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How does the force-chain-network in a random granular material react to hydrostatic compres-
sion? We show that not only contacts, but also their opening and closing as well as interparticle
gaps, i.e. virtual contacts, must be included for a comprehensive description of the system response
involving the probability distribution functions (PDFs) of the extended force network. Considering
overlaps/forces as stochastic variables, their conditional probability distributions (CPDs) are (nu-
merically) determined and allow to formulate a Master equation for the PDFs. The insight one gets
from the CPDs is striking: The mean change of contacts reflects non-affinity, while their fluctuations
obey uncorrelated Gaussian statistics. In contrast, virtual contacts are mostly affine to isotropic
(de)compression in average, but show multi-scale correlations with considerable probability of large
“jumps” according to a stable distribution (cf. Lévy distribution), that allows for a generalized cen-
tral limit theorem. Noting that all changes of the network during compression are similarly scaled
by the distance from the jamming density, the evolution of the system is fully described by the
Master equation.

PACS numbers: 45.70.Cc,46.65.+g,61.43.-j

The statistical physics of soft matter, due to disorder,
glassy dynamics, dissipation, etc. poses many difficulties
for research and has wide practical applications. As one
example, jammed granular assemblies are inherently out
of equilibrium due to the dissipation of energy and the ab-
sence of temperature [1]. Despite their non-equilibrium
nature, static properties of them around the rigidity tran-
sition density φJ have been widely investigated as well
as their relation to critical phenomena [2–5]. It is chal-
lenging to explain these observations on static granular
packings by statistical mechanics, e.g. based on the Ed-
wards ensemble [6] or force ensemble [7, 8], where all
configurations of particles are equally probable under a
constant volume or force and torque balances of parti-
cles, respectively. Further studies [9, 10] and comparison
[11] of these ideas lead us to the exploration into the
statistical weight, i.e. the probability distribution func-
tions (PDFs), of forces. Many theoretical investigations
[12–14] have been devoted to determine the functional
forms of the PDFs obtained through experiments [15–17]
and numerical simulations [18–20]. There is, however,
still much debate about the tails of the PDFs [21] and
how the closing/opening of contacts affects the PDFs at
small forces [22–24]. In addition, we lack a more general
description of the PDFs from the point of view of prob-
ability theory involving stochastic processes, the central
limit theorem, and so on.

In this Letter, we take a different approach from the
previous works based on the mechanical equilibrium of
static packings. We regard overlaps between particles as
stochastic variables and measure their conditional proba-
bility distributions (CPDs) by molecular dynamics (MD)
simulations under isotropic (de)compression. The CPDs
show striking features of not only contacts, but also clos-
ing/opening of contacts as well as interparticle gaps, i.e.

virtual contacts. We introduce the Master equation for
the PDFs of overlaps, where good agreement between its
solutions and the PDFs obtained through MD simula-
tions is established, as long as the increment of the area
fraction δφ is much smaller than the distance from the
jamming point φ − φJ . Interestingly, the solutions are
independent of history (the Markov property) and re-
versible if an effective increment γ = δφ/(φ− φJ), which
governs the amplitude of non-affine response, is small
enough. Our stochastic approach opens the door to a
new physical description of static granular packings.

We use MD simulations of two-dimensional frictionless
granular particles. The normal force between particles in
contact is given by f = kx − ηẋ (x > 0) with a spring
constant k, viscosity coefficient η, overlap x and relative
speed ẋ in normal direction. A global damping force
fd = −ηv, proportional to the particle’s velocity v, is
also introduced to enhance the relaxation. We prepare
static packings of the particles by a method similar to the
one used in Ref. [25]. At first, we randomly distribute a
50 : 50 binary mixture of N particles with different radii,
R and ρR (ρ = 1.4), and the same masses m in a square
periodic box, where each pair of particles is not in con-
tact. Then, we adjust the size of the particles by rescaling
each radius as R(t+ δt) = [1+ {x̄−xm(t)}/l]R(t) until a
target mean overlap x̄ is obtained, where t, δt, and xm(t)
are time, an increment of time, and the mean overlap over
all particles at time t, respectively, and the initial radius
R(0) corresponds to R or ρR. Here, we keep the mass
constant and use a long length scale l = 102R to grow
the particles gently [26]. The particles lose their kinetic
energies by means of inelastic contacts and global damp-
ing. We stop rescaling each radius when the accelerations
of all particles drops below a small threshold 10−6kR/m
and assume that the system is static [25]. We prepare 10
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samples for smaller systems (N = 512, 2048, 8192) and 2
samples for the largest system (N = 32768) by chang-
ing the initial random configuration of particles. How-
ever, we only report the results of N = 8192 and note
that all results do not depend on the system size. In
our simulations, the jamming point φJ obeys the scaling
x̄(φ) = A(φ − φJ)

