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Abstract 
 
Owing largely to multiscale heterogeneity in the underlying fibrous structure, the physics 
of fluid flow in and through fibrous media is incredibly complex. Using fully resolved 
finite element (FE) simulations of Newtonian, incompressible fluid flow perpendicular to 
the fibers, the macroscopic permeability is calculated in the creeping flow regime for 
arrays of random, ideal, perfectly parallel fibers.  
On the micro-scale, several order parameters, based on Voronoi and Delaunay 
tessellations, are introduced to characterize the structure of the randomly distributed, 
parallel, non-overlapping fibre arrays. In particular, by analyzing the mean and the 
distribution of the topological and metrical properties of Voronoi polygons, we observe a 
smooth transition from disorder to (partial) order with decreasing porosity, i.e., increasing 
packing fraction.  
On the macro-scale, the effect of fibre arrangement and local crystalline regions on the 
macroscopic permeability is discussed. For both permeability and local bond orientation 
order parameter, the deviation from a fully random configuration can be well represented 
by an exponential term as function of the mean gap width, which links the macro- and the 
micro-scales. 
Finally, we verify the validity of the, originally, macroscopic Darcy’s law at various 
smaller length scales, using local Voronoi/Delaunay cells as well as uniform square cells, 
for a wide range of porosities. At various cell sizes, the average value and probability 
distributions of macroscopic quantities, such as superficial fluid velocity, pressure 
gradient or permeability, are obtained. These values are compared with the macroscopic 
permeability in Darcy’s law, as the basis for a hierarchical upscaling methodology. 
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1. Introduction 

Fluid flow through fibrous materials has a wide range of applications including, 

composite materials, fuel cells, heat exchangers, (biological) filters and transport of 

ground water and pollutants (Bird et al., 2001). Permeability, i.e. the ability of the fluid to 

flow, is perhaps the most important property in their manufacturing. Prediction of the 

macroscopic permeability is a longstanding but still challenging problem that dates back 

to the work of Happel (1959) and Kuwabara (1959) with more recent contributions by 

Sangani and Acrivos (1982), Drummond and Tahir (1984), Gebart (1992) and Bruschke 

and Advani (1993). Most of these models/predictions are complex with limited range of 

validity. For example, Gebart (1992) presented an expression for the transverse 

permeability based on the lubrication approximation valid for ordered structures, which 

are different from the generally disordered fibrous materials. For a review of the theory, 

predictability and limitations of theses models see (Yazdchi et al., 2012; Deen et al., 

2007; Zhu et al., 2008) and references therein. 

Based on the orientation of the fibers in space, fibrous structures can be categorized into 

three different classes: (i) 1D structure in which all fibers are parallel with each other 

(Sangani and Yao, 1988; Narvaez et al., 2013), (ii) 2D structure in which fibers lie in 

parallel planes with directional or random orientations (Sobera and Kleijn, 2006; 

Jaganathan et al., 2008) and (iii) 3D structures in which fibers are directionally or 

randomly oriented in space (Tomadakis and Robertson, 2005; Clague et al., 2000; 

Stylianopoulos et al., 2008; Tomadakis and Sotirchos, 1993). In general, macroscopic 

transport properties such as permeability (or e.g. the heat transfer coefficient) are 
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functions of geometrical features of the porous medium; thus determination of exact 

transport properties for 3D real fibrous materials with random structures is very complex 

and in many cases not possible. However, several researchers have argued that, in 

principle, the permeability of random 2D and 3D media can be related to their values for 

1D structures (Jackson and James, 1986; Tamayol and Bahrami, 2011; Mattern and Deen, 

2007). Therefore, as basic step, to provide physical insight into the significance of the 

microscopic structure for the macroscopic transport properties, the transverse 

permeability of 1D random structures is investigated in the present study. 

Darcy’s law is the most widely used empirical relation for the calculation of the pressure 

drop across a homogeneous, isotropic and non-deformable porous medium. It states that, 

at the macroscopic level and the limit of creeping flow regimes, the pressure gradient 

p∇ , and the flow rate have a linear relation given by 

p U
K

µ−∇ = ,                                                                                                                      (1) 

where µ and U are viscosity and horizontal superficial (discharge) velocity, respectively. 

The proportionality constant K, is called the permeability of the medium and it strongly 

depends on the microstructure (e.g. fibre/particle shape and arrangement, void 

connectivity and inhomogeneity of the medium) and porosity. Darcy's law was originally 

obtained from experiments (Lage and Antohe, 2000) and later formalized using upscaling 

(Whitaker, 1986), homogenization (Mei and Aurialt, 1991) and volume averaging 

(Valdes-Parada et al., 2009) techniques. It has been shown that Darcy's law actually 

represents the momentum equation for Stokes flow averaged over a representative 
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volume element (RVE). In fact, in this representation, all complicated interactions 

between fluid and solid (fibres) are lumped into the permeability (tensor), K. 

The lack of a microscopic foundation has motivated the development of relationships 

between macroscopic parameters, like permeability, and microstructural parameters, like 

fibre arrangements, shape and orientation or tortuosity (flow path). Chen and 

Papathanasiou (2007, 2008) computationally investigated the flow across randomly 

distributed unidirectional arrays using the boundary element method (BEM) and found a 

direct correlation between permeability and the mean nearest inter-fibre spacing. 

