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Abstract The pairwise interaction between dry, elasto-plastic, adhesive particles is the subject of this study – where particles
are different from the well understood case of perfect, homogeneous spheres. We propose a simplified (piece-wise linear)
model that combines a short-ranged (van der Waals type) attractive force with an advanced, flexible, normal contact force
law. This mesoscopic model is applicable in dynamic, collisional as well as quasi-static, dense and confined situations.
Using simple energy considerations, an analytical solution for the coefficient of restitution en is derived, as function of the
initial relative velocity – and validated by the numerical solutions of pairwise collisions. The relative influence of different
sources of dissipation induces two sticking regimes, one at very low and one at high impact velocities. Very energetic
collisions could avoid the sticking, either due to the elastic particle-core in the model, or due the change of phenomenology,
e.g. due to fragmentation (not discussed, since this regime is beyond the reach of the model). The limits of the sticking
regimes and the finite contact-overlaps, which sticking particles end up with, are reported and the influence of additional
viscous dissipation on the pair collision dynamics is discussed.
Keywords: Particle Contact Models, Adhesion, Elasto-Plastic Material, Core-Shell materials, Energy dissipation
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Nomenclature

mi : mass of ith particle.
ai : Radius of ith particle.
mr : Reduced mass of two particles.
δ : Contact overlap between particles.
k : Spring stiffness.
vi : Relative velocity before collision.
v f : Relative velocity after collision.
vn : Normal component of relative velocity.
en : Coefficient of restitution.
k1 : Slope of loading plastic branch.
k2 : Slope of unloading and reloading elastic branch.
kp : Slope of unloading and reloading limit elastic branch.
kc : Slope of irreversible, tensile adhesive branch.
vp : Relative velocity before collision for which the limit case of overlap is reached.

δmax : Maximum overlap between particles for a collision.
δ p

max : Maximum overlap between particles for the limit case.
δ0 : Force free overlap ∼= plastic contact deformation.

δmin : Overlap between particles at the maximum negative attractive force.
δc : Kinetic Energy free overlap between particles.
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1 Introduction

Flows of granular materials are ubiquitous in industry and
nature. For this reason, the past decade has witnessed a strong
interest in better understanding granular materials. Especially,
the impact of fine particles with particles/surfaces is a funda-
mental problem. The interaction force between two particles
is a combination of elasto-plastic deformation, viscous dis-
sipation, and adhesion – both due to contact and long-range
forces.

Different regimes are observed for two colliding parti-
cles: For example a particle can either stick to another parti-
cle/surface or it rebounds, depending upon the relative strength
of adhesion and impact velocity, size and material parame-
ters. This problem needs to be studied in detail, as it forms
the base for understanding more complex, many-particle flows
in realistic systems, related to e.g. astrophysics (dust ag-
glomeration, Saturn’s rings) or industrial processes (handling
of fine powders, filling and discharging of silos).

Particularly interesting is the interaction mechanism for
adhesive materials like, e.g. asphalt, ice particles or clus-
ters/agglomerates of fine powders, that can be physically vi-
sualized as having an outer shell with a rather stiff, elastic
inner core. Due to the inhomogeneity of such materials, their
non-sphericity, and their surface irregularity, it can not be the
goal to include all details into a contact model – as presented
here – but rather one has to catch the essential phenomena
and ingredients, finding a compromise between simplicity
and realistic contact mechanics.

Computer simulations have turned out to be a powerful
tool to investigate the physics of particulate systems, espe-
cially valuable as there is no generally accepted theory of
granular flows so far, and experimental difficulties are con-
siderable. A very popular simulation scheme is an adapta-
tion of the classical Molecular Dynamics technique called
Discrete Element Method (DEM) (for details see Refs. [2,
4, 9, 14, 17, 18, 29, 33, 37]). It consists of integrating New-
ton’s equations of motion for a system of “soft”, deformable
grains, starting from a given initial configuration. DEM has
been successfully applied to adhesive particles, if a proper
force-overlap model (contact model) is given.

Brilliantov et al. [3] investigated the collision of adhe-
sive viscoelastic spheres and presented a general analytical
expression for their collision dynamics, but we rather turn
to plastic contact deformations in the following. The JKR
model [12] is a widely accepted adhesion model for elas-
tic spheres and gives an expression for the normal force.
Later Derjaguin et al. [7] considered that the attractive forces
act only just inside and outside the contact zone, where sur-
face separation is small. One interesting model for dry ad-
hesive particles was proposed by Molerus [23, 24], that ex-
plained consolidation and non-rapid flow of adhesive parti-
cles in terms of adhesion forces at particle contact. Thorn-

ton and Yin [32] compared the results of elastic spheres
with and without adhesion and Thornton, later on in Ref.
[31], extended this work to adhesive elasto-plastic spheres.
Molerus’s model was further developed by Tomas et al.,
who introduced a contact model [34–36] that couples elasto-
plastic contact behavior with non-linear adhesion and hys-
teresis, which involves dissipation and a history (compres-
sion) dependent adhesive force. The contact model subse-
quently proposed by Luding [18, 21, 22] works in the same
spirit as the one of Tomas [35], only reducing complexity
by using piece-wise linear branches in an otherwise still
highly non-linear contact model. Note that in the reference
work [18], the short ranged force beyond contact was not
specified as in the present study. Complex details like a pos-
sible non-linear Hertzian law, for small deformation, and
non-linear load-unload hysteresis are over-simplified in the
model. This is partly due to the lack of experimental refer-
ence data or theories, but also to keep the model as simple as
possible. The model contains the basic mechanisms, elastic-
ity, plasticity and adhesion as relevant for fine, dry powders
and shell-core materials. A possible connection between the
microscopic contact model and the macroscopic, continuum
description for adhesive particles was recently proposed by
Luding and Alonso-Marroquin [19].

When two particles collide, the behavior is intermedi-
ate between the extremes of perfectly elastic and fully in-
elastic, possibly fragmenting collisions. The elasticity of the
collision can be best described by the coefficient of restitu-
tion, which is the ratio of post-collision and pre-collision
relative velocities of the particles. It is a measure of the
amount of energy not dissipated during the collision. For
the case of plastic and viscoelastic collision, it is suggested
that dissipation should be dependent on impact velocity [11,
13]. The first experimental study on micrometer adhesive
polystyrene latex spheres was done by Dahneke [5, 6]. He
observed sticking of adhesive particles for low velocities,
and increasing coefficient of restitution for velocity higher
than a critical threshold. Wall et al. [39], confirmed these
results for highly mono-disperse ammonium particles. Both
Thornton et al. [31] and Brilliantov et al. [3] presented adhe-
sive visco-elasto-plastic contact models in agreement with
these experiments. Work by Sorace et al. [28] further con-
firms the sticking at low velocities for particles size of the
order of a few mm. Li et al [15] proposed a dynamical model
based on JKR for the impact of micro-sized spheres with a
flat surface. Recently, Brilliantov et al. [27] reported neg-
ative coefficients of restitution in nanocluster simulations,
which is an artifact of the definition of the coefficient of
restitution; one has to relate the relative velocities in the nor-
mal directions before and after collision and not just in the
frame before collision, which is especially serious for softer
particles. Jasevic̆ius et al. [10] have recently presented the
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rebound behavior of ultra fine silica particles using the con-
tact model from Refs. [34–36].