α [4], where we find α = 1.0 ± 0.002,
φJ = 0.8458± 0.0001, and A = (0.9± 0.003)Rm with the
mean radius Rm. Thus, the mean overlap is equivalent to
the distance from the jamming point x̄(φ) ≃ A(φ− φJ).

We apply isotropic compression to each packing by
rescaling every radius by

√

1 + δφ/φ so that the area
fraction changes from φ to φ + δφ. If an affine response
of the packing is assumed [27], an overlap or interparti-
cle gap x(φ), defined as the difference between the sum
of the radii and the interparticle distance d, changes to
xaffine(φ+δφ) = x(φ)+(d/2φ)δφ [28]. However, the parti-
cles are randomly arranged and the force balance of each
particle is broken by compression. Thus, the system re-
laxes to a new static state and the overlap or gap changes
to a new value x(φ+δφ) 6= xaffine(φ+δφ) after relaxation,
i.e. due to the non-affine response of overlaps. We intro-
duce the Delaunay triangulation (DT) of static packings
as sketched in Fig. 1, where the particles in contact are
connected by red solid lines and the nearest neighbors
without contact, i.e. a virtual contact, are connected by
blue dashed lines. Since the DT is unique for each pack-
ing, virtual contacts are uniquely determined and the
total number of contacts and virtual contacts are finite.
Figures 1(a) and (b) show the DTs before compression
and after compression and relaxation, respectively, where
the overlaps between virtual contacts are defined as nega-
tive values and all kinds of transitions of overlaps are dis-
played. The overlaps x12(φ) > 0 and x13(φ) < 0 change
to x12(φ + δφ) > 0 and x13(φ + δφ) < 0, respectively;
they do not change their signs and thus contacts are nei-
ther generated nor broken. We name these transitions
contact-to-contact (CC) and virtual -to-virtual (VV), re-
spectively. On the other hand, x14(φ) < 0 and x15(φ) > 0
change to x14(φ + δφ) > 0 and x15(φ + δφ) < 0, respec-
tively; a new contact is generated and an existing contact
is broken, respectively. We name these cases virtual -to-
contact (VC) and contact-to-virtual (CV), respectively
[29].
To characterize all transitions of overlaps, we plot them

on scatter plots as shown in Figs. 2(i) and (ii), where ξ ≡
x(φ)/x̄(φ) and ψ ≡ x(φ + δφ)/x̄(φ) are scaled overlaps
before compression and after relaxation, respectively. We
also plot the affine response,

ψaffine ≡ xaffine(φ+ δφ)/x̄(φ) = ξ +Baffineγ , (1)

with the effective increment γ = δφ/(φ − φJ) [30] and a
coefficient Baffine = d/2φA, where ψaffine is proportional
to ξ with an offset linearly dependent on γ. In these
figures, the blue and red dots represent (ξ, ψaffine) and
(ξ, ψ), respectively. Though the overlaps after relaxation
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FIG. 1. (Color online) The DTs of static packings (a) before
compression (area fraction φ) and (b) after compression (area
fraction φ+δφ), where the red solid and blue dashed lines rep-
resent contacts and virtual contacts, respectively. The open
and filled circles are granular particles of which centers are
placed on the Delaunay vertices.

