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ABSTRACT 

The regime transitions of granular flow in a model shear cell are investigated 

numerically with a stress-controlled boundary condition. The correlations between 

elastically/kinetically scaled stresses and packing fraction are examined and two 

packing fractions (0.58 and 0.50) are identified for the quasi-static/intermediate and 

intermediate/inertial regime transitions. The profiles and structures of contact 

networks and force chains among particles in different flow regimes are investigated. 

It is shown that the connectivity (coordination number) among particles and the 

homogeneity in the shear flow increase as the system goes through the inertial – 

intermediate – quasi-static regimes, and there is only little variation in the internal 

structure after the system has entered the quasi-static regime. Short-range force chains 

start to appear in the inertial regime, also depending on the magnitude of the shear rate. 

The percolation of system-spanning force chains through the whole system is a 

characteristic of the onset of the quasi-static regime, which happens at a packing 

fraction that is close to the glass transition, i.e. about random loose packing (0.58), but 

far below the isotropic, quasi-static (a-thermal) jamming packing fraction of random 

close packing (0.64). The tails of the probability density distribution P(f) of the scaled 
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normal contact forces for the flows in different regimes are quantified by a stretched 

exponential, , with a remarkable finding that n~1.1 may be a potential 

demarcation point separating the quasi-static regime and inertial/intermediate regimes. 
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1. INTRODUCTION 

Granular materials are widely encountered in nature and in industries. The 

transportation, storage, mixing, fluidization and coating of solid powders are routine 

processes in industries such as food, mining, chemical and pharmaceutical. In these 

processes, particulate materials can display very complicated dynamic behavior due to 

both the complex interactions between constituent particles and their interactions with 

surrounding gas or liquid and walls [1]. Even though we consider the cases where the 

interstitial fluid plays an insignificant role and particle-particle interactions are 

predominant, a general theory of the dynamics of grain flows is still lacking [2]. 

Complexity in formulating such a theory arises partly from the fact that particle flows 

can fall into three distinct but interconnected regimes: quasi-static, intermediate and 

inertial. In the past, many efforts have been dedicated to studying the two ends of the 

spectrum. On one end, slowly sheared particles are in close contact and the resulting 

stresses are of quasi-static, rate-independent, Coulomb type. Continuum theory of 

elasto-plasticity is one of the many possible examples that could be used to model the 

stresses in this regime [3, 4], but has serious shortcomings with respect to the smooth 

transition between (almost) elastic and perfectly plastic regimes [5, 6]. On the other 

end, rapidly flowing assemblies of particles behave inertially and constituent grains 

are likely to be in contact for a short time. The resemblance of particles in this highly 

agitated regime to gas molecules leads to that the so-called kinetic theory is used to 

describe the particle flows in this regime [7-13]. Somewhere in-between the quasi-

static and inertial flow regimes, a transitional regime can be identified, which is also 

called the intermediate regime. The flow characteristics in this regime have been 

investigated in terms of dense kinetic theory [13]; their frictional-collisional [14-16] or 



elastic-inertial [17-19] nature is recognized as one of the most difficult problems in 

granular materials research [20, 21]. Although various constitutive equations proposed 

in the literature (see, e.g., [6] and references therein) have achieved a certain extent of 

success in depicting some aspects of the corresponding regimes, they often become 

inapplicable when there is a flow regime change.  

The understanding of regime transitions and a regime map for granular flows is 

essential in order to derive an accepted general constitutive relation, which is 

applicable to all flow regimes. There are a lot of studies concerning phase change in 

granular flows under two kinds of system-scale constraint: volume- or strain-

controlled [17, 22-25], stress-controlled [6, 18, 26] or mixed stress-strain control 

modes like, e.g. tri-axial tests [5]. The earliest work devoted to granular flow mapping 

can be attributed to Babic et al. [21]. In their work, they employed a discrete element 

method (DEM) to simulate a 2D, volume-controlled system of simple shear flow, with 

inelastic mono-sized disks. They constructed a regime chart in the parametric space of 

volume fraction – dimensionless shear rate and divided the space into three parts by 

considering the parameters of coordination number and collision frequency: quasi-

static flow, rapid flow and transitional flow. A subsequent and more comprehensive 

study in this field is due to Campbell [17], who investigated a 3D, volume-controlled 

system of simple shear flow, with mono-sized, cohesionless and frictional particles. 

He found four flow regimes: elastic—quasi-static, elastic—inertial, inertial—

collisional, and inertial—non-collisional. Since different aspects of granular flow were 

examined in the determination of flow regimes, the regime charts due to Babic et al 

[22] and Campbell [17] reflected different fundamental physics. Campbell [18] 

attempted to link the two regime charts, and found that the quasi-static regime in [22] 

did not correspond to any regime in [17] as the densities considered were totally 



different. Considering both volume-controlled and stress-controlled cases, Campbell 

[18] compared the results from both cases and drew the conclusion that there were 

significant differences between these two types of systems and that rheological 

properties obtained in volume-controlled system might not be applied to stress-

controlled systems or vice versa. However, this issue was closely examined and put in 

doubt later by Aarons and Sundaresan [23, 26]. They investigated both volume-

controlled and stress-controlled systems of simple shear flow with mono-sized, 

spherical and cohesive particles, and found that the rheological behavior of particles 

was the same regardless of whether the system was stress-controlled or volume-

controlled, and thus the regime map was independent of the type of the system 

constraint. In a subsequent paper by Campbell [27], the rheology of ellipsoidal 

particles under volume controlled conditions was studied but the difference between 

the two boundary conditions was not addressed.   