We do not review the diverse work involving liquid and
solid bridges here, since the focus is on dry particles. Even
though oblique collisions between two particles are of prac-
tical relevance and have been studied in detail by Thorn-
ton et al. [30], here we focus on central normal collisions
without loss of generality. We study the dependence of the
coefficient of restitution on velocity and material proper-
ties, for a wide range of impact velocities, using a mod-
ified/generalized version of the contact model by Luding
[18], and get consistent results with the previous theoret-
ical and experimental works for low impact velocity. Fur-
thermore, we focus on the less explored intermediate and
high velocity regimes, easily accessible in numerical simu-
lations. In the intermediate regime, we observe a similar de-
creasing trend for the coefficient of restitution, as observed
previously [3, 31]. For still increasing impact velocity, we
find a second interesting sticking regime due to the contact
plastic dissipation. We focus on this regime and present our
analysis of two particles collisions with respect to the impact
velocity and various material parameters, such as plasticity
and adhesion. Moreover, since the physical systems are vis-
cous in nature, we also present some simulations with added
viscous damping.

In section 2, we introduce the DEM simulation method
and the basic normal contact models as further elaborated on
in the following section 3, where the coefficient of restitu-
tion is computed. The dependence on adhesivity is described
in section 4.2, the effect of viscosity in section 4.3, and some
asymptotic solutions in section 4.4, before the study is con-
cluded in section 5.

2 Discrete Element Method

The elementary units of granular materials are mesoscopic
grains, which deform under stress. Since the realistic and
detailed modeling of real particles in contact is too compli-
cated, it is necessary to relate the interaction force to the
overlap δ of two particles. Note that the evaluation of the
inter-particle forces based on the overlap may not be suffi-
cient to account for the inhomogeneous stress distribution
inside the particles and possible multi-contact effects [11].
This price has to be paid in order to simulate larger samples
of particles with a minimal complexity and still taking vari-
ous physical contact properties like non-linear contact elas-
ticity, plastic deformation or load-dependent adhesion into
account.

2.1 Equations of Motion

If all forces acting on a spherical particle p, either from
other particles, from boundaries or externally, are known –
let their vector sum be f p – then the problem is reduced
to the integration of Newton’s equations of motion for the
translational degrees of freedom (the rotational degrees are
not considered here since we focus on normal forces) for
each particle:

mp
d2

dt2 rp = f p +mpg (1)

where, mp is the mass of particle p, rp its position, f p =

∑c f c
p is the total force due to all contacts c, and g is the

acceleration due to volume forces like gravity.
With tools from numerical integration, solving the equa-

tions of motion, as nicely described in textbooks as [1, 26],
is a straightforward exercise. The typically short-ranged in-
teractions in granular media, allow for further optimization
by using linked-cell (LC) or alternative methods in order to
make the neighborhood search more efficient. However, this
is not of concern in this study, since only normal pair colli-
sions are considered.

2.2 Normal Contact Force Laws

Two spherical particles i and j, with radii ai and a j, respec-
tively, interact if they are in contact so that their overlap,

δ = (ai +a j)− (ri − r j) ·n (2)

is positive, δ > 0, with the unit vector n= ni j =(ri−r j)/|ri−
r j| pointing from j to i. The force on particle i, from particle
j, at contact c, can be decomposed into a normal and a tan-
gential part as f c := f c

i = f nn+ f tt, where n · t = 0. In this
paper, we focus on frictionless particles, that is only normal
forces will be considered, for tangential forces and torques,
see e.g. Ref. [18] and references therein.

In the following, we discuss various normal contact force
models, as shown schematically in Fig.1. We start with the
linear contact model (Fig.1(a)) for non-adhesive particles,
before we introduce a more complex contact model that is
able to describe the realistic interaction between adhesive,
inhomogeneous, slightly non-spherical particles (Fig.1(b)).
In the following (section 2.3) the adhesive non-contact force
law will be introduced, while the next section 3 is dedicated
to the study of and the computation of the coefficient of resti-
tution.

2.2.1 Linear Normal Contact Model

Modelling a force that leads to an inelastic collision requires
at least two ingredients: repulsion and some sort of dissipa-



5

δ

fn
= f lin

(a)

δ

fn
= fhys

(b)

Fig. 1 Schematic plots of (a) the linear normal contact model for perfectly elastic collision (b) the force-overlap relation for elasto-plastic adhesive
collision

tion. The simplest normal force law with the desired proper-
ties is the damped harmonic oscillator

f n = kδ + γ0vn , (3)

with spring stiffness k, viscous damping γ0, and normal rel-
ative velocity vn =−vi j ·n =−(vi − v j) ·n = δ̇ . This model
(also called linear spring dashpot (LSD) model) has the ad-
vantage that its analytical solution (with initial conditions
δ (0) = 0 and δ̇ (0) = vn

i ) allows the calculations of impor-
tant quantities very easily [16]. For the non-viscous case, the
linear normal contact model is given schematically in Fig.
1(a).

The typical response time (contact duration) and the eigen-
frequency of the contact are related as

tc =
π
ω

and ω =
√

(k/mr)−η2
0 (4)

with the rescaled damping coefficient η0 = γ0/(2mr), and
the reduced mass mr = mim j/(mi +m j). From the solution
of the equation of a half-period of the oscillation, one also
obtains the coefficient of restitution

eLSD
n = v f /vi = exp(−πη0/ω) = exp(−η0tc) , (5)

which quantifies the ratio of normal relative velocities after
(v f ) and before (vi) the collision. Note that in this model en
is independent of vi. For a more detailed review on this and
other, more realistic, non-linear contact models, see [16,18]
and references therein.

The contact duration in Eq. (4) is also of practical tech-
nical importance, since the integration of the equations of
motion is stable only if the integration time-step ∆ t is much
smaller than tc. Note that tc depends on the magnitude of
dissipation: In the extreme case of an over-damped spring
(high dissipation), tc can become very large (which renders

the contact behavior artificial [20]). Therefore, the use of
neither too weak nor too strong viscous dissipation is rec-
ommended.

2.2.2 Adhesive Elasto-Plastic Contacts

Here we apply a variation to the piece-wise linear hysteretic
model [16–18, 34, 40] as an alternative to non-linear spring-
dashpot models or more complex hysteretic models [31,34–
36, 38, 41]. It reflects permanent plastic deformation, which
might take place at the contact, and stronger attractive (ad-
hesive) forces, both depending non-linearly on the maximal
compression force.

In Fig. 2, the normal force at contact is plotted against
the overlap δ between two particles. The force law can be
written as

f hys =


k1δ if k2(δ −δ0)≥ k1δ
k2(δ −δ0) if k1δ > k2(δ −δ0)>−kcδ
−kcδ if − kcδ ≥ k2(δ −δ0)

(6)

with k1 ≤ k2 ≤ kp, respectively the initial loading stiffness,
the un-/re-loading stiffness and the elastic limit stiffness.
The latter defines the limit force branch kp(δ −δ p

0 ), as will
be motivated below in more detail, and k2 is interpolating
between k1 and kp, see Eq. (10). For kc = 0, and k2 = kp =
const., the above contact model reduces to that proposed by
Walton and Braun [40], which leads to a constant coefficient
of restitution

eWB
n =

√
k1/kconst.