are not affine, the deviation of ψ from ψaffine is quite small
if the increment δφ is small and the system is far from
the jamming point, i.e. for γ ≪ 1 (Fig. 2(i)). However,
if we increase δφ or decrease φ − φJ , ψ deviates visibly
from the deterministic prediction ψaffine and data points
are more dispersed (Fig. 2(ii)). Figure 2(iii) is a sketch
of the differences between affine and non-affine responses,
where the mean values in (CC) ξ,ψ > 0 and (VV) ξ,ψ < 0
are described by linear fitting functions for ψ

(CC) ψ̄1(ξ) = (a1 + 1)ξ + b1 , (2)

(VV) ψ̄2(ξ) = (a2 + 1)ξ + b2 , (3)

respectively. The systematic deviation from ψaffine is rep-
resented by the differences in slopes (a1 and a2) and the
offsets (b1 and b2). We also introduce standard devia-
tions of ψ from ψ̄1(ξ) and ψ̄2(ξ) as v1 and v2, respec-
tively, which are almost independent of the initial values
ξ. Figure 2(iv) displays a double logarithmic plot of a1
against γ, where all data collapse onto a1 ≃ A1γ with
A1 = 0.76 ± 0.002. We also find a2 ≃ 0, b1 ≃ B1γ, b2 ≃
B2γ, v1 ≃ V1γ, and v2 ≃ V2γ with B1 = 0.24 ± 0.002,
B2 = 1.40±0.001, V1 = 0.32±0.01, and V2 = 4.41±0.06,
respectively, within the fitting range 10−6 ≤ γ ≤ 1. Sur-
prisingly, all parameters characterizing not only the mean
values, but also the fluctuations are linearly scaled by γ
[31]. Because B2 is comparable to the mean of Baffine

(≃ 1.3), virtual contacts behave affine in average except
for their huge fluctuations around the mean value. In
contrast, B1 is always smaller than Baffine and ψ̄1(ξ) in-
tersects ψaffine at ξ∗ = (Baffine − B1)/A1 ≃ 1.4 indepen-
dent of γ. This leads to small responses (ψ < ψaffine)
of small overlaps (0 < ξ . ξ∗), which implies preferred
tangential and hindered normal displacements as a sign
of non-affine deformations [25, 32]. The scattered data
in (VC) and (CV) are concentrated in the narrow regions
(the inside of the dashed lines in Fig. 2(iii)), while ψaffine

linearly increases with ξ in (VC) and there is no data in
(CV).
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FIG. 2. (Color online) (i) and (ii): Scatter plots of overlaps,
where the blue and red dots are (ξ, ψaffine) and (ξ, ψ), respec-
tively. Here, δφ = 4 × 10−5 and φ − φJ = (i) 4 × 10−3 and
(ii) 1.2 × 10−4, with γ = (i) 0.01 and (ii) 0.33, respectively.
(iii): A sketch of deviations from an affine response, where
the blue and red solid lines represent ψaffine (for small and
large particles) and ψ̄1(ξ) or ψ̄2(ξ), respectively. (iv): Double
logarithmic plot of a1 against γ, where the different symbols
represent φ− φJ and we change δφ from 10−6 to 10−2.

Regarding the overlaps ξ and ψ as two stochastic vari-
ables, we introduce a conditional probability distribution
(CPD) of the overlaps, W (ψ|ξ), as

Pφ+δφ(ψ) =

∫ ∞

−∞

W (ψ|ξ)Pφ(ξ)dξ , (4)

satisfying a normalization condition
∫∞

−∞
W (ψ|ξ)dψ = 1

[33], where Pφ(ξ) and Pφ+δφ(ψ) are the PDFs of overlaps
before and after compression, respectively; W (ψ|ξ) gives
a probability distribution of ψ, which was ξ before com-
pression, and can be defined in (CC), (VV), (VC) and
(CV). Figure 3(a) shows the CPDs in (CC), where all re-
sults with a wide range of γ collapse if we scaleWCC(ψ|ξ)
and ψ − ψ̄1(ξ) by γ and 1/γ, respectively. The solid line
is a Gaussian distribution function