Despite the useful conclusions drawn from these studies, there is still no consensus 

regarding how an entire flow regime map can be drawn and if a change in the system-

scale constraint has an influence on the regime map. Of the two types of constraint, the 

stress-controlled condition is more relevant in reality as there is always free space in 

which granular flow can expand or compress in response to different stresses and 

particles always have to support a certain amount of overburden. Exceptions are flows 

with a free surface [6], where the particles experience no confining stress – however, 

this extreme case will not be considered in this work. In addition, even though the 

quasi-static regime has been studied in detail [6, 28], there is no complete picture on 

the structures in different flow regimes, which can offer deep insights into the 

underlying physics of these regimes. Only recently the concept of structural anisotropy 



has been added to constitutive models as it represents a microscopic measure for the 

deformation history (see [5, 25, 28] and references therein).  

In the present study, we present a 3D DEM simulation to examine regime transitions 

in a stress-controlled model shear cell, one of the simplest practical devices in testing 

the rheological properties of granular materials [30-32]. The main issues we will 

address in this work include: (a) the determination of regime transitions in granular 

flow, and (b) the evolution of internal structures as the system goes through regime 

transitions. To the authors’ knowledge, the second aspect has hardly been touched in 

the literature. The connection between the microscopic structure and flow regimes will 

be examined as part of this study. In particular, the regime below the jamming 

transition, which has only recently received experimental attention in the slow, quasi-

static limit [33], will be studied at different shear rates. The findings can offer some 

insights into the dynamical characteristics for different flow regimes.  

2. SIMULATION METHOD  

2.1 DEM approach 

In the present work, a DEM approach [34] is used to simulate granular flow in a 

rectangular cell, resembling large radius annular shear cells. In such a simulation, a 

particle has two types of motion: translational and rotational, described by Newton’s 

laws of motion. Since fine particles are not involved, and air and moisture are not 

present here, forces other than mechanical contacts, e.g., particle−fluid interaction 

forces, can be neglected. As a result, the governing equations for the translational and 

rotational motion of particle i with mass mi and moment of inertia Ii can be written as 



                                                       (1) 

                                                                             (2) 

where vi and ω i are the translational and angular velocities of the particle, Fij
c and Mij 

are the contact force and torque acting on particle i by particle or wall j, and Fi
g is the 

gravitational force. The contact force is comprised of a (non-linear, Hertzian) elastic 

contact force and a damping contribution. As for the torque (Mij) acting on particle i, a 

rolling friction torque is also included in addition to the torque generated by the 

tangential force on the particle. The rolling friction torque is generated by asymmetric 

normal forces and slows down the relative rotation between particles. The details on 

the models for contact force and torque can be seen elsewhere (e.g., [35, 36]). The 

models used here have been successful in exploring the fundamentals of various 

systems (see [1] and references therein).  

2.2 Simulation conditions 

The configuration of a typical annular shear cell is shown in Fig. 1 (a), which is 

similar to the one considered in our previous studies [37, 38]. Here, to improve 

computational efficiency, only a flat, rectangular segment of the shear cell is simulated 

(Fig. 1 (b)) and periodic boundary conditions are used to represent the symmetrical 

geometry of the whole annular space. Note that the circumferential curvature is 

ignored in this setting. However, the key operational features of the shear cell are still 

maintained. This simplification has also been used by other investigators to study other 

aspects of annular shear cells [39, 40]. The cell consists of an upper platen and a lower 

platen (perpendicular to the Z-axis and with a uniform dark color in Fig. 1 (b)), two 
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stationary walls (perpendicular to the Y-axis and with a dark shaded color in Fig. 1 

(b)) and two periodic boundary planes (perpendicular to the X-axis). Both the upper 

and lower platens of the cell are formed by 360 glued spherical particles that have the 

same size and material properties as the flowing particles. This sheared granular 

material in the cell consists of 5,000 spherical particles with a diameter of d. The cell 

dimensions are 12d and 30d in X- and Y- directions, respectively, the same as those 

used in our previous studies [38]. The shear velocity of the platens and the normal 

stress applied in the negative Z-direction were precisely controlled. Trial tests indicate 

that a larger cell does not affect much the results (data not shown for brevity).  