2 , (7)

different from the model presented in the following, for which
k2 is not a constant.

During the initial loading the force increases linearly
with overlap δ along k1, until the maximum overlap δmax =
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Fig. 2 Schematic graph of the piece-wise linear, hysteretic, and adhesive force-displacement model in normal direction.

vi
√

mr/k1 (for binary collisions) is reached, which is a his-
tory parameter for each contact. During unloading the force
decreases along k2, see Eq. (10), from its maximum value
k1δmax at δmax down to zero at overlap

δ0 = (1− k1/k2)δmax , (8)

where δ0 resembles the permanent plastic contact deforma-
tion. Reloading at any instant leads to an increase of the
force along the (elastic) branch with slope k2, until the maxi-
mum overlap δmax (which was stored in memory) is reached;
for still increasing overlap δ , the force again increases with
slope k1 and the history parameter δmax has to be updated.

Unloading below δ0 leads to a negative, attractive (ad-
hesive) force, which follows the line with slope k2, until the
extreme adhesive force −kcδmin is reached. The correspond-
ing overlap is

δmin =
(k2 − k1)

(k2 + kc)
δmax . (9)

Further unloading follows the irreversible tensile branch, with
slope −kc, and the attractive force f hys =−kcδ .

The lines with slope k1 and −kc define the range of pos-
sible force values and departure from these lines takes place
in the case of unloading and reloading, respectively. Be-
tween these two extremes, unloading and reloading follow
the line with slope k2. A non-linear un-/re-loading behavior
would be more realistic, however, due to a lack of detailed

experimental informations, the piece-wise linear model is
used as a compromise; also it is easier to implement. The
elastic k2 branch becomes non-linear and ellipsoidal, when
a moderate normal viscous damping force is active at the
contact, as in the LSD model.

In order to account for realistic load-dependent contact
behavior, the k2 value is chosen dependent on the maximum
overlap δmax, i.e. particles are more stiff for larger previous
deformation and dissipation is dependent on deformation.
The dependence of k2 on overlap δmax is chosen empirically
as linear interpolation:

k2(δmax) =


kp if δmax/δ p

max ≥ 1
k1 +(kp − k1)δmax/δ p

max
if δmax/δ p

max < 1
(10)

where kp is the (maximal) elastic stiffness, and

δ p
max =

kp

kp − k1
φ f

2a1a2

a1 +a2
, (11)

is the plastic flow limit overlap, where φ f represents the di-
mensionless plasticity depth. From energy balance, one can
define the “plastic” limit velocity

vp =
√

k1/mr δ p
max , (12)

below which the contact behavior is plastic, and above which
it reaches the elastic limit-branch. Impact velocities larger
than vp can have consequences, as discussed next.
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2.2.3 Discussion of the adhesive elasto-plastic model

As stated previously, this contact model can be applied to
plastic shell-core materials, such as asphalt, ice particles,
clusters of fine powders and other fluffy materials: all of
them having in common a “soft” plastic outer shell and a
rather stiff, elastic inner core. For such materials the stiff-
ness increases with the load due to an increasing contact
surface. For higher deformations, contact between the in-
ner cores takes place, which turns out to be almost elastic
when compared to the behavior of external shell [25]. Al-
ternatively, the plastic regime can be seen as the range of
overlaps, where the surface roughness and inhomogeneities
lead to a different contact mechanics as for a more homo-
geneous inner core. Dissipation on the limit branch – which
otherwise would be perfectly elastic – can be taken care of
by a linear viscous damping force (as the simplest option).
As final remark, for ideal, homogeneous spherical particles,
one should refer to other contact models that have a more
solid experimental and theoretical foundation [12, 31]

Note that a limit to the slope k2 that represents differ-
ent contact behavior at large deformations has various other
physical and numerical reasons:
(i) in many particle systems, for large deformations the par-
ticles cannot be assumed to be spherical anymore, as they
deform plastically or even could break;
(ii) from the macroscopic point of view, too large deforma-
tions would lead to volume fractions larger than unity, which
for most materials (except highly porous plastic ones) would
be unaccountable;
(iii) this contact model can also be applied to the case of
sintering, see Ref. [22], for large deformation i.e. high tem-
perature, the material goes to a fluid-like state rather than
being solid, hence, the elasticity of the system (incompress-
ible melt) determines its limit stiffness;
(iv) at very high values of deformation, the single pair point-
contact argument breaks down and multiple contacts of a
single particle can not be assumed to be independent any-
more;
(v) for more brittle materials, the physics in that regime
has to be completely re-considered, since then the particles
would fragment/break, which is beyond the scope of the
present study;
(vi) numerically, if k2 would not be limited, the contact du-
ration could become very small so that the minimum time
step would have to be reduced below reasonable values.

In summary, the adhesive, elasto- plastic, hysteretic nor-
mal contact model is defined by the four parameters k1, kp,
kc and φ f that, respectively, account for initial, plastic load-
ing stiffness, maximal, plastic limit (elastic) stiffness, adhe-
sion strength, and plastic overlap-range of the model, with
an empirical choice for the interpolated intermediate, non-
linear elastic branch stiffness k2.

2.3 Non-contact normal force

It has been shown in many studies that long-range interac-
tions are present when dry adhesive particles collide, i.e.
forces are present even for negative overlap δ [31]. In the
previous section, we have studied the force laws for con-
tact overlap δ > 0, in this section we introduce a descrip-
tion for non-contact, long range, adhesive forces, focusing
on the two non-contact models schematically shown in Fig.
3, namely the reversible model and the jump-in (irreversible)
model. Later, in the next section, we will combine non-contact
and contact forces.

2.3.1 Reversible Adhesive force

In Fig.3(a) we consider the reversible attractive case, where
a (linear) van der Waals type long-range adhesive force is
assumed. The force law can be written as

f adh =


− fa if δ > 0
−ka

cδ − fa if 0 ≥ δ > δa
0 if δa > δ

(13)

with the range of interaction δa = − fa/ka
c , where ka

c > 0 is
the adhesive strength of the material and fa > 0 is the (con-
stant) adhesive force magnitude, active for overlap δ > 0 in
addition to the contact force. When δ = 0 the force is − fa.
The adhesive force f adh is active when particles are closer
than δa, when it starts increase/decrease linearly along −ka

c ,
for approach/separation respectively. In the rest of the pa-
per, for the sake of simplicity and without loss of generality,
the adhesive strength will be chosen as coincident with the
contact adhesive stiffness in Sec. 2.2.2, that is ka

c = kc.

2.3.2 Jump-in (Irreversible) Adhesive force

In Fig.3(b) we report the behavior of the non-contact force
versus overlap when the approach between particles is de-
scribed by a discontinuous (irreversible) attractive law. The
jump-in force can be simply written as

f jump−in =

{
0 if δ < 0
− fa if δ ≥ 0

. (14)

As suggested in previous studies [3, 12, 31], there is no at-
tractive force before the particles come into contact; the ad-
hesive force becomes active and suddenly drops to a nega-
tive value, − fa, at contact, when δ = 0. The jump-in force
resembles the limit case ka

c → ∞ of Eq. (13). Note that the
behavior is defined here only for approach of the particles.
We assume the model to be irreversible, as in the unloading
stage, during separation, the particles will not follow this
same path (details will be discussed below).
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Fig. 3 Schematic plots of (a) the non-contact adhesive force-overlap relation and (b) the non-contact jump-in force-overlap relation.