Papathanasiou (1996) performed a similar study for unidirectional square arrays of fibre 

clusters (tows) using the BEM. His employed unit cells are characterized by two 

porosities: (i) inter-tow porosity, determined by the macroscopic spatial arrangement of 

the tows, and (ii) intra-tow porosity, determined by the fibre concentration inside each 

tow. He showed that the effective permeability of assemblies of fibre clusters depends 

strongly on the intra-tow porosity only at low inter-tow porosity. In a recent study, 

Yazdchi et al. (2012) proposed a power law relation between the transverse permeability 

obtained from finite element (FE) simulations and the mean value of the shortest 

Delaunay triangulation (DT) edges, constructed using the centers of the fibres. For 

sedimentary rocks, especially sandstones, Katz and Thompson (1986) suggested, using 

percolation theory, a quadratic relation between permeability and microstructural 

descriptors for rocks, i.e. the critical pore diameter. Despite all these attempts, the effect 

of microscopic fibre arrangements/structures, controlled by the effective packing fraction, 

on macroscopic permeability is still unclear. 
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The objective of this paper is to (i) computationally investigate transverse flow through 

1D, random fibre arrays in a wide range of porosities, (ii) understand and characterize the 

microstructure, i.e. the ordered and disordered states, using several order parameters, (iii) 

establish a relationship between macroscopic permeability and the microstructure of the 

fibrous materials and (iv) verify the validity of the empirical Darcy’s law at various 

length scales and porosities.  Our results can and will be used in more practically relevant 

hybrid or coupled codes with two-way coupling between the fibers and the fluid to more 

mimic a real fibre-tow production/impregnation process as a big step towards the same 

for the most general full 3D random structures. 

To this end, the algorithm used to build the initial fibre configurations and the numerical 

finite element (FE) procedure for solving flow/momentum equations are presented in 

Section 2. In Section 3, the geometrical (Voronoi tessellation) and bond orientational 

order parameters are introduced to quantify the microstructure. In particular, the 

transition from disordered to ordered regimes is discussed in detail. The connection 

between structural (dis)order and macroscopic permeability is explained using shortest 

Delaunay triangulation edges in Section 4. Finally, the validity of Darcy’s law at different 

length scales is investigated by dividing the system into both smaller uniform cells and 

irregular Voronoi/Delaunay polygons/triangles in Section 5. The paper is concluded in 

Section 6 with a summary and outlook for future research and applications. 

2. Mathematical formulation and methodology 

A Monte Carlo (MC) approach was used to generate N=3000 randomly distributed, non-

overlapping fibre arrays in a square domain with length, L. Given an initial fibre 
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configuration on a triangular lattice, the MC procedure perturbs fibre centre locations in 

randomly chosen directions and magnitudes (Chen and Papathanasiou, 2007, 2008). The 

perturbation was rejected if it leads to overlap with a neighboring fibre (up to 104 

perturbations were used in our simulations). With this procedure, we were able to 

generate various packings at different porosities, ε=1-Nπd2/(4L2) with d the diameter of 

fibres, varying from dense/ordered (ε=0.3) to very dilute/disordered (ε=0.95) regimes. 

Fig. 1 shows a schematic of such a packing; the fibre long axis is normal to the flow 

direction, at porosity ε=0.6. Due to wall/edge effects, only the center part of the system 

will be analyzed. The effect of several microstructural parameters such as method of 

generation, system size, wall/periodic boundaries have been discussed elsewhere 

(Yazdchi et al., 2012). 

The FE software ANSYS® was used to calculate the horizontal superficial (discharge) 

velocity, U, from the results of our computer simulations as 

2

1 1

f

e e
eA

U udA u A
A L

= = ∑∫ ,                                                                                               (2) 

where A, Af and u are the total area of the unit cell, the area of the fluid and the intrinsic 

fluid velocity, respectively. The subscript “e” indicates the corresponding quantity for 

each triangular element. Using Eq. (1), the permeability of the fibrous media can then be 

calculated. On the flow domain, the steady state Navier–Stokes equations combined with 

the continuity equations were discretised into an unstructured, triangular mesh. They 

were then solved using a segregated, sequential solution algorithm. The developed 

matrices from assembly of linear triangular elements are then solved based on a Gaussian 

elimination algorithm. Some more technical details are given in Yazdchi et al. (2011, 
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2012). At the left and right pressure- and at the top and bottom and surface of the 

particles no-slip boundary conditions, i.e. zero velocity is applied. Similar to Chen and 

Papathanasiou (2007, 2008), a minimal distance, ∆min=dmin/d=0.05 is needed in 2D to 

avoid complete blockage. we assigned a virtual diameter ( )*
min1d d= + ∆  to each fiber, 

leading to the virtual porosity ( )( )2*
min1 1 1ε ε= − − + ∆ . While ε  represents the porosity 

available for the fluid, *ε  (i.e. porosity with artificially enlarged particles) is actually 

used for packing generation. The effect of ∆min on fibre arrangement and macroscopic 

permeability is investigated in Yazdchi et al. (2012). The mesh size effect was examined 

by comparing the simulation results for different resolutions (data not shown here). The 

number of elements varied from 5×105 to 106 depending on the porosity regime. The 

lower the porosity the more elements are needed in order to resolve the flow within the 

neighboring fibres. The horizontal velocity field of such a simulation at porosity ε=0.6 is 

shown in Fig. 1. We observed some dominant flow channels, especially at low porosities, 

which contribute over-proportionally to the fluid transport. More discussions on 

quantifying these channels and their relation to the macroscopic permeability are 

provided in Section 4. 

3. Microstructure characterization 

An important element in understanding of fibrous materials is the description of the local 

fibre arrangements and the possible correlations between their positions. The classical 

way for characterizing the structure, like disorder to order transition, is by inspection of 

its radial distribution function g(r), which is defined as the probability of finding the 

centre of a fibre inside an annulus of internal radius r and thickness dr (Chen and 
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Papathanasiou, 2007, 2008; Yazdchi et al., 2012; Reis et al., 2006). As the crystallization 

begins to occur at moderate porosities, peaks appear for values of r which correspond to 

the second (linear) neighbors in a hexagonal lattice in 2D or a FCC or HCP arrangements 

in 3D. The complete randomness of the fibre distribution on larger scale will assure that 

g(r)=1. However, as pointed out by Rintoul and Torquato (1996), this method is 

unsatisfying for two reasons: on the one hand the absence of clear peaks does not 

necessarily mean the absence of crystallization, and on the other hand it is difficult to 

determine exactly when the peak appears. In this section, we propose another way to 

characterize more quantitatively the microstructure of 2D, non-overlapping fibre 

packings, namely by analyzing (i) the statistical geometry of the Voronoi/Delaunay 

tessellation and (ii) the bond orientational order parameter, in a wide range of porosities. 

