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Abstract

Owing largely to multiscale heterogeneity in thelertying fibrous structure, the physics
of fluid flow in and through fibrous media is indibly complex. Using fully resolved
finite element (FE) simulations of Newtonian, inquessible fluid flow perpendicular to
the fibers, the macroscopic permeability is cal@dain the creeping flow regime for
arrays of random, ideal, perfectly parallel fibers.

On the micro-scale, several order parameters, basedVoronoi and Delaunay
tessellations, are introduced to characterize thectsire of the randomly distributed,
parallel, non-overlapping fibre arrays. In partamylby analyzing the mean and the
distribution of the topological and metrical projes of Voronoi polygons, we observe a
smooth transition from disorder to (partial) oréeth decreasing porosity, i.e., increasing
packing fraction.

On the macro-scale, the effect of fibre arrangenagk local crystalline regions on the
macroscopic permeability is discussed. For botmpability and local bond orientation
order parameter, the deviation from a fully randmnfiguration can be well represented
by an exponential term as function of the meanwgalth, which links the macro- and the
micro-scales.

Finally, we verify the validity of the, originallymacroscopic Darcy’s law at various
smaller length scales, using local Voronoi/Delaucelfs as well as uniform square cells,
for a wide range of porosities. At various cellesizthe average value and probability
distributions of macroscopic quantities, such apesdicial fluid velocity, pressure
gradient or permeability, are obtained. These \whre compared with the macroscopic
permeability in Darcy’s law, as the basis for araiehical upscaling methodology.

Keywords: Darcy’s law; Porous media; Delaunay tessellatidomerical analysis;
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1. Introduction

Fluid flow through fibrous materials has a wide ganof applications including,
composite materials, fuel cells, heat exchangdimldgical) filters and transport of
ground water and pollutants (Bird et al., 2001 ynkability, i.e. the ability of the fluid to
flow, is perhaps the most important property inirtheanufacturing. Prediction of the
macroscopic permeability is a longstanding but skibllenging problem that dates back
to the work of Happel (1959) and Kuwabara (195%hwnore recent contributions by
Sangani and Acrivos (1982), Drummond and Tahir 4)9&ebart (1992) and Bruschke
and Advani (1993). Most of these models/predictiares complex with limited range of
validity. For example, Gebart (1992) presented apression for the transverse
permeability based on the lubrication approximatmaitid for ordered structures, which
are different from the generally disordered fibronaterials. For a review of the theory,
predictability and limitations of theses models $¥azdchi et al., 2012; Deen et al.,
2007; Zhu et al., 2008) and references therein.

Based on the orientation of the fibers in spad®pfis structures can be categorized into
three different classes: (i) 1D structure in whalhfibers are parallel with each other
(Sangani and Yao, 1988; Narvaez et al., 2013),2[@)structure in which fibers lie in
parallel planes with directional or random orieinias (Sobera and Kleijn, 2006;
Jaganathan et al., 2008) and (iii) 3D structuresvhich fibers are directionally or
randomly oriented in space (Tomadakis and Robert2005; Clague et al., 2000;
Stylianopoulos et al., 2008; Tomadakis and SotscH®93). In general, macroscopic

transport properties such as permeability (or ¢ heat transfer coefficient) are



functions of geometrical features of the porous iomad thus determination of exact

transport properties for 3D real fibrous materiaith random structures is very complex
and in many cases not possible. However, sevessarehers have argued that, in
principle, the permeability of random 2D and 3D iaethn be related to their values for
1D structures (Jackson and James, 1986; Tamaydamcmi, 2011; Mattern and Deen,
2007). Therefore, as basic step, to provide phisisight into the significance of the

microscopic structure for the macroscopic transpproperties, the transverse

permeability of 1D random structures is investiddtethe present study.

Darcy’s law is the most widely used empirical rlatfor the calculation of the pressure
drop across a homogeneous, isotropic and non-dafenporous medium. It states that,
at the macroscopic level and the limit of creepilogv regimes, the pressure gradient

Op, and the flow rate have a linear relation given by

_H
-Op=£U, 1
P= 1)

whereu andU are viscosity and horizontal superficial (disclegrgelocity, respectively.
The proportionality constari, is called the permeability of the medium andtiosgly
depends on the microstructure (e.g. fibre/partiskkape and arrangement, void
connectivity and inhomogeneity of the medium) aondogity. Darcy's law was originally
obtained from experiments (Lage and Antohe, 208d)later formalized using upscaling
(Whitaker, 1986), homogenization (Mei and Aurialt991) and volume averaging
(Valdes-Parada et al., 2009) techniques. It has s@d®wn that Darcy's law actually

represents the momentum equation for Stokes floeramed over a representative



volume element (RVE). In fact, in this represetati all complicated interactions

between fluid and solid (fibres) are lumped inte germeability (tensork.