3 Coefficient of Restitution

As already mentioned, we can quantify the amount of dissi-
pated energy relative to the incident kinetic energy in terms
of the coefficient of restitution e, by using the expression
1− e2.

When we consider a pair collision, with particles ap-
proaching from infinite distance, the coefficient of restitu-
tion can be defined as

e =
v f

∞

vi∞
(15a)

and further decomposed as

e =
v f

∞

v f

v f

vi

vi

vi∞
= εoenεi , (15b)

where three different regimes have been introduced to de-
scribe the pair interaction. εi and εo are the pull-in and pull-
off coefficients of restitution, that describe the non-contact
parts of the interaction (δ < 0), for approach and separation
of particles respectively, while en is the coefficient of resti-
tution defined for particle in contact (δ > 0). vi∞ and v f ∞
denote the approach and separation velocities at infinity dis-
tance, when the (short- and long-range) interaction force is
zero. vi is the approaching velocity at zero contact overlap
δ = 0 (start of contact) and v f is the separation velocity at
zero overlap δ = 0 when the particles are separating (end of
contact).
In the following, we will first analyze each term in Eq. (15b)
separately, based on energy considerations. Then we will
show combined contact models using the non-contact and
contact components described in sections 2.2-2.3 and pro-
vide the coefficient of restitution for this wide class of mod-
els.

3.1 Pull-in coefficient of restitution

In order to describe the pull-in coefficient of restitution εi
we focus on the two non-contact models proposed in Sec.
2.3, as simple interpretations of the adhesive force during
the approach of the particles.

When the reversible adhesive contact model is used, the
energy conservation argument

1
2

mrvi
∞2 =

1
2

faδa +
1
2

mrvi
2 (16a)

yields the following expression for εi:

εadh
i =

vi

vi∞
=

√
1− faδa

mrvi∞2 =

√
1+

f 2
a /kc

mrvi∞2 . (16b)

The pull-in coefficient of restitution increases with increas-
ing adhesive force magnitude fa due to increase in attractive
force. and decreases with the adhesive strength of the mate-
rial kc.

On the other hand, if the irreversible adhesive jump-in
model is implemented, a constant value ε jump−in

i = 1 is ob-
tained, as f jump−in = 0 for δ < 0 and the velocity is constant
vi = vi

∞.

3.2 Normal coefficient of restitution

When focusing on the contact coefficient of restitution en
and writing the energy balance between the start and end of
contact interaction, we get

1
2

mrvi
2 =Wdiss +

1
2

mrv f
2 (17a)

and

en =
v f

vi
=

√
1− 2Wdiss

mrvi2
, (17b)
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where Wdiss denotes the amount of energy dissipated during
the collision.

If the linear contact model (see Sec. 2.2.1) is considered
in the absence of viscous damping (LS), Wdiss is zero, hence
the normal coefficient of restitution eLS

n = 1. On the other
hand, for either viscous damping or in the case of adhesive
elasto-plastic contacts (see Sec 2.2.2), there is finite dissi-
pation. As Wdiss is always positive, the normal coefficient
of restitution is always smaller than unity, i.e. eLSD < 1 and
eHYS

n < 1. The coefficient of restitution for the linear spring
dashpot model is given in Eq. (5), while the elasto-plastic
contact model will be discussed below.

3.3 Pull-off coefficient of restitution

The pull-off coefficient of restitution is defined for particles
that lose contact and separate, using the adhesive reversible
model as described in section 2.3.1. By assuming energy
conservation
1
2

mv f
∞2 =

1
2

faδa +
1
2

mv f
2 , (18a)

we obtain the following expression

εo =
v f

∞

v f
=

√
1+

faδa

mv f
2 =

√
1− f 2

a /kc

mv f
2 . (18b)

Similarly to what already seen for Eq. 16b, the pull-off co-
efficient of restitution depends on both the adhesive force
magnitude fa and strength kc, other than the separation ve-
locity v f . As the particles feel an attractive force during un-
loading, part of their kinetic energy is lost and hence εo < 1
in Eq. (18b).

It is worthwhile to notice that the force-overlap picture
described above, with εo defined as in Eq. (18b) refers to
a system with sufficiently high impact velocity, so that the
particles can separate with a finite kinetic energy at the end
of collision. That is

v f
2 > f 2

a /(mkc) =: (va
f )

2 (19)

or, equivalently, v∞
i > va

f /(enεi), where va
f denotes the max-

imum relative velocity at which particles actually can sepa-
rate. On the other hand, if the kinetic energy reaches zero
before the separation, e.g. during the unloading path, the
particles start re-loading along the adhesive branch until the
value δ = 0 is reached and they follow contact law defined
for δ > 0 again.

3.4 Combined contact laws

The contact and non-contact models described in previous
sections 3.1, 3.2 and 3.3 can be combined in order to ob-
tain the overall description of the system behavior, during
approach, contact and final separation of the particles.

For example, the combination of the pull-in, the linear
normal and the pull-off components leads to a reversible ad-
hesive linear contact model, as shown schematically in the
upper part of Fig. 4(a), with coefficient of restitution e =

εoeLSD
n εadh

i . On the other hand, by combining the irreversible
(jump-in) pull-in, the linear normal and the (reversible) pull-
off components (see schematic in the lower part of Fig. 4(a))
we get coefficient of restitution e = εoeLSD

n ε jump−in
i .

In the following we will focus on the combination of the
irreversible pull-in with the adhesive elasto-plastic and the
(reversible) pull-off parts, leading to an irreversible adhesive
elasto-plastic model, see Fig. 4(b), with e= εoeHYS

n ε jump−in
i =

εoeHYS
n . For this special case we want to analyze the influ-

ence of the adhesive component/parameters on the overall
behavior.

In Fig. 5, we plot the coefficient of restitution e. as a
function of impact velocity for both the irreversible elastic
(en = eLSD

n ) and the irreversible elasto-plastic (en = eHYS
n )

contact models. We observe that for low velocity the system
behaves in a similar fashion in both cases, showing an ini-
tial sticking regime, in agreement with previous experimen-
tal and numerical results [28, 31, 39] At higher velocities, a
significant difference appears: for elastic adhesive spheres,
e keeps increasing and approaches unity while, for elasto-
plastic adhesive spheres, e starts decreasing at intermediate
velocity until it becomes zero at higher velocity. This dif-
ference is related with the sources of dissipation in the two
models. In the irreversible elastic case, energy is dissipated
only due to the pull-off of the particles, which is significant
in low velocity range only. On the contrary, for irreversible
elasto-plastic spheres, dissipation takes place during both,
pull-off and normal contact, stages. The latter, new, effect is
negligible for low velocity (hence the two models coincide)
but it becomes important for large impact velocity, leading
to a second, high velocity, sticking regime, (that will be dis-
cussed in detail below).

Furthermore, in Fig. 6, we focus on the strength of the
non-contact adhesion fa and we plot e against the impact
velocity for different fa. We observe that for fa = 0, en ≈ 1
at low velocities, while, for finite fa, the particles stick to
each other with en = 0. The critical velocity va

f required to
separate the particles increases with fa. For extreme values
of fa the particles stick in the whole range of velocities.