3.1 Voronoi diagram (VD) 

The Voronoi tessellation can be used to study the local and/or global ordering of packings 

of discs/fibres in 2D. Motivation stems from their variety of applications in studying 

correlations in packings of spheres (Oger et al., 1996; Richard et al., 1999), analysis for 

crystalline solids and super-cooled liquids (Tsumuraya et al., 1993; Yu et al., 2005), the 

growth of cellular materials (Pittet, 1999), and the geometrical analysis of colloidal 

aggregation (Earnshaw et al., 1996) and plasma dust crystals (Zheng and Earnshaw, 

1995). For a review of the theory and applications of Voronoi tessellations, see the books 

by Okabe et al. (1992) and Berg et al. (2008), and the surveys by Aurenhammer (1991) 

and Schliecker (2002).  

For equal discs (i.e. a simplified 2D representation of unidirectional random fibre arrays), 

as considered here, given a set of two or more but a finite number of distinct points 
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(generators) in the Euclidean plane, we associate all locations in that space with the 

closest member(s) of the point set with respect to the Euclidean distance. The result is a 

tessellation, called Voronoi diagram, of the plane into a set of regions associated with 

members of the point set, see thick red lines in Fig. 2. This construction is unique and 

fills the whole space with convex polygons. In a hexagonally close packed (densest) 

configuration, i.e. * 0.093hexε ≅ , the Voronoi tessellation consists of regular hexagons. It 

allows us to define the notion of ‘‘neighbor’’ without ambiguity for any packing fraction: 

two spheres/discs are neighbor if their Voronoi polyhedra share one face/edge. It can be 

easily generalized to radical tessellation for polydisperse assemblies of spheres (Richard 

et al., 1998) or discs (Gervois et al., 1995) by using the Laguerre distance between 

obstacles, which takes into account the size of each point species. 

The Delaunay triangulation (DT) is the dual graph of the Voronoi diagram. This graph 

has a node for every Voronoi cell and has an edge between two nodes if the 

corresponding cells share an edge, see thin black lines in Fig. 2. DT cells are always 

triangles in 2D, and are thus typically smaller than Voronoi cells. 

Recently, various studies have focused on the geometrical properties of Voronoi 

tessellations resulting from random point processes, i.e. 1ε = , to densely packed hard 

discs or spheres. In particular, Zhu et al. (2001) and Kumar and Kumaran (2005) 

observed that by decreasing the porosity the degree of randomness of the tessellation is 

decreased - the probability distribution functions (PDFs) of the statistical properties of the 

geometrical characteristics become more and more peaked and narrower - until the 

unique critical value of a regular tessellation, i.e. of hexagonal cells, is adapted.  
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In order to gain further insight into the relative arrangement of the Voronoi cells, their 

topological correlations and metric properties have been studied in the following. In 

particular, we focus on (i) the distribution and evolution of the number of faces, p(n) 

together with their 2nd and 3rd moments and (ii) the shape and regularity (or isotropy) of 

the Voronoi polygons at different porosities. 

3.1.1 Topological correlations for Voronoi tessellations 

This section is dedicated to the study of the evolution of the probability distribution of n-

sided polygons, p(n) when changing the porosity. Note that only the information obtained 

from the inner fibres, which were at least 5 fibre diameters away from the walls, was 

included in our analysis. This treatment should satisfactorily eliminate the wall/edge 

effects up to high densities. To get better statistics, the results were averaged over 10 

realizations with 104 MC perturbations. The two straightforward conservation laws are 

( ) 1
n

p n =∑      (normalization),           and                                                                        (3) 

( ) 6
n

np n =∑    (the average number of edges is 6),                                                          (4) 

as the consequence of the Euler theorem (Okabe et al., 1992; Smith, 1954). The 

distributions of the cell topologies, p(n) of Voronoi tessellations, generated at various 

porosities are observed to follow a discretised and truncated Gaussian shape (not shown 

here). The perfectly ordered structure is manifested by hexagonal cells, i.e. n=6 and 

p(n)=1, and disorder/randomness shows up as the presence of cells with other than six 

sides (topological defects). The increase of disorder in the disc/fibre assemblies at high 

porosities leads to an increase of the topological defect concentration, i.e. a broadening of 

p(n). 
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In the literature, both the topological defect concentration 1-p(6), and the variance (2nd 

central moment) ( ) ( )( )2 222
2 6

n

n n n n p n nµ = − ≡ − ≡ −∑  of the cell topologies, 

are used as measures of the degree of disorder (Miklius and Hilgenfeldt, 2012; Le Caer 

and Delannay, 1993; Lemaítre et al., 1991, 1993; Rivier, 1994). Lemaítre et al. (1993) 

were, to our knowledge, the first to suggest that the equation of state ( )( )2 6f pµ =  

could be universal in mosaics. In this sense, all information about topological disorder in 

these systems is contained in p(6). Astonishingly, Lemaítre’s law holds very robustly for 

most of experimental, numerical, and analytical data (Gervois et al., 1992).  

Fig. 3(a) shows the correlation between p(6) and the topological variance2µ  for different 

microstructures and at various porosities. In the ordered regime, i.e. ( )6 0.65p > , mainly 

5, 6 and 7 sided polygons with ( ) ( ) ( )( )5 7 1 6 / 2p p p≅ ≅ −  occur, and by applying the 

maximum entropy principle with the constraints in Eqs. (3) and (4) (Rivier, 1994), we 

obtain ( )2 1 6pµ = − ; it has the trivial virial expansion that corresponds to an ideal gas. 