γWCC(ψ|ξ) =
1

√

2πV 2
1

e−Θ
2/2V 2

1 (5)

with Θ ≡ (ψ − ψ̄1(ξ))/γ. Figure 3(b) displays the CPDs
in (VV), where all results collapse as well, after the same
scaling as for (CC). The solid line is here the stable dis-
tribution function [34]

γWV V (ψ|ξ) =
1

2π

∫ ∞

−∞

e−(κ|V2z|
λ
+iΩz)dz , (6)

with Ω ≡ (ψ−ψ̄2(ξ))/γ and a dimensionless wave number
z, where the fitting parameters are given by λ = 1.65 and
κ = 0.62, i.e. the CPDs in (VV) are nearly Holtsmark
distributions (λ = 3/2). Figures 3(c) and (d) show the
CPDs in (VC) and (CV) approximated by

γWV C(ψ|ξ) =
e−Λ/q1

q1

(

1−
∫ 0

−∞

WV V (ψ|ξ)dψ
)

, (7)

γWCV (ψ|ξ) =
eΛ/q2

q2

(

1− 1

2
erfc

[

− ψ̄1(ξ)√
2v1

])

, (8)

with Λ ≡ ψ/γ and dimensionless length scales, q1 = 0.65
and q2 = 6.10, respectively. The terms in parentheses on
the right hand sides are required to satisfy the normal-
ization conditions [35] and well describe the dependence
on ξ (data are not shown). Note that the CPDs in (CC)
and (VV) (Eqs. (5) and (6)) converge to a delta-function
δ(ξ − ψ) and those in (VC) and (CV) (Eqs. (7) and (8))
vanish in the limit of γ → 0 [36].

Now, we restrict δφ to quite small values compared
to φ− φJ and define an infinitesimal effective increment
δγ ≡ δφ/(φ − φJ) ≪ 1. Introducing a transition rate as
T (ψ|ξ) = W (ψ|ξ)/δγ, we rewrite Eq. (4) as the Master
equation [33],

∂

∂γ
Pφ(ψ) =

∫ ∞

−∞

[T (ψ|ξ)Pφ(ξ)− T (ξ|ψ)Pφ(ψ)] dξ . (9)

Figures 4(a) and (b) display the numerical solutions of
the Master equation under compression, where the CPDs
are given by Eqs. (5)-(8). The increment of the area
fraction is fixed to δφ = 10−5 so that δγ ≤ 2.5 × 10−3

throughout the numerical integrations. Here, the initial
condition is given by the PDF obtained through the MD
simulations at φ0 − φJ = 4× 10−3 with the area fraction
before compression φ0. The overlaps are scaled by the
mean overlap at the initial state x̄(φ0). Good agreement
between the solutions (the red solid lines) and the PDFs
from simulations (the open symbols) is established for
small δγ and thus we can confirm the Markov property
of overlaps. Exchanging ψ for ξ, we can obtain the CPDs
for decompression from φ+ δφ to φ. The CPDs in (CC)
and (VV) are given by replacing the linear fitting func-
tions, ψ̄1(ξ) and ψ̄2(ξ), with ξ̄1(ψ) = (ψ−b1)/(a1+1) and
ξ̄2(ψ) = (ψ− b2)/(a2+1), respectively, and the standard
deviations, v1 and v2, with v1/(a1 + 1) and v2/(a2 + 1),
respectively. The CPDs for decompression in (VC) and
(CV) are given by those for compression in (CV) and
(VC), respectively. Figures 4(c) and (d) show the numeri-
cal solutions of the Master equation under decompression
with δφ = 10−5 so that δγ ≤ 2.5 × 10−3, where the ini-
tial condition is given by the PDF at φ1−φJ = 4× 10−2

with the area fraction before decompression φ1. From
these results, we can confirm the reversibility in the sense
that the Master equation well describes the PDFs in both
directions for small δγ (even though the initial state be-
fore compression and the final state after decompression



4

10-3

10-2

10-1

100

-3 -2 -1  0  1  2  3

103

102

10
1

10-1

10-2

10-3

(CC)

10-4

10-3

10-2

10-1

-50 -25  0  25  50

3x10-1

1x10-1

3x10-2

1x10-2

3x10-3

1x10-3

1x10-4

(VV)