For each simulation, the 5,000 spherical particles were first generated randomly, and 

then discharged at a pre-set rate from the top without the upper platen. After a certain 

period of time, the particles formed a packing on the lower platen. The upper platen 

was then placed on the top of the packing. Using a gravitational time-scale as the unit 

of time, from , the lower platen was given a gradually increasing shear 

velocity in the positive X-direction, and the upper platen was given both a gradually 

increasing shear velocity in the negative X-direction and a gradually increasing normal 

stress in the negative Z-direction. At , the velocities and normal stress 

reached the pre-set target values. From then the bulk properties of the system were 

closely monitored. If these properties only showed minor fluctuations around constant 

values, then the system was assumed to be in steady state. It was observed that the 

shearing systems quickly became steady. Consequently, at , the process 

of calculating microstructural and dynamic properties started and was carried out until 

the simulations finished at .  
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Following the approach of Campbell [17, 18], scaled physical properties were adopted 

in this work, including elastically scaled stress σ*=σd/k, kinetically scaled stress 

σ’=σ/ρd2 2 and scaled stiffness k*= σ’/σ*=k/ρd3 2, where σ is the applied normal 

stress, ρ is particle density, d is particle diameter,  is the effective shear rate due to 

the platens and k is the material stiffness. The physical meaning of σ* is the particle 

deformation induced by the applied stress, relative to its size [17, 18]. The scaled 

physical parameters vary while other parameters are kept constant. The packing 

fraction will be used as a key parameter to study the regime transition. The simulations 

showed that the fluctuations of the cell height were less than 1% of its average value 

after the flows reached their macroscopically steady state for the cases considered. 

This indicates that the packing fraction has little variation in the steady state To 

eliminate the effect of the fluctuation, the packing fraction for each case is averaged 

from  to , in which the flow is considered to be in the 

steady state. The input and output parameters and their values are listed in Table 1. 

The material stiffness k was estimated by , where E is the effective 

Young’s Modulus, defined as , and α and E0 are the Poisson ratio 

and Young’s modulus of particles, respectively. R is the effective radius, defined as 

, where R0 = d/2 is the radius of the particles [41]. Our focus in this work is 

to understand the physics of the flow regimes and regime transitions from the 

viewpoint of structural evolution. So, the range of the scaled parameters in this work is 

not as extensive as those used in the previous studies [17, 18, 23, 24, 26]. 
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3. RESULTS AND DISCUSSION  

In this section, we will first consider the determination of regime transitions, which are 

controlled by varying the values of shear rate and applied pressure. The variation of 

the internal structure is then examined in relation to the regime transitions. Finally, the 

corresponding distribution of the normal forces among particles is analyzed.  

3.1. Determination of regime transitions 

Fig. 2 shows the dependence of the elastically scaled applied stress (σ*) on packing 

fraction (ν) for different values of the scaled stiffness (k*). When there is no inertial 

effect in the system (quasi-static regime), particles are confined by their neighbours 

and only interact elastically. In this case, the particle deformation only depends on the 

applied stress. As the system constraint (applied normal stress) is relaxed, inertial 

effects become increasingly significant, and the particle deformation is more and more 

sensitive to the shear rate. Fig. 2 shows that when ν ≥ 0.58, the data corresponding to 

different values of k* tend to collapse into one master curve, indicating that the 

elastically scaled stress of the dense systems is independent of k* (shear rate) in the 

quasi-static regime. For ν < 0.58, the data for different k* start to deviate from each 

other, implying the appearance of inertial effects. As a result, ν = 0.58 is a critical 

packing fraction that separates the quasi-static and intermediate regimes, lower than 

0.65 as determined in [24]. A possible reason is that the existence of two stationary 

walls perpendicular to the Y-direction facilitates the formation of force chains in the 

present work, while there are no walls in the system in [24].  

In order to determine the transition between the intermediate flow and inertial flow, 

we employed the same method used by Ji and Shen [24] and Aarons and Sundaresan 



[26]. The method involves identifying the correlation between kinetically scaled stress 

σ’=σ/ρd2 2 and packing fraction ν. According to Campbell [18], the stresses are 

proportional to the product of transported momentum and transport rate for particles. 

For inertial flows, both the transported momentum and transport rate are proportional 

to the shear rate. As a result, the stresses scale quadratically with shear rate in the 

inertial regime, so that the kinetically scaled stress σ’=σ/ρd2 2 can be used to identify 

the inertial regime. The results from this scaling are shown in Fig. 3. It is observed that 

the data collapse below ν = 0.50, but when the packing fraction is high (e.g. ν ≥ 0.58), 

the data of σ’ for different values of k* demonstrate significant differences, showing 

that the kinetically scaled stress is greatly dependent on k* for shear rates in the quasi-

static regime. This indicates that the stress for all the flows scales kinetically with 

packing fraction below a threshold density and thus the flows are in the inertial regime. 

The same data collapse behavior and dependence of σ* and σ’ on ν can also be 

observed in volume-controlled systems [17, 24]. Thus we are able to show that the 

rheological properties of granular flows under volume- and stress-controlled 

conditions are actually the same, as suggested by Aarons and Sundaresan [26].  

Different k* values were used in Figs. 2 and 3. Similar to the treatment of Aarons and 

Sundaresan [26], we can determine the regime transition sets of (σ*, k*) and (σ’, k*). 

The points close to the lines ν = 0.58 and ν = 0.5 in Figs 2 and 3 are considered as the 

quasi-static/intermediate and intermediate/inertial regime transition points respectively. 