By increasing the porosity, i.e. 0.45ε >  or * 0.39ε > , one enters the disordered regime 

and ( )( )2
2 1/ 2 6pµ π≅ . Finally, in the limit of vanishing density ( 1ε = ), the fibres are 

randomly distributed and one has ( )6 0.3p ≅  and 2 1.78µ ≅ . This limit is obtained by 

analyzing the Voronoi polygons generated from 107 randomly distributed points. The 

transition porosity * 0.39tε ≅  can be more clearly determined by plotting the third central 

moments of the n-sided polygon distributions, ( )3

3 n nµ = −   against porosity, as 

shown in Fig. 3(b). Note that this value is still far above the random close packing limit 
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* 0.16rcpε ≅  (Berryman, 1983), as compared also to the minimum hexagonal lattice 

porosity * 0.093hexε ≅ , the freezing point * 0.309fε ≅  (Alder and Wainwright, 1962) or the 

melting point * 0.284mε ≅  (Alder and Wainwright, 1962). 

 3.1.2 Metric properties 

The metrical properties of two-dimensional froths are often studied in terms of the 

average n-sided cell areas, nA  or the average cell perimeters, nL . Lewis’s law 

(Lewis, 1931) and Desch’s law (Desch, 1919) are two empirical relations which state that 

the average cell areas and perimeters vary linearly with n for certain systems, while for 

others nonlinear analogs have been observed (Le Caer and Delannay, 1993; Quilliet et al., 

2008; Glazier et al., 1987). Only recently, using the local, correlation-free granocentric 

model approach with no free parameters, Miklius and Hilgenfeldt (2012) construct 

accurate analytical descriptions for these empirical laws in 2D and Clusel et al. (2009) in 

3D. 

Combining the cell area and its perimeters, we apply the concept of shape factor, to 

further quantify the shape/circularity of the Voronoi cells as 

 
2

4

L

A
ζ

π
= .                                                                                                                         (5) 

In this dimensionless representation, two Voronoi polygons can have the same number of 

sides, n, but different values of ζ  (due to the irregularity of the polygons), since one of 

the advantages is that the shape factor, ζ  is a continuous variable while n is discrete. 

This quantity was recently used to study crystallization of 2D systems, both in 

simulations (Moucka and Nezbeda, 2005) and experiments (Reis et al., 2006; Abate and 
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Durian, 2006; Wang et al., 2010). By construction, 1ζ =  for a perfect circle, and is larger 

for more rough or elongated shapes, like pentagons or heptagons. For a hexagonal lattice 

(densest packing) one has 1.103hexζ =  and, in general, for a regular n-sided polygon 

( ) ( )/ tan /n nζ π π= .  

The shape factor distributions, ( )p ζ  and the way they change with porosity are 

displayed in Fig. 4(a). For dilute systems (disordered regime), ( )p ζ  exhibits a broad and 

flat distribution with values above hexζ , maximum at about 1.25ζ ≃  and an exponential 

tail. In this case, in fact, the particles are randomly distributed with no preferential type of 

polygons. At lower porosities, this peak progressively moves towards lower values, i.e. to 

more circular domains, and eventually bifurcates into two sharper peaks. Fig. 4(b) shows 

the average shape factor, ζ  taken over all polygons at different porosities for various 

system sizes (number of particles, N). The numerical results show that ζ  is not 

noticeably affected by system size. Interestingly, we observed that its value increases 

almost linearly with porosity (for 0.3 0.85ε< < ). A similar linear dependence was 

observed for packing configurations obtained from a different generation algorithms, 

namely an energy minimization approach (Yazdchi et al., 2012), data not shown here. 

Unlike the data presented in Fig. 3, the trend does not indicate a change at the transition 

porosity 0.45tε ≅  ( * 0.39tε ≅ ), and therefore this is not a good criterion for detecting the 

order to disorder transition. Finally, in the limit of random point distributions one has 

1.4ζ ≅ . This value is obtained from 107 randomly distributed points. 
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A drawback of the shape factor is that, with this definition, the regularity (or isotropy) of 

the Voronoi polygons can not be deduced. In other words, one has no information about 

the deviation of each vertex of a polygon from the principal axis. Therefore, we define a 

new dimensionless parameter, Φ   as 

1 2

1 2

I I

I I

−Φ =
+

,                                                                                                                      (6) 

where I1 and I2 are area moments about the principal axes of a polygon. For all Voronoi 

shapes, Φ  varies between zero and unity, although our numerical results show that it 

does not exceed a maximum value corresponding to a random cloud of points 0.43Φ ≅  

(see Fig. 5). For the polygons which are “isotropic”, like hexagons, one has 1 2I I≅  and 

therefore 0Φ ≅ . Polygons which are stretched along one of their principal axes have 

larger values of Φ , with 1Φ =  for as possible maximum. 

Fig. 5 shows the average Φ  taken over all polygons against porosity. As the porosity 

increases, the Φ  also increases, indicating a more anisotropic shape, until it reaches its 

maximum value for random points, i.e. 0.43Φ ≅ . Interestingly, two linear functions with 

different slopes can be fitted to the disordered and ordered regimes. Just as was observed 

in Fig. 3(b), the transition (crossing of the two lines) occurs at 0.45tε ≅  ( * 0.39tε ≅ ).  

3.2 Bond orientational order parameter 

The bond orientation angle, 6ψ , which is defined in terms of the nearest-neighbor bond 

angles, measures the hexagonal registry of nearest neighbors. This quantity has been used 

to detect local/global crystalline regions both in 2D and 3D, see for example (Kumar and 
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Kumaran, 2006; Halperin and Nelson, 1978; Jaster, 1999; Kuwasaki and Onuki, 2011; 

Kansal et al., 2000) and references therein. The sixfold global bond-orientational order 

parameter of the 2D, non-overlapping fibrous system is defined as 

6
6

1 1

1 1 i
ij

nN
ig

i ji

e
N n

θψ
= =

= ∑ ∑ ,                                                                                                      (7) 

where ijθ  is the angle between particle i and its neighbors j with respect to an arbitrary 

but fixed reference axis, and ni denotes the number of nearest neighbors of particle i. 6
gψ  

is sensitive to (partial) crystallization and increases significantly from 6 ~ 0gψ  for a dilute 

system to 6 1gψ =  for a perfect hexagonal lattice. 