It is interesting to notice that for very low fa and low
impact velocities the behavior is independent of the adhesive
force magnitude (cyan line and black circles lie on top of
each other in Fig. 6). In the further sections we restrict our
analysis to this range of fa and impact velocity, as almost all
practical collision take place in this range.
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force. (b) Force-displacement law for elasto-plastic, adhesive contacts superimposed on the irreversible non-contact adhesive force.
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Fig. 5 Restitution coefficient e plotted as a function of the impact velocity v∞
i en− > e and vi− > v∞

i for irreversible elastic-adhesive and elasto-
plastic adhesive spheres (as given in the inset). Parameters used here are k1 = 102 Nm−1, kp = 5×102 Nm−1, kc = 102 Nm−1, and fa = 5×10−7 N,
which leads to the low-velocity sticking limit va

f = 2.1 × 10−5m/s, for particles with radius 1.1.10−3 m, density 2000 kg/m3, and mass m =

5.6×10−6 kg.

4 Elasto-plastic coefficient of restitution

In the following we will restrict our analytical study on the
coefficient of restitution to the range of moderate and large
impact velocity, where the contribution of weak non-contact
adhesive forces fa → 0 can be neglected. Furthermore, we
disregard viscous forces in order to allow for a closed ana-
lytical treatment. The coefficient of restitution will be com-
puted and its dependence on the impact velocity vi and the
adhesive stiffness kc is considered for two cases vi < vp and
vi > vp, with vp defined in Eq. (12).

4.1 Theory and dimensionless parameters

4.1.1 Initial relative velocity vi < vp

When vi < vp the particles after loading, unload with slope
k2 and the system deforms along the path 0 → δmax → δ0 →
δmin → 0, as described in the Sec. 2.2.2 and shown in Fig. 2.

The initial kinetic energy (at δ = 0 overlap) is com-
pletely transformed to potential energy at the maximum over-
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fa as given in the inset. Black circles represent the numerical solution results for fa = 0, where parameters are the same as in Fig. 5.

lap δmax,

1
2

mrv2
i =

1
2

k1δ 2
max . (20a)

The direction of relative velocity is reversed at δmax, unload-
ing starts with slope k2 and some part of the potential energy
is converted to kinetic energy at the force-free overlap δ0,

1
2

mrv2
0 =

1
2

k2(δmax −δ0)
2 , (20b)

which, using Eq. (8), can be written as

1
2

mrv2
0 =

1
2

k1δmax(δmax −δ0) . (20c)

Further unloading, below δ0, leads to attractive forces. The
kinetic energy at δ0 is partly converted to potential energy at
δmin

1
2

mrv2
min +

1
2

k2(δmin −δ0)
2 =

1
2

mrv2
0 . (20d)

The total energy is finally converted to only kinetic energy
at the end of the collision (overlap δ = 0)

1
2

mrv2
f −

1
2

mrv2
min =−1

2
kcδ 2

min , (20e)

that, when combined with (20d), gives

1
2

mrv2
f −

1
2

mrv2
0 =−1

2
kcδminδ0 (20f)

Using Eqs. (20a), (20c), and (20f) with the definitions of
δmin and δ0, and dividing by the initial kinetic energy, we
obtain the coefficient of restitution

e(1)n =
v f

vi
=

√
k1

k2
− kc

k1

(k2 − k1)

(k2 + kc)

(k2 − k1)

k2
(21)

with k2 = k2(δmax) = k2(vi), as defined in Eq. (10).

4.1.2 Initial relative velocity vi > vp

When the initial relative velocity vi is large enough such that
vi > vp, the estimated maximum overlap δmax = vi

√
mr/k1

is greater than δ p
max. Let v1 be the velocity at overlap δ p

max.
The system deforms along the path 0 → δ p

max → δmax →
δ0 → δmin → 0, see Fig. 2. The initial relative kinetic energy
is not completely converted to potential energy at δ = δ p

max,
hence

1
2

mrv2
i =

1
2

mrv2
1 +

1
2

k1(δ p
max)

2, (22a)

and the loading continues with the slope kp until all kinetic
energy equals zero at δ = δmax > δ p

max

1
2

mrv2
1 +

1
2

k1(δ p
max)

2 =
1
2

kp(δmax −δ0)
2, (22b)

the relative velocity changes sign at δmax, the contact starts
to unload with slope kp. The potential energy is completely
converted to kinetic energy at δ0, such that the equality

1
2

mrv2
0 =

1
2

kp(δmax −δ0)
2 (22c)

or

1
2

mrv2
0 =

1
2

k1δ p
max(δ p

max −δ0)+
1
2

mrv2
1 (22d)

holds. Further unloading, still with slope kp, leads to attrac-
tive forces until δ p

min is reached, where the kinetic energy is
partly converted to potential energy

1
2

mrv2
min +

1
2

kp(δ p
min −δ0)

2 =
1
2

mrv2
0 . (22e)
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The unloading continues along kc and the total energy at
δ p

min is finally converted to only kinetic energy at the end of
collision (δ = 0 overlap), so that

1
2

mrv2
f −

1
2

mrv2
min =−1

2
kc(δ p

min)
2 . (22f)

Using Eqs. (22c) and (22d) in Eq. (22f) gives

1
2

mrv2
f −

1
2

mrv2
0 =−1

2
kcδ p

minδ0 . (22g)

Combining Eqs. (22a), (22b), (22c), (22g) with the defini-
tions of δ p

min and δ0, and dividing by the initial kinetic en-
ergy, we obtain the coefficient of restitution

e(2)n =

√
1+

[
−1+

k1

kp
− kc

k1

(kp − k1)2

(kp + kc)kp

]
v2

p

v2
i
, (23)

with vp/vi < 1.

4.1.3 Dimensionless Parameters

For a more general description, a few dimensionless param-
eters can be defined:

Plasticity : η =
kp − k1

k1
, (24a)

Adhesivity : β =
kc

k1
, (24b)

Scaled initial velocity : χ =
δmax

δ p
max

∼ vi

vp
. (24c)

The final dimensionless number, given here for the sake of
completeness, but not used in this subsection, is the ratio
of maximum velocity at which particles stick due to ad-
hesion only to the initial relative velocity of the particles.
ψa = va/v∞

i � 1.
Using Eqs. (24a), (24b) and (24c) in Eq. (10), one can

define

k2(χ) =
{

kp if χ ≥ 1
k1 (1+ηχ) if χ < 1

, (25)

while the coefficients of restitution, e(1)n in Eq. (21) and e(2)n

in Eq. (23) become

e(1)n (η ,β ,χ < 1) =

√
1

1+ηχ
− βη2χ2

(1+ηχ)(1+β +ηχ)
(26)

and

e(2)n (η ,β ,χ ≥ 1) =

√
1+[A(η ,β )−1]

1
χ2 , (27)

with

A(η ,β ) =
[
e(1)n (η ,β ,χ = 1)

]2
. (28)

4.1.4 Qualitative Description

In Fig. 7, the analytical prediction for the coefficient of resti-
tution, from Eqs. (26) and (27), is compared to the numerical
integration of the contact model, for different scaled initial
velocities χ . In the whole range, we confirm the validity of
the theoretical prediction for the coefficient of restitution.