Correspondingly,  (σ*, k*) = (6×10-2, 2.5×105), (6×10-2, 3×104), (6×10-2, 3×103) and 

(6×10-2, 3×102), and (σ’, k*) = (14841.24, 2.5×105), (1623.16, 3×104), (180.35, 3×103) 

and (20.00, 3×102) were obtained for the quasi-static/intermediate regime transition, 

while (σ*, k*) = (9×10-6, 2.5×105), (1.5×10-4, 3×104), (6×10-4, 3×103) and (6×10-3, 
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3×102) and (σ’, k*) = (2.226, 2.5×105), (4.058, 3×104), (1.804, 3×103) and (2.000, 

3×102) are for the intermediate/inertial regime transition.  

With all the transition points determined above, we are able to obtain a flow regime 

map. Fig. 4 (a) shows the regime map in the parametric space of (σ*, k*). On one hand, 

if k* (shear rate) is fixed, the decrease of σ* causes the system to change from quasi-

static to intermediate, and finally to inertial regime. This is reasonable because for a 

given shear rate, decreasing the applied stress reduces the constraint on the system, 

allowing the system to expand. On the other hand, when σ* (applied stress) is fixed 

and very large, the system always stays in the quasi-static regime no matter what value 

the shear rate is, i.e. there is no path between quasi-static and intermediate regimes in 

the parametric space of (σ*, k*) for fixed σ*. For lower σ*, the system contact 

constraints are mitigated so that particles can exhibit inertial effects as the shear rate 

becomes larger (k* becomes smaller), i.e. the particles become more agitated and the 

system goes through the transition from intermediate regime to inertial regime.  

We can also draw the regime map in the parametric space of (σ’, k*) as shown in Fig. 

4 (b). The results in the figure indicate that the system changes from the quasi-static to 

intermediate, and finally to inertial regime, when the shear rate is fixed and the applied 

stress (σ’) is lowered. Another important feature is that when σ’ is low enough, the 

system always stays in the inertial regime. This is understandable since σ’ by 

definition is the ratio of elastic stress (force chain intensity, as discussed below) and 

kinetic energy in the system. A small value of σ’ indicates that particles in the system 

are highly agitated, which is naturally the characteristic of the inertial regime.  As σ’ 

becomes larger, large scale force chains become increasingly predominant. In this case, 

for a fixed σ’, the decrease in k* (or the increase in shear rate) will make the system 



transit from the intermediate to the quasi-static regime due to the increased applied 

pressure (or particle deformation). Note that the developing trend of the borderlines 

between two regimes would change if k* is out of the range considered in Fig. 4. More 

detailed information can be seen in [18]. Furthermore, only one of the two regime 

plots is unique, since they are connected via the definition of k*= σ’/σ*. 

We have also considered the effect of particle material properties, including sliding 

friction, rolling friction and normal restitution coefficient, on the features considered 

above. These properties do not much affect the qualitative trends of σ* and σ’ with ν, 

but they have an influence on the values of the critical packing fraction for the regime 

transitions. For example, an increasing sliding friction coefficient decreases both 

critical packing fractions for the quasi-static/intermediate and intermediate/inertial 

regime transitions. Increasing rolling friction lowers the value of v for the transition 

into the quasi-static regime, while the increase in restitution coefficient boosts the 

value for the intermediate/inertial regime transition. Such issues will be discussed in 

another paper in more detail. 

3.2 Structural analysis 

In order to qualitatively examine the structure of the studied shear flows, we first look 

at the contact networks under different conditions of (σ*, k*). It should be noted that 

as the variation in the magnitude of normal force is huge for different cases in the 

present work, it is inconvenient to compare the normal force networks using a 

universal scaling (typical examples of normal force networks can be found in [28,43-

45]). As a consequence, we plot the networks of scaled normal forces (f), which is 

defined as the ratio of normal contact forces (Fn) to the average normal contact force 

(<Fn>) for a specific case, i.e. f =Fn/<Fn>. In this way, we can compare the network or 



connectivity profiles of different cases using the same scale. In the contact network 

diagrams of the present work, each stick represents a line joining the centres of two 

contacting particles and its thickness stands for the magnitude of the scaled normal 

contact force between them. To be illustrative, and to avoid artefacts to the vicinity of 

walls, the figures are constructed based on the particles in the central slice (2d in 

thickness) along the shear (x-axis) direction.  

Fig. 5 shows the contact force networks for k*=3×102 and eight different values of σ*, 

together with the corresponding packing fractions and average coordination numbers. 

The average coordination number is the bulk average for all the sheared particles in 

the system. In Fig. 5 (a), σ* takes a relatively low value of 3×10-4 and the system is in 

the inertial regime, i.e. relatively dilute with packing fraction 0.32. An average 

coordination number of 1.45 means that multi-particle contacts are infrequent and 

connectivity among particles is very low. Scaled contact forces of both high and low 

magnitudes exist in the system, implying the high heterogeneity of the force network 

in the inertial regime. As σ* increases to 6×10-3 (Fig. 5 (c)) via the value of 3×10-3 

(Fig. 5 (b)), the system goes through the inertial regime and reaches the boundary 

between the inertial and intermediate regimes. The connectivity among particles 

increases as manifested by the increase in coordination number from 1.45 to 3.42 due 

to the increasing system constraint and the resultant growth in packing fraction. It is 

also noticed that there is an increasing number of weak scaled contact forces in the 

background, implying that their percentage increases in the process, while that of the 

strong scaled forces is diminishing. The system enters the intermediate regime as σ* 

increases beyond 6×10-3, for example, to 1.5×10-2 (Fig. 5 (d)) and 3×10-2 (Fig. 5 (e)). 