 A more local measure of orientational order can be obtained by evaluating the bond-

orientational order of each particle individually, and then averaging over all particles to 

give 

6
6

1 1

1 1 i
ij

nN
il

i ji

e
N n

θψ
= =

= ∑ ∑ .                                                                                                      (8) 

such a local measure of order is more sensitive to small local crystalline regions within a 

packing compared to its global counterpart 6
gψ , and thus avoids the possibility of 

“destructive” interference between differently oriented crystalline regions (Kansal et al., 

2000). Since 6
gψ  and 6

lψ  differ in the averaging procedure, they yield different numerical 

values.  

The first step in evaluating 6ψ , which was not precisely addressed before, is to detect the 

nearest neighbors of a reference particle i.  Fig. 6(a) shows the sensitivity of the local 6
lψ  
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to the number of nearest neighbors obtained from (i) a cutoff distance taken from the first 

minimum in the radial distribution function, g(r) (ii) Voronoi/ Delaunay neighbors or (iii) 

using up to and including the 6 nearest neighbors. Although the average of Voronoi 

neighbors is 6 (Eq. (4)), the local 6
lψ  calculated on the Voronoi neighbors have lower 

values than the ones calculated from the 6 nearest neighbors. Voronoi neighbors and the 

neighbors based on the cutoff distance result in almost the same numerical values. For 

decreasing porosity, the local 6
lψ  rises sharply at 0.45tε ≅ , indicating highly correlated 

local order. However, the transition is not sharp, since the order parameter increases 

slightly for 0.7ε ≤ . In very dilute regimes, the local order parameter ( )6 0.21l

ran
ψ ≅  is 

larger than zero, leading to the interesting question of whether there is a minimum, 

nonzero value of this parameter for a random system. A possible answer is that in random 

non-overlapping fibre arrays, there are still some local crystalline regions, due to the lack 

of geometric frustration, which are not correlated. In Fig. 6(b) the numerical values of the 

global, 6
gψ  and local, 6

lψ  are compared and plotted against porosity, using the Voronoi 

neighbors.  Unlike the local definition, the global 6
gψ  is almost zero in the disordered 

regime, due to phase cancellations, and increases sharply at 0.37ε ≅  , i.e. the freezing 

point (Alder and Wainwright, 1962), with the onset of hexagonal order.  

Beyond the classification of the microstructure, one would like to understand how 

(dis)order affects the transport properties, like permeability, of the fibrous material. This 

is the topic of the next section. 
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4. Macroscopic properties 

Recently, Yazdchi et al. (2012) showed that the mean values of the shortest Delaunay 

triangulation (DT) edges are nicely correlated with the macroscopic permeability at dilute 

and moderate porosities. In this section, we elaborate more on characterizing these 

channels (edges). 

4.1 Effective channels based on Delaunay triangulations  

Similar to Yazdchi et al. (2012), we define γ  as the mean channel width (gap), i.e. 

surface-to-surface distance based on the shortest Delaunay edges te , (averaged over 

Delaunay triangles) normalized by the fibre diameter, ( ) /te d dγ = − . Fig. 7 shows 

these shortest edges with channel width indicated by line thickness. These edges form a 

percolated edge-network channels through which the flow must go and, therefore 

correlate nicely with the permeability (see next section). Fig. 8 shows the PDF of widths 

and the histogram of the orientations of these channels. The distribution of the width of 

the channels, ( )p γ  undergoes a transition from a very wide distribution to a narrower 

with increasing peak at lower γ , and eventually to a steep exponential distribution as the 

porosity decreases. For a perfect triangular lattice it reduces to exactly the inter fibre 

(surface-to-surface) distance, i.e. min 0.05γ = ∆ = . The orientation of the channels is not 

much affected by the porosity and remains isotropic (no preferential direction) even for 

partially ordered structures at 0.4ε = . 

4.2 Permeability calculation 
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Based on the Navier-Stokes equation, Gebart (1992) derived the permeability of an 

idealized unidirectional reinforcement consisting of regularly ordered, parallel fibres both 

for flow along and for flow perpendicular to the fibres. The solution for flow along fibres 

has the same form as the Carman-Kozeny (CK) equation (Yazdchi et al., 2011; Carman, 

1937), while the solution for transverse flow has a different form  

2.5

2

1
1 ,

1
oK

C
d

ε
ε

 −= −  − 
                                                                                                    (9) 

where oε  is the critical porosity below which there is no permeating flow and C is a 

geometric factor ( 0.1C ≅ , 0.2146oε ≅  for square and 0.0578C ≅ , 0.0931oε ≅  for 

hexagonal arrays (Gebart, 1992)). Eq. (9) can be rewritten in terms ofγ  as 

2.5
2

K
C

d
γ=  ,                                                                                                                     (10) 

which is exact for regular/ordered arrays and was shown to be valid also for disordered 

arrays at high and moderate porosities (Yazdchi et al., 2012), with 0.2C ≅ . Relation (10) 

is remarkable, since it enables one to accurately determine the macroscopic permeability 

of a given packing just by averaging the narrowest Delaunay gaps, γ  from Delaunay 

triangles. Fig. 9(a) shows the variation of the normalized permeability (in red) as a 

function of γ  together with the local bond orientational order parameter, 6
lψ  (in blue 

points). The structural transition from disorder to order, indicated by strong increase in 

6
lψ , directly affects the macroscopic permeability. In disordered regimes, the 

permeability data nicely collapse on the theoretical power law relation (Eq. (10)). 

However, by appearance the local crystalline regions at 0.45ε < , the data start to deviate 
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from the power law. In fact the lubrication theory, i.e. Eqs. (9) or (10), are only valid for 

perfectly ordered (hexagonal/square) or disordered (random) configurations with 

different pre-factor, C, in Eq. (10). Systems that are partially ordered have lower 

permeability compared to the predicted value in Eq. (10), i.e. (K/d2)ran, due to stagnancy 

of the fluid between fibre aggregates or within crystalline regions of close-by fibres. With 

decreasing porosity the data deviate from the solid line showing the appearance of 

ordering in the structure.  In Yazdchi et al. (2012), we showed that this deviation can be 

represented by an exponential term  

( )2.5
2

K
C g

d
γ γ=        with        ( ) ( )01 mg g e γγ −= − , 0 0.5g ≅ , 3m ≅ .                           (11) 

Fig. 9(b) shows that indeed, for both permeability and local bond orientation order 

parameter, this deviation, i.e., 2
01 / m

p ranK K g e γχ −= − ≡  and ( )
6

6 61 /l

l l

ranψχ ψ ψ= −  

respectively, can be well represented by an exponential term. The macroscopic 

permeability departs from the random prediction less strongly than the microscopic local 

bond order parameter – while both are functions of the Delaunay mean gap distance, γ . 