For very small ηχ < 10−3, en can be approximated as
e(1)n ≈ 1− ηχ

2 . With increasing initial relative velocity vi,
dissipation increases faster than the initial kinetic energy and
leads consequently, to a faster convex decrease of e(1)n . The
coefficient of restitution e(1)n becomes zero when a critical
scaled initial velocity χ(1)

c (see Eq. (30) below) is reached.
At this point, the amount of dissipated energy is equal to
the initial kinetic energy, making the particles stick to each
other. The coefficient of restitution stays zero up to a second
critical scaled initial velocity χ(2)

c is reached, i.e. one has
sticking for χ(1)

c ≤ χ ≤ χ(2)
c . Finally for scaled initial veloci-

ties χ > χ(2)
c , the dissipated energy remains constant (plastic

limit is reached), while the initial kinetic energy increases.
As a result, the kinetic energy after collision increases and
so does the coefficient of restitution en. 1

In Fig. 8, we compare the variation of the force with
overlap in the various regimes of χ as discussed above. For
very small χ , the unloading slope k2 ≈ k1, (see Fig. 8(a) for
a moderately small χ = 0.34), and the amount of dissipated
energy is small, increasing with χ . The kinetic energy af-
ter collision is almost equal to the initial kinetic energy, i.e.
en ∼ 1, see Fig. 7. In Figs. 8(b) and 8(c), the force-overlap
variation is shown for sticking particles, for the cases χ(1)

c <

χ < 1 and 1 < χ < χ(2)
c , respectively (more details will be

given in the following subsection). Finally, in Fig. 8(d), the
case χ > χ(2)

c is displayed, for which the initial kinetic en-
ergy is larger than the dissipation, resulting in the separation
of the particles. The corresponding energy variation is de-
scribed in detail in the appendix.

4.1.5 Sticking regime limits and overlaps

In this section we focus on the range of χ(1)
c < χ ≤ χ(2)

c ,
where the particles stick to each other and calculate the crit-
ical values χ(1)

c and χ(2)
c . Also we assume β to be large

enough so that sticking is possible, as we show in later sec-
tion that for a given η a minimum β = β ∗ is required for
particles to stick. When χ = χ(1)

c all initial kinetic energy
of the particles is dissipated during the collision. Hence the
particles stick and en becomes zero:

e(1)n (η ,β ,χ(1)
c ) = 0 , (29a)

1 Note that this is the regime where the physics of the contact
changes and dependent on the material and other considerations, mod-
ifications to the contact model could/should be applied, however, this
goes beyond the scope of this paper.
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Fig. 7 Restitution coefficient plotted as a function of the scaled initial velocity χ . The lines correspond to the analytical expressions in Eqs. (26)
and (27), for the two regimes, and circles are DEM simulations, while the dashed line represents the low velocity approximation results for the
same material parameters as in Fig. 5, i.e. η = 4 and β = 1.

which leads to

βη2χ2 −ηχ − (1+β ) = 0 . (29b)

Only the positive χ solution is physically possible, as parti-
cles with negative initial relative velocity cannot collide, so
that

χ(1)
c =

1
2βη

[
1+

√
1+4β (1+β )

]
. (30)

For larger χ > χ(1)
c , the dissipation is strong enough to con-

sume all the initial kinetic energy, hence the particles loose
kinetic energy at a positive, finite overlap δc, see Fig. 8(b).
The contact deforms along the path 0→ δmax → δ0 → δmin →
δc. Thereafter, in the absence of other sources of dissipation,
particles keep oscillating along the same slope k2. In order to
compute δc, we use the energy balance relations in Eqs. (20),
and conservation of energy along δmin → δc, as described by
Eq. (20e)

1
2

mrv2
f −

1
2

mrv2
0 =−1

2
kc

{
δminδ0 −

1
2

kcδ 2
c

}
, (31a)

with v f = 0 at the overlap δc. Re-writing in terms of kc and
δmax leads to

kcδ 2
c +

{
k2

1
k2

− kc(k2 − k1)
2

k2(k2 + kc)

}
δ 2

max = 0 (31b)

and thus to the sticking overlap

δ (1)
c

δ p
max

=
δmax

δ p
max

√
(k2 − k1)2

k2(k2 + kc)
−

k2
1

k2kc
. (31c)

In terms of dimensionless parameters, as defined earlier, one
gets

δ (1)
c

δ p
max

= χ

√
η2χ2

(1+ηχ)(1+β +ηχ)
− 1

β (1+ηχ)
=

χ√
β
|e(1)n | ,

(32)

where |e(1)n | denotes the absolute value of the result from Eq.
(26)

For larger initial relative velocities, χ ≥ 1, the coefficient
of restitution is given by Eq. (27), so that the second critical
1 < χ(2)

c can be computed setting

e(2)n (η ,β ,χ(2)
c ) = 0 , (33a)

or[
1

1+η
− βη2

(1+η)(1+β +η)
−1

]
1

χ2 = 1 . (33b)

Again, only the positive solution is physically possible, so
that

χ(2)
c =

√
1− 1

1+η
+

βη2

(1+η)(1+β +η)
(34)

is the maximum value of χ for which particles stick to
each other. For χ 6 χ(2)

c particles deform along the path
0 → δ p

max → δmax → δ0 → δmin → δc and then keep oscil-
lating with k2 stiffness, δc being one of the extrema of the
oscillation, see Fig. 8(c). From Eq. (22e), applying conser-
vation of energy along δmin → δc, we get

1
2

mrv2
f −

1
2

mrv2
0 =−1

2
kcδminδ0 +

1
2

kcδ 2
c , (35a)
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with v f = 0, and re-writing in terms of kc and δ p
max leads to

δ (2)
c

δ p
max

=

√[
(kp − k1)2

kp(kp + kc)
−

k2
1

kckp
+

k1

kc

]
− mr

kc

v2
i

(δ p
max)2 .

(35b)

In terms of the dimensionless parameters, this yields

δ (2)
c

δ p
max

=

√
η2

(1+η)(1+β +η)
+

η
β (1+η)

− χ2

β
=

χ√
β
|e(2)n | ,

(36)

where |e(2)n | denotes the absolute value of the result from Eq.
(27)

In Fig. 9, the evolution of δc/δ p
max with χ is reported,

showing perfect agreement of the analytical expressions in
Eqs. (32) and (36), with the numerical solution of a pair-
collision. In the sticking regime, the stopping overlap in-
creases with χ , and reaches a maximum at χ = 1,

δ max
c /δ p

max =

√
βη2 −η −β −1

β (1+η)(1+η +β )
(37)

which depends on the the adhesivity β and the plasticity η
only. For χ > 1, dissipation gets weaker, relatively to the
increasing initial kinetic energy, and δ (2)

c /δ p
max decreases.

until it reaches 0 for χ = χ(2)
c .

4.2 Dependence on Adhesivity β

In the previous subsections, we studied the dependence of
the coefficient of restitution en on the scaled initial velocity
χ for fixed adhesivity β , whereas here the dependence of en
on β is analyzed.

