Z(n)],22 since it is limited, i.e.,
fest
J (n) ¼ n for Z(n) / N. Fig. 1(a) shows fest

J as a function of
volume fraction for a few systems with uniform size distribution
(dark curves, e.g., blue) and their tridisperse, maximally equiv-
alent counterparts (light curves, e.g., cyan), i.e., with matched
rst four scaled moments. While for small size ratios, u < 1.2,
ordering/crystallization is expected,†22 for 1.2 # u # 3 the
estimated jamming density of the considered polydisperse
systems and their respective tridisperse counterparts is in
This journal is ª The Royal Society of Chemistry 2013
perfect agreement and still within 1% for the widest studied size
distributions of width u ¼ 100. We measured crystallinity{ and
found that maximally equivalent tridisperse systems do not
show signs of crystallization for u $ 1.4 (data are shown in the
ESI†), while equivalent bidisperse systems partially crystallize
for u T 5, since then, the small particles t into interstices and
thus do not hinder crystallization of the large particles.22 We
also conrmed that systems with uniform volume distribution
and their tridisperse maximal equivalents have close equations
of state in the range 1.2 # u # 10 (data not shown).

In Fig. 1(b) fest
J is plotted as a function of volume fraction for

the uniformly polydisperse system with u¼ 3 (top curve) and its
tridisperse equivalents. We x the scaled moments k ¼ 2, 3, 5k
and vary the k ¼ 4-moment, i.e., the kurtosis b2 ¼ m4/m2

2, which
describes both tailedness and peakedness of the size distribu-
tion function.30 At high volume fractions, n $ nf, for glassy,
Soft Matter, 2013, 9, 9530–9534 | 9531
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metastable states, the higher-order moments, e.g., the kurtosis,
play an important role. Even though the agreement is good for
all equivalent systems with different b2, it is close to perfect for
the maximally equivalent system (with b2 ¼ 1.8), in both uid
and glassy regimes, including almost identical jamming
densities.** In the inset of Fig. 1(b), the maximal reached
volume fraction is plotted against the kurtosis b2 (in general, b2
$ 1). The observed non-linear behavior can be explained by the
vanishing presence of one species: for values of b2 close to unity
the system becomes nearly bidisperse due to vanishing
concentration of the medium species, and for values of b2 close
to 12 the radius of the smallest species approaches zero (and
becomes negative for b2 > 12, so no physical solutions exist for
this type of size distribution). Similar non-linear behavior of the
jamming density was predicted and observed in ref. 32.

A small mismatch in jamming densities (such as with Z >
1013) can be seen in Fig. 2(a), in the range u T 5, where
Fig. 2 (a, top) Jamming density plotted against u for systems with uniform size
(US, N ¼ 4096) and uniform volume (UV, N ¼ 8192) distributions and for their
tridisperse maximal equivalents (TUS and TUV, respectively). Solid lines are fits
from ref. 22 with parameters f ¼ 0.647, nNus ¼ 0.679 and nNuv ¼ 0.86. (b, bottom)
Volume fraction vr of rattlers plotted against u for systems considered in (a). The
solid line is the same fitting function as in (a) for the US data, but with different
parameters f ¼ 0.014 and nNr ¼ 0.052. The error bars indicate the standard
deviation of three different runs with random initial particle positions and
velocities. The kurtosis of the US/TUS systems is plotted in the inset with rattlers
(b2 ¼ 1.8, dashed line) and with rattlers excluded (symbols).
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uniformly polydisperse systems jam at an about 0.5% higher
density than their tridisperse maximal equivalents. We explain
this deviation by linking the macro-scale jamming density with
a micro-scale system property like “rattlers”, i.e., particles that
are free to oat in the cage made by their jammed neighbors.
Due to particle growth (or, equivalently, compression of the
system), the velocity of all particles increases at each collision.†
Therefore, in denser situations, the velocity of the rattlers,
which collide much less frequently, vanishes compared to the
velocity of the jammed particles, due to the thermostat that
simply rescales all velocities by the same factor.†† The simplest
way to identify rattlers is to look at their speed, which is close to
zero, whereas the scaled speed of jammed particles is close to
unity. The rattler criterion is chosen as vr # 10�4 and we
conrmed that changing the above criterion in the range 10�3#

vr # 10�6 does not affect the results.
Fig. 2(b) shows the volume fraction of rattlers nr for many