The numerical results show that the other micro-measures do not display this exponential 

deviation and, therefore, the local bond orientational order parameter seems better 

representing the transition from disordered to ordered configurations. 

4.3 Further discussion and perspective for applications 

Composite materials with various microstructures are ideally suited to achieve 

multifunctional features for the applications in modern technology at various length 

scales. Progress in our ability to synthesize composites or porous materials at a wide 
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range of length scales and smart designing via computer simulations is expected to lead 

to new multifunctional materials. To our knowledge, there is so far no effective 

(semi)analytical method that can predict, with acceptable accuracy, the effective 

properties (such as permeability) of fibrous materials, while taking into account the 

effects of microstructure. To achieve a reliable prediction, one needs to work on a full 

description of the structural details of fibrous materials. However, it is extremely 

difficult, if not impossible, to completely describe the internal structure of a fibrous 

medium due to its complex and stochastic nature. Our study is only one step towards a 

more complete multi-scale modeling of realistic 3D random fibrous structures. 

The simple microstructural relationships proposed here as predictions of the macroscopic 

permeability are remarkable: (i) they enable us to accurately determine the macroscopic 

permeability of a given packing just by measuring the 2nd narrowest channels (or equally 

the narrowest Delaunay edges), from only particle/fibre positions; (ii) they provide a 

powerful predictive tool for various fibrous product designs and performance 

optimizations; and (iii) they can be utilized to obtain simple (manufacturable) composite 

microstructures with targeted effective properties (Torquato et al., 2002; Torquato, 2009). 

Such analyses will lead to more insights into the genesis of optimized microstructures 

and can be pursued in future work. Furthermore, our results can be used for calibration 

and validation of more advanced models for particle–fluid interactions within a multi-

scale coarse graining and two-way coupled approach for moving fibres and deforming 

fibre-bundles, as carried out in our ongoing work (Srivastava et al., 2013).  
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5. Darcy’s law – upscaling the transport equations 

The empirical Darcy’s law, Eq. (1), is the key constitutive equation required to model up-

scaled (under)ground water flow at low velocities and to predict the permeability of 

porous media. Though the volume-averaged equations, like Darcy’s law, are used 

extensively in the literature, the method relies on length- and time-scale constraints which 

remain poorly understood. As shown in the previous section, the macroscopic transport 

properties, such as permeability, are linked to more fundamental equations describing the 

microscale behavior of fluids in porous materials, see also Bird et al. (2001) and Grouve 

et al., (2008). 

In this section, we verify the validity of the macroscopic phenomenological Darcy’s law 

at various length scales in a wide range of porosities. We recognize that the application of 

the pore-scale analysis requires characterization of the pore-scale geometry (and/or size) 

of the porous material. The Voronoi/Delaunay tessellation and their statistics are 

employed to obtain this essential geometrical (and/or length-scale) information. 

5.1 Uniform cells 

In order to study the validity of Darcy’s law at different length scales, we divide our 

system into smaller uniform square cells as shown in Fig. 10(a) for porosity 0.6ε = . The 

corresponding fully resolved horizontal velocity field is shown in Fig. 10(b). Since we 

have sufficient number of elements between neighboring fibers, i.e. at least ~10 elements, 

all the velocity fluctuations and flow patterns can be captured at this length-scale. By 

upscaling (smoothing out) the velocity field, the permeability of each square cell, Kc can 

be calculated from Darcy’s law, as 
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,         with              
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= ∑ ,    2
c cA a= ,                                         (12) 

where Uc, ca , ec and ( ) ( )/ 2 / 2 /t b t b
c r r l l cp p p p p a ∇ = + − +   (t, b, r and l represent the 

pressure values at top, bottom, right and left sides of the cell, respectively) are average 

velocity, cell length, the elements within the cell and the pressure gradient for each 

individual cell, respectively. The variation of average cell velocity, Uc at porosity 0.6ε =  

for the different cell areas, Ac normalized by the particle area, 2 / 4pA dπ=  is shown in 

Fig. 10(c) and (d) for / 20c pA A ≅  and / 160c pA A ≅ , respectively. At higher resolutions, 

i.e. smaller /c pA A , we see larger fluctuations (i.e. more flow heterogeneity/details) 

around the macroscopic average velocity, 64.07 10U −= × [m/s] obtained for the whole 

system, using the parameters specified in Section 2. This can be observed more clearly 

from the PDF of the cell average velocities, Uc at different resolutions as shown in Fig. 

11(b). For small averaging cells, i.e. / ~ 1c pA A , the probability distribution of average 

cell velocities, ( )cp U  can be described by the two-parameter Gamma distribution as 

( ) ( ) ( )1 exp ,c c cp U U U
θ

θλ θ
θ

−= −
Γ

     for    , 0θ λ > ,                                                         (13) 

where θ  and λ  are, by definition, shape and scale parameters and ( )θΓ  is the Gamma 

function. 