The characteristic of this stage is that the internal structure becomes more and more 

closely knit, which is manifested by the steady increase in the average coordination 



number from 3.42 to 4.79. In addition, both the relatively infrequent appearance of the 

large scaled forces and the stronger background of the weak forces indicate that the 

system considered becomes more dense and homogeneous. After σ* increases above 

the boundary value of 6×10-2 (Fig. 5 (f)), the system starts to enter the quasi-static 

regime. Figs. 5 (g) and (h) demonstrate the contact networks when σ*=0.15 and 0.3, 

respectively. Note that in the quasi-static regime, there seems to be little visible 

variation in the dense internal structure despite an increase in connectivity, implying 

the high stability of the internal structure of quasi-static flows. For a more quantitative 

analysis of the contact network under different densities in the inertial and quasi-static 

regimes, see Refs. [25, 29] and references therein. 

We compare our results with the contact force networks of a simple shear flow in 

different flow regimes reported in [18] and find that the agreement is apparent despite 

the fact that the contact forces in [18] are not scaled by their average in each case. The 

networks shown in Figs. 5 (a), (d) and (e) in the present work are consistent with the 

collisional and elastic-inertial networks reported in Figs. 2 (d), (c) and (b) in [18], 

respectively. The quasi-static networks shown in Figs. 5 (g) and (h) in this work also 

agree well with their counterpart in Fig. 2 (a) in [18]. This agreement implies that there 

are some universal features of granular flows in the same flow regime, even if the 

flows have different configurations or boundary conditions.  

The research on force chains has been a very important component in the demarcation 

and characterization of different flow regimes (see [46] for example). It has been 

reported that the parts where there are no force chains can be associated with the 

existence of inertial effects [42]. In this work, we examine the characteristics of force 

chains (if any) for different flow regimes for the considered systems. To this end, 



following the work of Peters et al. [46], we define a force chain as a quasi-linear 

particle assembly where stress is concentrated; concentrated stress means that the 

contact forces with magnitudes greater than the average form connected force chains. 

Therefore, we remove, from Fig. 5, the scaled contact forces (f) with magnitudes less 

than or equal to one, where the cut-off is an arbitrary but convenient/simple choice. 

The remaining scaled forces satisfy the condition of f >1, i.e. Fn > <Fn>. For brevity, 

only four cases corresponding to Figs. 5(a), (b), (d) and (e) are plotted in Fig. 6. Note 

that the quantitative examination of the ‘quasi-linear’ and ‘particle assembly’ 

conditions is beyond the scope of this work, but we can provide some qualitative 

descriptions here.  

Figs. 6 (a) and (b) depict the structure of large scaled forces (f >1) in the inertial 

regime. The difference is that the case in Fig. 6 (b) is closer to the boundary between 

inertial and intermediate regimes. The main interaction mode in Fig. 6 (a) are binary 

collisions, with no strong, concentrated force chains formed in the system. This clearly 

corresponds to the traditional rapid flow or the inertial-collisional regime reported in 

[17-19]. In Fig. 6 (b), the particle interactions become more frequent than those in Fig. 

6 (a). Some local contact clusters or chains appear, implying that the flow could be in 

the so-called inertial-noncollisional regime reported in [17-19]. According to 

Campbell [17-19], particles should break free from force chains in the inertial regime 

so there are no significant long force chains in this regime. However, we find that 

there are some (temporary) short-range force chains with three to four stress-bearing 

particles in the inertial regime in Fig. 6 (b). Therefore, the inertial-noncollisional 

regime may include not only particle clusters but also short force chains for some 

cases. In Fig. 6 (c), one can find that system-spanning force chains start to form in the 

intermediate regime with respective increase in connectivity and packing fraction. 



Considering the force chains are short in the inertial flow, we may conclude that the 

appearance of system-spanning force chains, instead of the short force chains in 

granular flows with high shear rates, can be used as an indication of the emergence of 

quasi-static effects. As σ* increases further, the number of the system-spanning force 

chains grows and inertial domains (i.e. no force chains) are gradually ‘squeezed’ out of 

the system. When the inertial effects disappear with the application of higher normal 

stresses, the system enters the quasi-static regime as shown in Fig. 6 (d), which is 

characterized by the percolation of system-spanning force chains through the whole 

cell [33].  

At this point, we should remark that Campbell [18] proposed a different method to 

determine the quasi-static/intermediate regime transition points. According to his 

method, the points where the data for different k* deviate from the critical state (or 

transition) are considered as the indicators of the quasi-static/intermediate regime 

transition. This method is not suitable for some cases considered here, as demonstrated 

in the examination of the relevant force chains. Fig. 6 (c) belongs to the intermediate 

regime according to the flow chart drawn in Fig. 4 (a), and it is also in the low stress 

critical state [18] as shown in Fig. 2. According to the criterion in [18], Fig. 6 (c) 

would belong to the quasi-static regime since its corresponding point in the (ν, σ*) 

space in Fig. 2 does not deviate from the critical state line. However, the strong scaled 

force network in Fig. 6 (c) clearly shows that the system-spanning force chains have 

not percolated the whole system yet and some part of the cell space is still dominated 

by inertial domains (with no force chains formed), implying that the flow is in the 

intermediate regime.  