10-5

10-4

10-3

10-2

10-1

 0  0.5  1  1.5  2

3x10-1

1x10-1

3x10-2

1x10-2

3x10-3

3x10-4

(VC)

10-5

10-4

10-3

10-2

-20 -15 -10 -5  0

3x102

1x102

3x101

10
3
1

(CV)

FIG. 3. (Color online) Semi-logarithmic plots of the CPDs
in (CC), (VV), (VC), and (CV), against Θ = {ψ − ψ̄1(ξ)}/γ,
Ω = {ψ − ψ̄2(ξ)}/γ and Λ = ψ/γ, respectively, where we fix
ξ = 1.6 (CC), −0.2 (VC), and 0.2 (CV), respectively, and
average γWV V (ψ|ξ) over −20 ≤ ξ ≤ −1. The different sym-
bols represent the effective increment γ and the solid lines are
given by Eqs. (5)-(8).
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FIG. 4. (Color online) Numerical solutions of the Mas-
ter equation (the solid and dotted lines) under compression
((a) and (b)) and decompression ((c) and (d)). The solu-
tions develop in the directions indicated by the arrows. The
open squares, circles, and triangles are the PDFs obtained
through MD simulations at φ − φJ = 4 × 10−3, 1.2 × 10−2,
and 4 × 10−2, respectively. The insets show the semiloga-
rithmic plots. Overlaps are scaled by the mean overlap at
φ0 − φJ = 4× 10−3.

are not exactly the same). Note that a similar criterion
for the reversibility is found in an experiment of sound
propagation in sands [31].

In this study, we provide for the first time the Mas-
ter equation for the PDFs of overlaps between particles.
By considering the extended contact network, the Mas-

ter equation is able to fully predict the evolution of the
PDFs. The novel formulation has a huge impact from
the application point of view as it provides a complete
statistical description of the stress field in a granular as-
sembly, basis for a macroscopic, continuum, approach to
large scale problems. Both the Markov property and re-
versibility are well retained only if the applied strain in-
crement is infinitesimally small [37]. That is, by includ-
ing contacts, virtual contacts and their mutual exchange
into the description, the behavior is independent on his-
tory and the actual stress state is sufficient to predict the
subsequent incremental response.

The CPDs show by themselves important properties.
While the mean change of overlap reflects non-affine de-
formations, the Gaussian CPDs in (CC) imply indepen-
dent stochastic evolution of overlaps/forces around mean
values so that they behave independent variables as re-
ported, e.g. in Refs. [38, 39]. In contrast, the CPDs in
(VV), where no force acts on particles by virtual con-
tacts, is nearly the Holtsmark distribution with much
broader tails than the Gaussian, i.e. much larger jumps
of negative overlaps can occur. This indicates a strongly
correlated stochastic evolution of negative overlaps over a
wide range of length-scales. Because both the Gaussian
and Holtsmark distributions are members of the stable
distribution family, fluctuations of contacts and virtual
contacts in granular materials do obey the generalized
central limit theorem [34]. In addition, the strong de-
viation from an affine approximation [25] and the large
fluctuation of overlaps near the jamming transition [7] in
both, contact and virtual contact regimes, are captured
by the linear scalings with the effective increment.

Clearly, there is the need of further studies on the
physical origin of the non-affine behavior of overlaps and
the surprising scaling described above. The origin of
the functional forms of the CPDs can give very inter-
esting insights to the mechanics of granular materials,
e.g. stochastic processes of overlaps. Now, analytic solu-
tions or asymptotic solutions of the Master equation are
important possible steps towards the understanding of
the functional forms of the PDFs. The Master equation,
however, requires the increment δφ to be much smaller
than φ−φJ . Thus, it can never reach φJ , and the initial
condition cannot be the PDF at φJ . This means that
the jamming transition is a singular limit of the Master
equation. Though the force ensemble theories are re-
stricted to two dimensions [12–14, 40], our analysis can
be easily extended to three dimensions and examined by
experiments, e.g. an oedometer test of sands [41].
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