The mean value of Gamma distributed average cell velocities is cU U
θ
λ

= = . Written in 

terms of averaged velocity, ( )cp U  has only one free parameter which is 
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( )
1

exp ,c c cU U U
p

U U U

θθθ θ
θ

−
      = −      Γ      

     for    0θ > .                                               (14) 

The value of θ  starts from 1θ = , i.e. exponential distribution, for small cell size, 

/ 1c pA A ≅  (see the black line in Fig. 11(b)) and increases to ~3 for larger cell sizes, 

/ 10c pA A ≅ . For larger / 20c pA A > , the ( )/cp U U  becomes more and more peaked and 

narrower. The PDF of cell porosities, ( )/cp ε ε  at the macroscopic (average) porosity 

0.6ε =  is shown in Fig. 11(a). We observed that at small cell sizes, the ( )/cp ε ε   

follows a uniform distribution, i.e. horizontal line. However, at larger resolutions, the 

( )/cp ε ε  is fitted best by a Gaussian distribution as 

2
/ 11 1

exp ,
22

c cp
ε ε ε
ε σσ π

 −   = −         
                                                                        (15) 

where σ  is the standard deviation of the data. By increasing the cell size, σ  decreases 

till it becomes only scattered points around the mean value, i.e. / 1cε ε ≃ . Similar 

behavior and distributions were observed at different porosities (data not shown here). 

Note that at all cell lengths, the mean value of average cell velocity, <Uc> or pressure 

gradients, < cp∇ > are equal to their total average velocity, U or pressure gradient, p∇  

(with maximum discrepancy of 2% due to ignoring the boundary elements and size 

effect, not shown here).  

Knowing the average velocity and pressure gradient for each cell, one can calculate, from 

Eq. (12), the permeabilities for each individual cell as shown in Fig. 12(a) as scattered 
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data for different porosities and cell sizes. The solid line shows the macroscopic 

permeability obtained for the whole system.  

As expected, smaller cell areas lead to more scattered (fluctuating) permeabilities around 

the macroscopic value (black line). For sufficiently large cell sizes, i.e. ac~L, the average 

of cell permeabilities, <Kc> approaches the macroscopic permeability, K obtained for the 

whole system. Fig. 12(b) shows the deviation of <Kc> from the macroscopic permeability 

plotted against normalized cell area, Ac/Ap at different porosities. By increasing the 

normalized area, the deviation decreases linearly with slope ~ -1. Interestingly, this trend 

is almost the same at all porosities.  

In summary, the permeability for each cell is very sensitive to the averaging area with 

slow statistical convergence to the macroscopic value. Small areas, i.e. Ac~Ap, lead to 

more fluctuations in permeability in which the average, unlike velocity and porosity, will 

not approach the macroscopic value. Incorporating the observed distributions in a more 

accurate stochastic drag closure (or permeability) for advanced, coarse fluid-particle 

simulations is partly done in Srivastava et al. (2013) and can be further conducted in 

future. 

5.2 Unstructured cells  

To study the effect of shape of the averaging cell on the macroscopic permeability and 

averaging procedure, the Voronoi polygon and their dual graph, the Delaunay 

triangulations (DT), are employed as basic averaging area in this section. 

The variation of average velocity at porosity 0.6ε =  is shown in Fig. 13 using (a) 

Delaunay triangulation and (b) Voronoi polygons as averaging area. The average Voronoi 
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area <AVD> is always identical to the inverse of fibre density (number of fibres per unit 

area) equal to <AVD>=0.5. Similarly, the average Delaunay triangle area is half of the 

Voronoi areas, i.e. <ADT>=<AVD>/2=0.25. As expected using DT, due to smaller average 

cell area or higher resolution, one can capture more fluid details/heterogeneity and 

distinguish the dominant fluid channels. 

The probability distribution function of cell porosities and average cell velocities at 

macroscopic porosity 0.6ε =  is shown in Fig. 14. We observe that the PDF of the 

average cell porosity not only depends on the cell sizes but also on the shape of the cell 

area. Although the average cell area for both VD and DT are relatively small, however 

the PDF of cell porosities can be fitted by a Gaussian distribution, i.e. similar to larger 

uniform cell sizes. Surprisingly, the PDF of average cell velocities is not much affected 

by the cell shape/size and can be well approximated by a Gamma distribution for all VD, 

DT or uniform cells with ~ 1θ , see Eq. (14).  

Fig. 15 shows the PDF of (a) pressure gradients and (b) normalized permeabilities using 

Voronoi cells at various porosities. We observed that PDF of pressure gradients in 

Voronoi polygons follows a Cauchy distribution as 

( )2 2

1
,

/ 1
VD

VD

p
p

p p p

α
π α

  ∇
 =   ∇ ∇ ∇ − +   

                                                                         (16) 

where α  is the scale parameter and specifies the half-width at half-maximum (HWHM). 

For an infinitesimal scale parameter (~ 0α ), the Cauchy distribution reduces to Dirac 

delta function. However, the PDF of permeabilities within each Voronoi cell can be best 
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fitted to a Gamma distribution. The both pressure gradient and permeability distributions 

seem to be weakly dependent on macroscopic porosity. 

Similar to the analysis for uniform cells (Fig. 11), one can now define a coarse-grained 

length scale for Delaunay or Voronoi cells to investigate the evolution of distributions of 

pressure gradient or fluid velocity at coarser levels. This has been carrying out in our 

ongoing research. 

6. Summary and conclusions 

The transverse permeability for creeping flow through unidirectional (dis)ordered 1D an 

array of fibers/cylinders/discs has been studied numerically using the finite element 

method (FEM). Several micro-structural order parameters were introduced and employed 

to characterize the transition, controlled by the effective packing fraction, from disorder 

to partial order. In this context, the Voronoi and Delaunay diagrams are of interest as they 

provide information about nearest neighbors, gap distances and other structural properties 

of fibrous materials. In an ongoing research, the Delaunay triangulations have been also 

used both as a contact detection tool and a FE mesh in dense particulate flows (Srivastava 

et al., 2013). Recently, we observed that the structural transition also affects the flow 

behavior at inertial (high Reynolds numbers) regimes (Yazdchi and Luding, 2012; 

Yazdchi, 2012; Narvaez et al., 2013).  

The microstructure can be characterized by the means and distributions of local 

parameters, such as the number of faces, shape and regularity of Voronoi polygons, 

shortest Delaunay triangulation edges or gaps and local bond orientation measures. The 

numerical results show that the 3rd moment of the probability distribution of six-sided 
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Voronoi polygons shows an increase at the transition porosity * 0.39tε ≅  . The average 

shape of the Voronoi polygons, ζ  increases almost linearly by increasing the porosity, 

regardless of the system size and packing generator algorithm. Furthermore, the average 

area moment of the Voronoi polygons, Φ  increases linearly by increasing the porosity 

with larger slope in the ordered case, relative to the disordered one.  