  



3.3 Force statistics 

The force network among particles in a static or dynamic state can be analyzed in 

terms of the force probability distribution, which can give us some hints regarding the 

general behavior of granular systems [28, 47]. Many studies have been devoted to 

determining the shape of the probability density distribution of the normal contact 

forces between particles, P(f), and its variation under different conditions [48-51], in 

addition to the long range correlations in the forces [28]. Efforts have also been made 

to investigate the signature change in P(f) when systems go through jamming 

transitions [51-53]. In this work, we use similar ideas to determine if there is any 

change in the shape of P(f) as the granular flow changes between different flow 

regimes. Note that due to shear and the consequent anisotropy the orientation-angle of 

the contact forces is important for the analysis of two-dimensional force distributions 

(see [54] and references therein). This complicated issue in three dimension will be 

considered in our future study. 

The probability distributions of the scaled normal contact force, f (=Fn/<Fn>), for flows 

under different conditions are shown in Fig. 7. In general, the distribution becomes 

wider as the flow goes through the quasi-static – intermediate – inertial regime 

transitions. In the quasi-static regime, the force distributions obtained in the present 

work have a similar trend to those for static packings obtained in [28, 48, 49]. The 

force chains percolate the whole system and the majority of particles contribute to the 

network bearing large forces as, for example, shown in Fig. 6 (d). At the same time, 

the average normal force <Fn> is large (see the insets of Fig. 7 for the variation of 

<Fn>), and the distribution is relatively even. In the intermediate and inertial regimes, 

the force chains gradually disappear and an increasing number of particles interact by 



collisions. The examples of the force networks in the inertial regime can be seen in 

Figs. 6 (a) and (b). Only a limited number of collisions are noticeable and most 

interactions are fairly weak, resulting in a very small <Fn> (the insets of Fig. 7). As a 

result, the corresponding scaled force distribution is rather wide.  

In Fig. 7, we include the force distributions corresponding to the boundary points of 

quasi-static/intermediate (Bqi) and intermediate/inertial (Bii) transitions. Although the 

distributions vary for Bii under different values of k*, they remain invariant for Bqi. 

This is confirmed for many other values of k* (data not shown for brevity). That is, the 

force distributions of the granular flows under different shear rates share a common 

feature when they go through the quasi-static/intermediate transition. The tails (large f 

range) of the force distributions can be fitted by a stretched exponential: 

                                                                                      (3) 

where c and n are fitting parameters. This functional form is consistent with the one in 

[28,49]. In this work, the best-fitting values of n close to the inertial/intermediate and 

intermediate/quasi-static regime boundaries are examined in terms of its correlation 

with ν, as shown in Fig. 8. It is observed that the best fitting to the force distributions 

of Bqi under different k* corresponds to n=1.1 with typical variation/uncertainty of 

0.05 Using n=1.1 as a demarcation point, n>1.1 is for a flow in the quasi-static regime 

and a higher value of n means the flow is deeper into the quasi-static regime; n<1.1 

corresponds to a flow in the intermediate or inertial regime and a lower n signifies 

larger inertial effects. We note that this is a remarkable common feature in the force 

distributions for all the considered flows at different k*, and one can tell if there is any 

significant inertial component in a granular flow from the tail of its force distribution. 

Therefore, the value of n can potentially serve as an alternative indicator for the 

( ) exp( )nP f cf= −



emergence of the quasi-static regime.     

3.4 Coordination number in regime transitions 

In this section, we try to quantitatively explain why the demarcation between the 

quasi-static and intermediate regimes works from the micro-dynamic perspective. Fig. 

9 (a) shows the variation of coordination number (CN) with packing fraction (ν) for 

different scaled stiffness k*. The data can be categorized into two groups, divided by a 

demarcation point corresponding to ν = 0.58 with a critical coordination number of 

around 5.6 (which is close to the isostatic point 6.0). In the first group where ν < 0.58, 

CN increases with the decrease of k* (or the increase of shear rate) for a given ν; while 

in the second group where v > 0.58, the variation of CN with ν is independent of k* 

and the data of CN collapse more or less. The first group belongs to the flow regimes 

in which inertial effects play an obvious role and any increase in shear rate enhances 

particle contacts; the flow characteristics are hence influenced by the shear rate (i.e. 

k*). As a result, the data in the first group should be in the intermediate or inertial 

regimes. For the second data group, the fact that the increase in shear rate cannot cause 

any change in particle contacts indicates that the force chains have percolated the 

whole system. Naturally, the corresponding systems are practically rate-independent 

and thus belong to the quasi-static regime.  

In Section 3.1, we showed that the data of σ* collapse when ν exceeds the same 

critical packing fraction (0.58). As a result, one would expect that there should also be 

a data collapse between CN and σ* when CN is higher than its critical value (~5.6). To 

test this speculation, we plot the correlation between CN and σ* for different k* in Fig. 