different size ratios, for the uniform size and uniform volume
distributions and for their tridisperse maximal equivalents.
Surprisingly, for u $ 1.2, nr is very similar for poly- and the
respective tridisperse systems. This shows that the maximal
equivalent systems also have a very similar microstructure in
that respect. (We also found that the poly- and the respective
tridisperse structure factors have very similar low-wavenumber
behavior).† Moreover, nr correlates with the jamming density in
Fig. 2(a), i.e., larger nmax correlates with larger nr. Interestingly, nr
for the US/TUS systems is described by the same functional
form as the jamming density in Fig. 2(a). Note that when rattlers
are excluded, the size distributions are not equivalent anymore,
as quantied by the kurtosis in the inset of Fig. 2(b). The
kurtosis considering non-rattlers only deviates from b2 ¼ 1.8 for
both systems already for u > 2. The tridisperse and polydisperse
data develop differently from each other at u T 4, and reach
plateaus for u $ 10. In the TUS system, number fractions ni
change from their original values (with rattlers) 5 : 8 : 5 to
0 : 5 : 5, i.e., all small particles and about 40% of the medium
particles become rattlers. The strong decrease of b2 for the tri-
disperse systems (in contrast to a small increase for the poly-
disperse systems) explains the small but systematic differences
between their nmax-values for u T 4. The non-rattlers form the
jammed system33 and their size distribution (and moments) are
relevant for the jamming density. In other words, tridisperse
systems are equivalent to polydisperse systems if the size
distribution moments of the fraction of non-rattlers are
matched. A priori this was impossible, but observations that (i)
the volume fractions of rattlers are almost identical and (ii) nr
has the same functional form as the jamming density (for the
US/TUS systems at least) provide a rst step towards truly
maximally equivalent tridisperse systems.

In conclusion, starting from different polydisperse systems,
we dened equivalent and maximally equivalent hard sphere
systems on the basis of identical rst two and four scaled
moments of their size distribution functions, respectively. By
means of event-driven molecular dynamics simulations we
conrmed that equivalent (bidisperse) systems match and
predict the behavior of the polydisperse system in the uid
regime. Interestingly, maximally equivalent tridisperse systems
This journal is ª The Royal Society of Chemistry 2013
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match/predict polydisperse ones for much higher densities – in
non-equilibrium, glassy states. Tridisperse systems do not suffer
from partial crystallization, as observed for large size ratios in
equivalent bidisperse systems,22 and even allow prediction of the
maximal jamming density within about 0.5% accuracy.

We identied the rattlers in glassy systems as the reason for
this small but signicant discrepancy. The size distributions of
poly- and (maximally equivalent) tri-disperse systems with
rattlers excluded are considerably different from the original
one and from each other, as quantied by the kurtosis. The
maximally equivalent tridisperse systems have almost the same
volume fraction of rattlers as the polydisperse ones they mimic,
which indicates a very strong similarity in the microstructures,
with respect to caging, percolation, and volume fraction of non-
rattlers. Thus, truly maximally equivalent systems are those with
four identical scaled moments of the non-rattlers.

Important consequences of our research are: (i) a tridisperse
theory is still analytically treatable (like for bidisperse systems,
without further assumptions), whereas an arbitrary poly-
dispersity would require arbitrarily many species and coupled
equations; (ii) other transport coefficients (like heat-conduc-
tivity, viscosity etc.) can be computed analytically in the frame-
work of a tridisperse theory (which goes beyond the scope of
this study) and it should be checked if the 4-moments equiva-
lency postulate holds for them too; (iii) experimentally, three
species are much easier to control and (according to our
prediction) should resemble multi-disperse systems; (iv) the
multi-scale nature of wide polydispersities (continuous from
very small to very large sizes) could be replaced by a discrete
(three-scales only) picture (model system) that covers a narrower
range of particle sizes – thus representing a working multi-scale
theory with enormous reduction of complexity.

In future studies, the effect of the growth rate and especially
the limit G / 0 should be studied further and a comparison
with experiments should be carried out with the goal to validate
the present theoretical predictions and establish their relevance
in the presence of more realistic contact interactions like
friction.
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Notes and references

‡ Thermodynamically, the polydisperse system fractionates in phases separated
according to the particle size, but this eutectic freezing-transition is kinetically
suppressed and practically unreachable.24

§ The growth rate is dened as , with the largest particle

radius, amax, and total system mass, M.

{ Particles in a crystalline environment were identied using a method based on
spherical harmonics given in ref. 28; the bond network was determined using a
weighted Delaunay tessellation,29 effectively taking into account the strongly
different radii of the particles.

k m5 h 0 for the uniform size distribution.

G ¼ dai
dt

amax

ai

ffiffiffiffiffiffiffiffi
3M

2E

r
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** The importance of the fourth and hmoments is also supported by estimates
for the contact number density of static, so granular packings, see ref. 31 and
references therein.

†† With this thermostat, the jammed network of non-rattlers equilibrates itself,
while the rattlers are articially “cooled” down. Alternative thermostats would
“heat” rattlers without changing the system behavior since those would still
collide much less than the jammed non-rattlers due to their larger mean free path.
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