A special adhesivity β ∗ can be calculated such that en =
0 for χ = 1, which is the case of maximum dissipation and
leads to sticking only at exactly χ = 1. From Eq. (26), we
get

1+β ∗+η −β ∗η2 = 0 , (38a)

so that

β ∗ =
1

η −1
. (38b)

In Fig. 10, we plot the coefficient of restitution as function of
the scaled initial velocity χ for different values of adhesivity
β . For β < β ∗, in Fig. 10, the coefficient of restitution en de-
creases with increasing χ < 1, reaches its positive minimum
at χ = 1, and increases for χ > 1. In this range, the particles
(after collision) always have a non-zero relative separation
velocity v f . When β = β ∗, en follows a similar trend, be-
comes zero at χ = 1, and increases with increasing scaled

initial velocity for χ > 1. This is the minimum value of ad-
hesivity for which en can become zero and particles start to
stick to each other. For β = β ∗, the two critical values coin-
cide, χ(1)

c = χ(2)
c = 1. If β > β ∗, en decreases and becomes

zero at χ = χ(1)
c < 1, it remains zero until χ = χ(2)

c > 1, and
from there increases with increasing initial velocity.

4.3 Effect of Viscosity

Since real physical systems also can have additional dissi-
pation modes that are, e.g., viscous in nature, in this sec-
tion we study the behavior of the collision when viscosity
is present (γ0 > 0) and compare it with the non-viscous case
(γ0 = 0). Note that any non-linear viscous damping force can
be added to the contact laws introduced previously, how-
ever, for the sake of simplicity we restrict ourselves to the
simplest linear viscous law as given as second term in Eq.
(3). In Fig. 11, we plot the contact force against the overlap,
and the overlap against time, during collisions for a constant
value of χ = 1 and different β , for γ0 = 5×10−3.

When β < β ∗, see Fig. 11(a) and Fig. 11(b), the contact
ends when the adhesive force −kcδ goes back to zero, for
both cases, with and without viscosity. This is since the vis-
cosity is relatively small and does not contribute enough to
the total dissipation to make the particles stick.

For the critical adhesivity β = β ∗, reported in Fig. 11(c),
without viscosity the overlap between the particles still goes
down to exactly zero at the end of the collision, with all ki-
netic energy dissipated. For γ0 > 0, dissipation brings this
marginal collision case into the sticking regime and the par-
ticles stay in contact at δ > 0. This can be seen clearly in
Fig. 11(d), where the particles undergo a damped oscillatory
motion with amplitude depending on the residual velocity v f
(the amplitude is very small due to small residual velocity).

For larger values β > β ∗, the overlap does not reach 0,
neither for γ0 = 0 nor for γ0 > 0, see Fig. 11(e). In both
cases, the particles stick and remain in contact with a fi-
nite overlap. Without viscosity, the particles keep oscillat-
ing along the slope k2, while in the case with viscosity the
oscillation is damped and kinetic energy vanishes. During
loading and unloading the apparent slope changes with time
due to the additional viscous force that leads to the dissi-
pation of energy. Waiting long enough, for some oscillation
cycles, the particles stick to each other with a finite overlap
and zero relative kinetic energy. The difference is displayed
in Fig. 11(f), where for γ0 = 0 the particles keep oscillat-
ing with constant amplitude, whereas, for γ0 > 0, the parti-
cles undergo a damped oscillatory motion, until the velocity
becomes 0 at δ > 0. The time evolution of the overlap in
Fig. 11(f) resembles that of the displacement evolution in
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Ref. [8], where the authors studied sticking of particles in
Saturn’s rings. 2

4.4 Asymptotic Solutions

In this subsection, we focus on the case χ ≤ 1, and study
the asymptotic behavior of the coefficient of restitution as
function of the impact velocity.

For the sake of simplicity, let us start with an elasto-
plastic system without adhesion, i.e. kc = 0, in Eq. (26) such
that

e(1)n (η ,β = 0,χ < 1) =

√
1

1+ηχ
≈ (ηχ)−1/2 (39)

with the approximation valid for ηχ � 1. Since the scaled
velocity is moderate, χ < 1, the condition requires a large
plasticity, i.e., a strong difference between the limit stiffness
and the plastic loading stiffness, η � 1 (or kp � k1). In Fig.
12, we plot the coefficient of restitution against the scaled
initial velocity χ for three different values of η = kp/k1,
together with the power law prediction of Eq. (39). We ob-
serve, that for the smallest η (red circle and line), the ap-
proximation is far from the data, while for higher η , the
approximation works well even for rather small velocities
χ ≈ 0.1.

Next, when studying the elasto-plastic adhesive contact
model, β > 0 and β � 1, again, we restrict ourselves to val-
ues of η such that asymptotic condition ηχ � 1 is satisfied.
Hence, Eq. (26) can be approximated as

e(1)n (η ,β ,χ < 1)≈

√
1

ηχ
−β , (40)

2 In general, one could add a viscous law that is proportional to k2 −
k1 such that the jump-in viscous force in (e) at the beginning of the
contact is not there, however, we do not go into this detail.

as long as ηχ � β ≥ 0 and 1
η > β holds.

In Fig. 13, we plot the coefficient of restitution against
the scaled initial velocity χ for different values of β and
superimpose the approximation, Eq. (40). For small β and
large χ , one observes good agreement between the full so-
lution and the approximation. Differently, for the highest
values of β the approximation is not valid. Due to the ad-
hesive force, for large χ , with increasing β , the deviation
from the χ−1/2 power law becomes stronger and stronger,
leading to the sticking regime, as discussed in the previous
subsections. On the other hand, for smaller velocities, one
observes a considerably smaller power-law, resembling the
well-known χ−1/4 power law for plastic contacts, as indi-
cated by the dashed line in Fig. 13.

4.5 Dependence on interpolation

The choice of the interpolation rule for the unloading stiff-
ness k2 in Eq. (25) is empirical. Therefore, for δmax/δ p

max <
1, a different choice could be:

k2(δmax) = k1(1+η
√

χ) (41)

Inserting Eq. (41) into Eq. (21) leads to a different expres-
sion for the normal coefficient of restitution e(1)n , which for
high values of η√χ , and for small β , reduces to

en ∝
√

η(χ)−1/4 . (42)

A similar power law prediction for moderate velocities has
been previously obtained by Thornton et al. in Ref. [31],
using a non-linear Hertzian loading and unloading. Fig. 14
shows the agreement between the power law approximation
χ−1/4 and Eq. (21) with the alternative interpolation rule
(41), for moderate velocities. The choice of different inter-
polation laws for k2 shows the flexibility of the model and
requires input from experiments to become more realistic.
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Fig. 11 (a), (c), (e) Contact forces plotted against overlap and (b), (d), (f) time evolution of δ/δ p
max for pair collisions with parameters k1 = 102,

kp = 5×102 and different kc = 10, 33.33, and 100, (units Nm−1), i.e. with η = 4, β < β ∗, β = β ∗ and β > β ∗, for the same situations as shown in
Fig. 10. The red and green symbols represent the data in the presence and absence of viscosity respectively, where γ0 = 5×10−3, (unit Nm−1sec).
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Fig. 13 Log-log plot of the coefficient of restitution against the scaled initial velocity χ for four different values of β = 0.01, 0.1, and 1.0,
with η = 50. Red, green and blue circles denote the respective solutions of the general equation, Eq. (26), solid black line represents power law
en ∼ v−1/4, while magenta line denotes en ∼ v−1/2.