9 (b). As expected, the data pattern presented in this figure is highly similar to that in 

Fig. 2 and the data for CN and σ* collapse when CN exceeds ~5.6. Therefore, it is also 



feasible to use the correlation between CN and σ* to determine the intermediate/quasi-

static regime boundary. For the correlation between CN and σ’, there is no such 

collapse, as indicated in Fig. 9 (c), neither for the inertial, nor for the quasi-static 

regime.  

In Section 3.2, we showed that as the flows enter the quasi-static regime, the force 

chains percolate through the whole system and all the particles in the system are 

tightly confined in the contact network as observed in Figs. 5 (g)-(h) and Fig. 6 (d). 

This phenomenon is reminiscent of global jamming in granular packings [55] and 

strongly resembles the observations of jamming under shear [33]. The packing fraction 

(0.55), corresponding to the onset of global jamming [55], appears close to the one 

(0.58) for the quasi-static/intermediate transition in the present study. However, 

changes in packing fractions as small as 0.03 can lead to enormous changes in CN and 

even more in σ*, so that one has to be careful when defining differences in jamming 

packing fractions [25, 28]. It would be of interest to examine further if and how global 

jamming is truly related to this regime transition.  

The concept of jamming has long been used to describe the transition to rigidity of a 

series of disordered materials such as foams, granular matter and glasses [56, 57]. The 

behavior of materials near and above the jamming transition is extensively studied 

with regard to the correlation between average coordination number and packing 

fraction, while much less attention has been given to the regime below jamming [33]. 

It is found that, both experimentally and numerically, a granular system going through 

a global jamming transition exhibits the following two attributes [58-64]: (a) the 

average coordination number CN of the system increases sharply at the transition point 

when increasing the packing fraction ν above a certain value ν0 (see [28] and 



references therein), and (b) CN still increases as a function of ∆ν (∆ν=ν-ν0) above ν0, 

with the transition point defined as (ν0, CN0). Both attributes are suspect to finite size 

effects and have to be considered very carefully. 

For frictionless spheres [28, 58-61], a simple scaling feature exists above the jamming 

transition point in the form of CN-CN0 = (ν-ν0)β, where β ~ 0.5, while for frictional 

particles, different values of ν0 and CN0 are identified with very similar values of β. 

More recently, Imole et al. [25] reported that the jamming transition packing fraction 

is also a function of the applied deformation mode, but they also confirmed that the 

scaling holds almost perfectly, while it is independent of force laws [62]. To check the 

scaling law in the present sheared system, we plot CN-CN0 against ν-ν0 in the inset of 

Fig. 9 (a) (ν0 and CN0 are 0.58 and 5.6 respectively). We can see that the data collapse 

(except for the smallest k*), indicating that the flow becomes globally jammed when v 

is larger than 0.58, the demarcation point for the quasi-static/intermediate transition. 

We can get the best fit for the data points as ∆CN=14.021∆ν-21.007(∆ν)2, where 

∆CN= CN-CN0 and ∆ν= ν-ν0, with a correlation coefficient of 0.992. Thus, the 

correlation between CN-CN0 and ν-ν0 takes a quadratic form in the present granular 

flows, instead of a square root form found in the static granular packing [58-62]. This 

may be attributed to the fact that, although the structural change in the present system 

can be analyzed in terms of global jamming transition, dynamic granular flow may be 

very different from static granular packings.  

4. CONCLUSIONS 

The shearing of particles in a model shear cell under stress-controlled conditions has 

been investigated numerically using the discrete element method. Granular flows 

under different conditions of scaled stiffness (k*=k/ρd3!!) and scaled normal stress 



(σ*=σd/k) are considered, and packing fraction (ν) and kinetically scaled stress 

(σ’=σ/ρd2!!) for each flow are calculated. The data collapse between σ* and ν for 

different k* when ν > 0.58 is considered as lower limit packing fraction of the quasi-

static regime, while the data collapse between σ’ and ν for different k* when ν < 0.50 

is deemed as the indication (upper limit) of the inertial regime. This regime 

demarcation method of identifying two critical packing fractions is consistent with that 

used in [24], but different from that using the low stress critical state [18].  

The internal structures of the flows in different regimes (quasi-

static/intermediate/inertial) have been investigated concerning the evolution of contact 

networks and force chains for different combinations of σ* and k*. The results show 

that the different attributes of the three flow regimes and the corresponding transitional 

behaviors can adequately be reflected in the contact networks or force chains, together 

with the information about average coordination number and packing fraction. A 

striking result found here is that, contrary to common belief, short-range force chains 

are observed in the inertial regime for large shear rates. The implication of this finding 

for the inertial (transitional) regime is that such a flow may contain not only particle 

clusters as shown by Campbell in [18] but also short or localized force chains. 

Furthermore, the percolation of system-spanning force chains is a characteristic of the 

quasi-static regime.   

The force statistics analysis shows that the force distribution becomes increasingly 

wide as the flow transits from the quasi-static to the inertial regime, a phenomenon 

also observed in thermal systems when temperature increases. The tail of the 

probability density distribution of scaled normal forces can be well approximated by 

the form . The power index n may serve as a new flow regime ( ) exp( )nP f cf= −



indicator, with n>1.1 for the quasi-static regime and n<1.1 for the intermediate and 

inertial regimes. This critical n may vary with material properties, which should be 

studied in the future.  