The numerical experiments suggest a unique, scaling power law relationship between the 

permeability obtained from fluid flow simulations and the mean value of the shortest 

Delaunay triangulation gaps. Locally ordered regions, which cause a drop in the 

macroscopic permeability, can be detected by the local definition of the bond 

orientational order parameter, 6
lψ . With decreasing porosity, both permeability and local 

bond orientational order parameter display an exponential deviation from the random 

case – where the bond order parameter deviation grows about three times faster. 

Finally, the validity of the macroscopic Darcy’s law at various length scales was studied 

using both uniform and Voronoi/Delaunay cells, in a wide range of porosities. We found 

universal but different distributions for pressure gradient and permeabilities using 

Voronoi polygons as an averaging area. The physical interpretation and correlation 

between these probabilities has to be addressed in the future, as the application of the 

proposed model/distributions for other macroscopic properties, like the heat conductivity. 

Moreover, the extension to real, non-parallel, deforming 3D structures of (possibly) 

moving fibres with friction and reptation remains a challenge for future work. 
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Figure caption: 

Figure 1: Illustration of N=3000 randomly distributed fibres (particles) using a Monte 
Carlo procedure at porosity 0.6ε =  with minimum inter fibre distance ∆min=0.05. The 
zoom shows the corresponding horizontal velocity field. 

Figure 2:  Illustration of the Voronoi (red line) and Delaunay (black lines) tessellations 
for the center part of a system of identical discs/fibres at (a) dilute, 0.8ε =  and (b) dense, 

0.4ε =  regimes for ∆min=0.05. 

Figure 3: (a) The correlation between p(6) and the topological variance2µ  for various 

structures and porosities. The analytical theories, represented by solid lines, are 
calculated by the Maxent method (Rivier, 1994). (b) Variation of the third moment of n-
sided polygon distributions, 3µ  plotted against p(6). The transition from order to disorder 

occurs at 0.45tε ≅ ( * 0.39tε ≅ ). 

Figure 4: (a) The probability distribution of the shape factor, ζ  at different porosities. 
(b) Average shape factor plotted against porosity for different number of fibres/discs. The 
solid red line shows the best linear least square fit. All data are averaged over 10 
realizations with 104 MC perturbations. 

Figure 5: Variation of average Φ  plotted against porosity. The solid lines show the 

best linear least square fits. Similar to the ( )( )2 6f pµ =  relation, the transition from 

order to disorder occurs at 0.45tε ≅  ( * 0.39tε ≅ ). 

Figure 6: (a) Illustration of the sensitivity of the local 6
lψ  to the nearest neighbor 

selection method. (b) Variation of the global, 6
gψ  and the local, 6

lψ  bond orientational 

order parameter plotted against porosity, using the Voronoi/Delaunay neighbors. 

Figure 7: The minimum Delaunay edges plotted for each Delaunay triangle for (a) dilute, 
0.8ε =  and (b) dense, 0.4ε =  systems. The link between two particles is thicker when 

the channel is wider. Only the center part of the system is shown. 

Figure 8: (a) The probability distribution function of shortest Delaunay edges, γ  at 
different porosities. (b) Polar histogram of the orientation of shortest Delaunay edges. All 
data are averaged over 10 realizations with 104 MC perturbations. 

Figure 9: (a) Variation of normalized permeability (red triangles, left axis) and local 
bond orientational parameter (blue dots, right axis) as function of mean shortest Delaunay 
gap length, γ . The solid line represents the power law, Eq. (10), obtained from 
lubrication theory and the dashed line represents the corrected power law, Eq. (11), see 
Yazdchi et al. (2012). At the transition porosity 0.45tε ≅ , the permeability data deviate 

considerably from the solid line power law for random structures. (b) Deviation of 
normalized permeability and local bond orientation order parameter from their random 
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(disordered) values, i.e., 1 /p ranK Kχ = −  and ( )
6

6 61 /l

l l

ranψχ ψ ψ= − , respectively, 

plotted against γ . 

Figure 10: (a) Centre part of N=3000 randomly distributed fibres (particles) at porosity 
ε =0.6. The red cells show the various averaging cell areas; (b) the corresponding 
horizontal velocity field. The variation of average velocity, Uc at porosity 0.6ε =  for the 
cell sizes of (c) / 20c pA A ≅ , and (d) / 160c pA A ≅ . 

Figure 11: (a) The PDF of the cell porosity, cε  normalized with the macroscopic 

porosity, 0.6ε =  at different resolutions. The solid lines show the best fitted Gaussian 
distribution, see Eq. (15) for / 5c pA A =  (black line) and / 20c pA A =  (red line). (b) The 

PDF of the cell average velocities, Uc normalized with the macroscopic or mean value, U 
at different resolutions at porosity 0.6ε = . The solid lines show the best fitted gamma 
distribution, see Eq. (14) for / 1.25c pA A =  (black line) and / 5c pA A =  (red line).  

Figure 12: (a) variation of normalized permeability as a function of porosity for various 
averaging cell sizes. The circles and squares correspond to ac/L@0.05 and ac/L@0.15, 
respectively. (b) Deviation of averaged permeability, <Kc> from macroscopic 
permeability, K  as a function of normalized cell area at different porosities.  

Figure 13: Variation of average velocity at porosity 0.6ε =  using (a) Delaunay 
triangulation and (b) Voronoi polygons as an averaging area. 

Figure 14: The probability distribution function of (a) cell porosities and (b) average cell 
velocities at macroscopic porosity 0.6ε = .  

Figure 15: The probability distribution function of Voronoi cell (a) pressure gradients 
and (b) normalized permeabilities at various porosities. The solid lines show the best 
Cauchy distribution, Eq. (16), and Gamma distribution, Eq. (14), at porosity 0.6ε =  in 
(a) and (b), respectively. 
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