5 Conclusions

In this paper, first, various classes of contact models for
(non)linear elastic, adhesive and elasto-plastic particles, are
reviewed. The well understood models for perfect spheres
of homogeneous elastic or elasto-plastic materials are not
considered further. Instead, particular attention is devoted to
a elasto-plastic model that can find its main application ar-
eas for fine powders and for materials with a plastic external
shell and a stiffer core, as described by a limit elastic stiff-
ness kp. The contact model [18] is extended and generalized
by adding short-ranged (non-contact) interactions; the two
cases of reversible and irreversible non-contact models are
considered. The influence of the model parameters on the
overall impact behavior is discussed, focusing on the irre-
versible, adhesive, elasto-plastic model that is as simple as

possible but catches the important phenomena of particle in-
teractions.

When the dependence of the coefficient of restitution,
e, on the relative velocity between particles is analyzed, two
sticking regimes, e = 0, show up, related to different sources
of dissipation in the system. (i) The particles stick to each
other at very low impact velocity, in agreement with previ-
ous results in the literature (see e.g. Refs. [5,28,31]), due to
the irreversible short-range interaction. The threshold veloc-
ity, below which the particles stick, is directly related to the
magnitude of the non-contact adhesive force fa. (ii) With in-
creasing velocity, e increases and then decreases again until
a the second sticking regime is reached, due to the plastic
dissipation in the hysteric contact model. While the details
of the contact model are of minor importance for small im-
pact velocities, interestingly, for high velocity and small ad-
hesive force fa, the coefficient of restitution is independent
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square root interpolation (blue circles), as given in Eq. (41). The red and blue solid lines represent the approximations for high impact velocity
en ∼ χ−1/2 and en ∼ χ−1/4.

of fa, i.e., the contribution of the irreversible non-contact
force can be neglected in this range.

In the limit of weak fa, the contact component of the co-
efficient of restitution is examined analytically, using simple
energy conservation arguments. The results are derived in a
closed analytical form, by phrasing the behavior in terms
of dimensionless parameters (plasticity, adhesivity and ini-
tial velocity) and the range of impact velocities for which
the second sticking regime is observed, is predicted. For
still increasing relative velocity, beyond the sticking region,
en starts increasing again. However, this regime involves a
change of the physical behavior of the system, as e.g. due
to fracture/breakage of the particles, and requires additional
model assumptions not considered in this paper. Exceptions
are fine, inhomogeneous powder particles or core-shell ma-
terials, for which the present contact model is suited very
well.

The dependence of en on the adhesion strength is stud-
ied, showing that (high velocity) sticking is observed only if
particle adhesion is stronger than a minimum value. In the
sticking regime, due to the lack of dissipation on the un-
/re-loading branch with stiffness k2, the sticking particles
oscillate around their equilibrium position. A few simula-
tion results with viscosity are also presented, which portray
a more realistic physical picture. In the sticking case, for
long enough time the particles loose the artificial oscillation
energy and stay in static contact with a finite overlap.

In the last part of the paper a section is dedicated to the
asymptotic behavior of en at high impact velocities. We ob-
serve that the law en ∼ vi

−1/2, directly related to the empiri-
cal choice of the unloading stiffness in the model, is able to
describe the variation of en for low adhesivity. Further anal-
ysis on this feature are postponed to the future, when new

data from modern experimental techniques will be available
for numerical calibration and validation involving fine pow-
ders or core-shell materials.

The application of the present results to many-particle
systems (bulk behavior), see Ref. [19] where the non-contact
forces were disregarded, is a future goal. An interesting ques-
tion that remains unanswered concerns a suitable analogy to
the coefficient of restitution (as defined for pair collisions)
relevant in the case of bulk systems, where particles can be
permanently in contact with each other over long periods of
time, and where impacts are not the dominant mode of in-
teraction.
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Appendix: Energy Picture

This appendix shows the energies of two particles during contact, where
the difference between the different branches of the contact model,
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Fig. 15 (a,c) Kinetic and (irreversible, plastic, “potential”) energy of the particles, and (b,d) kinetic and available (elastic) potential energy (for
re-loading) of the particles, plotted against time for pair collisions with k1 = 102 Nm−1. kp = 5× 102 Nm−1, and kc = 102 Nm−1, i.e. η = 4 and
β = 1. The initial velocity χ is χ = 0.34 (a,b) and χ = 0.69 (c,d), in the regimes defined in the inset of each plot.

namely irreversible/unstable or reversible/elastic ones, will be high-
lighted.

In Fig. 15, the time-evolution of kinetic and potential energy is
shown; the graphs can be viewed in parallel to Figs. 8(a) and 8(b).
In Fig. 15(a), we plot the kinetic and potential energy of the parti-
cles against time for low initial velocity χ < χ(1)

c , corresponding to
Fig. 8(a), for which dissipation is so weak that particles do not stick.
The kinetic energy decreases from its initial value and is converted to
potential energy (the conversion is complete at δmax). Thereafter, the
potential energy drops due to the change between the loading and un-
loading slope from k1 to k2. The potential energy decreases to zero (at
the force-free overlap δ0), where it is converted to (less) kinetic energy.
Then the kinetic energy decreases further due to the acting adhesive
force. At δmin the increasing potential energy drops to a negative value
due to the change in unloading slope from k2 to the adhesive (instable)
slope −kc. From there it increases from this minimum, negative value

to zero, for δ = 0. From here the kinetic energy remains constant and
the potential energy stays at zero, since the particles are separated.

In Fig. 15(b), we plot the time evolution of kinetic and potential
energy that the particles would have if un-/re-loading would take place
at that moment, along the branch with slope k2, namely the available
(elastic) potential energy. This energy increases from zero at t = 0, and
reaches a maximum when the kinetic energy becomes zero (note that
it is not equal to the initial kinetic energy due to the plastic change of
slope of k2.) Thereafter, the available potential energy decreases to zero
at the force-free overlap δ0. For further unloading, the available poten-
tial energy first increases and then drops rapidly on the unstable branch
with slope −kc. The change in sign of the unloading slope, from k2 to
−kc, is reflected in the kink in the curve at δmin. Note, that comparing
Figs. 15(a) and 15(b), the available potential energy always stays posi-
tive, while the total, plastic “potential” energy drops to negative values
after the kink at δmin.
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Figs. 15(c) and 15(d) show the time evolution of kinetic and po-
tential energy (total and available, respectively) for an initial velocity
χ(1)

c < χ < χ(2)
c in the sticking regime, see Fig. 8(b). In Fig. 15(c), a

similar trend as that of Fig. 15(a) is observed until the potential energy
becomes negative at δmin. The difference to the case of smaller impact
velocity is that at this point, the kinetic energy is less than the mag-
nitude of the negative potential energy and hence first reaches zero,
i.e., the particles stick. At this point, the (plastic) potential energy in-
creases and jumps to a positive value indicating the change in sign of
the unloading slope from −kc to k2. Finally, it oscillates between this
positive value at δc, exchanging energy with the kinetic degree of free-
dom. When the available potential energy is plotted in Fig. 15(d), a
similar trend as that of Fig. 15(b) is observed up to the kink at δmin.
Here, the two energies have comparable values when they reach δmin
and the kinetic energy decreases to zero with a non-zero available po-
tential energy, which causes the contact to re- and un-load along k2.
/bin/bash: a: command not found
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