The correlation between coordination number CN and packing fraction ν, is 

established to testify the robustness of the present demarcation method. It is found that 

the dependence of CN on σ* can also be used to identify the quasi-static/intermediate 

regime transition since the same data collapse happens as that between CN and ν. By 

examining the correlation between CN and ν, we confirm, as observed earlier in quasi-

static situations [25, 60], that the transition to the quasi-static regime is related to the 

global jamming transition. A square-root scaling between ∆CN (=CN-CN0) and ∆ν (= 

ν-ν0) also exists for the present sheared system. This result indicates that, although 

granular shear flows can differ from granular packings in many ways, the snapshots 

and the averaged (isotropic) properties of their internal structures are comparable. 

They may share some common characteristics, which should be further explored in 

future studies, especially concerning anisotropy [25].  
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Tables: 

Table 1. Physical parameters and conditions used in the present work 

Parameter                                                             Value                                Units 

Young’s modulus (p, w)                                      2.5×106                            

Poisson’s ratio (p, w)                                              0.3                                      - 

Sliding friction coefficient (p-p),                      0.5                                      - 

Sliding friction coefficient (p-w),                     0.3                                      - 

Rolling friction (p-p or p-w),                            0.01                                    d 

Coefficient of restitution, ε                                     0.8                                      - 

Time step                                                             0.0001                               

Scaled stiffness, k*                                       3×102 – 2.5×105                           - 

Elastically scaled stress, σ*                            6×10-6 – 0.3                               - 

Kinetically scaled stress, σ’                          6×10-2 –7.5×104                          - 

 

Note: d is the maximum particle diameter, g (=9.81ms-2) is the magnitude of g, and ρp 

is the density of particles. 
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Figure captions 

FIG. 1. Annular shear cell geometry: (a), the section selected for simulating the shear 

cell under applied normal pressure and shear velocities on platens; and (b), 

snapshot of particles under shearing between platens.   

FIG. 2. Variation of elastically scaled applied stress (σ*) with packing fraction (ν) for 

different values of scaled stiffness. 

FIG. 3. Variation of kinetically scaled applied stress (σ’) with packing fraction (ν) for 

different values of scaled stiffness. 

FIG. 4. Regime map in the parametric space of: (a), (σ*, k*); and (b), (σ’, k*). The 

phase boundary between the quasi-static and intermediate regimes is 

determined in Fig. 2. The phase boundary between the intermediate and 

inertial regimes is determined in Fig. 3. 

FIG. 5. Networks of scaled forces (f =Fn/<Fn>) and the corresponding average 

coordination number and packing fraction when k*=3×102 for different σ*: (a) 

3×10-4; (b) 3×10-3; (c) 6×10-3; (d) 1.5×10-2; (e) 3×10-2; (f) 6×10-2; (g) 0.15; (h) 

0.3.  

FIG. 6. Networks of large scaled forces (f >1) and the corresponding average 

coordination number and packing fraction when k*=3×102 for different σ*: (a) 

3×10-4; (b) 3×10-3; (c) 1.5×10-2; and (d) 0.15. The scale of all sub-figures is 

shown at the bottom. 

FIG. 7. Probability density distributions of the scaled normal forces (f = Fn/<Fn>) for 

different σ* when: (a) k*=2.5×105; and (b) k*=3×102. Quasi-

static/intermediate and intermediate/inertial phase boundaries are marked as 

Bqi and Bii, respectively. The solid and dashed lines stand for the force 



distributions obtained by Mueth et al [41] and van Eerd [42], respectively. 

The insets show the variation of the average contact force (<Fn>) with σ*. 

FIG. 8. Variation of the power index n in Eq. 3 with packing fraction ν for different 

scaled stiffness. Note that all the points on the quasi-static/intermediate 

regime boundary (highlighted as ‘boundary points’) have the n values close to 

1.1.FIG. 9. Variation of coordination number with: (a), packing fraction ν; (b), 

elastically scaled applied stress σ*; and (c), kinetically scaled applied stress 

σ’ for different scaled stiffness. The vertical line in the main panel of (a) 

corresponds to the critical packing fraction of 0.58. The inset shows the 

scaling between CN-CN0 and ν-ν0 with the dotted curve standing for the best 

fit given in Section 3.4. 
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FIG. 1. Annular shear cell geometry: (a), the section selected for simulating the shear 
cell under applied normal pressure and shear velocities on platens; and (b), snapshot of 
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particles under shearing between platens.   

 

FIG. 2. Variation of elastically scaled applied stress (σ*) with packing fraction (ν) for 
different values of scaled stiffness.  
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FIG. 3. Variation of kinetically scaled applied stress (σ’) with packing fraction (ν) for 
different values of scaled stiffness.  
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FIG. 4. Regime map in the parametric space of: (a), (σ*, k*); and (b), (σ’, k*). The 
phase boundary between the quasi-static and intermediate regimes is determined in Fig. 
2. The phase boundary between the intermediate and inertial regimes is determined in 

Fig. 3.  