The lack of a microscopic foundation has motivatieel development of relationships
between macroscopic parameters, like permeabdity, microstructural parameters, like
fibore arrangements, shape and orientation or teityo(flow path). Chen and
Papathanasiou (2007, 2008) computationally invastd the flow across randomly
distributed unidirectional arrays using the bougdgement method (BEM) and found a
direct correlation between permeability and the mnewearest inter-fibre spacing.
Papathanasiou (1996) performed a similar studyifadirectional square arrays of fibre
clusters (tows) using the BEM. His employed unitlsceare characterized by two
porosities: (i) inter-tow porosity, determined thetmacroscopic spatial arrangement of
the tows, and (ii) intra-tow porosity, determiney the fibre concentration inside each
tow. He showed that the effective permeability s¢emblies of fibre clusters depends
strongly on the intra-tow porosity only at low irtew porosity. In a recent study,
Yazdchi et al. (2012) proposed a power law relabietween the transverse permeability
obtained from finite element (FE) simulations armk tmean value of the shortest
Delaunay triangulation (DT) edges, constructed gidime centers of the fibres. For
sedimentary rocks, especially sandstones, KatzTénminpson (1986) suggested, using
percolation theory, a quadratic relation betweemmg@bility and microstructural
descriptors for rocks, i.e. the critical pore did@neDespite all these attempts, the effect
of microscopic fibre arrangements/structures, adied by the effective packing fraction,

on macroscopic permeability is still unclear.



The objective of this paper is to (i) computatidpahvestigate transverse flow through
1D, random fibre arrays in a wide range of poresit{(ii) understand and characterize the
microstructure, i.e. the ordered and disordere@staising several order parameters, (iii)
establish a relationship between macroscopic pdrititgeand the microstructure of the
fibrous materials and (iv) verify the validity oheé empirical Darcy’s law at various
length scales and porosities. Our results cannalhtbe used in more practically relevant
hybrid or coupled codes with two-way coupling begwehe fibers and the fluid to more
mimic a real fibre-tow production/impregnation pess as a big step towards the same

for the most general full 3D random structures.

To this end, the algorithm used to build the ihifilare configurations and the numerical
finite element (FE) procedure for solving flow/mam@m equations are presented in
Section 2. In Section 3, the geometrical (Vororessellation) and bond orientational
order parameters are introduced to quantify therastoucture. In particular, the
transition from disordered to ordered regimes iscused in detail. The connection
between structural (dis)order and macroscopic pabitiey is explained using shortest
Delaunay triangulation edges in Section 4. Findhg, validity of Darcy’s law at different
length scales is investigated by dividing the gysteto both smaller uniform cells and
irregular Voronoi/Delaunay polygons/triangles inctan 5. The paper is concluded in

Section 6 with a summary and outlook for futureeegsh and applications.

2. Mathematical formulation and methodology

A Monte Carlo (MC) approach was used to genekst8000 randomly distributed, non-

overlapping fibre arrays in a square domain withgtl, L. Given an initial fibre



configuration on a triangular lattice, the MC prdaee perturbs fibre centre locations in
randomly chosen directions and magnitudes (ChenPapdthanasiou, 2007, 2008). The
perturbation was rejected if it leads to overlaghwa neighboring fibre (up to 10
perturbations were used in our simulations). Witis tprocedure, we were able to
generate various packings at different porositied;Nzd?/(4L?) with d the diameter of
fibres, varying from dense/orderee=0.3) to very dilute/disordered<0.95) regimes.
Fig. 1 shows a schematic of such a packing; thee fiong axis is normal to the flow
direction, at porosity=0.6. Due to wall/edge effects, only the centet p&ithe system
will be analyzed. The effect of several microstanat parameters such as method of
generation, system size, wall/periodic boundariewveh been discussed elsewhere

(Yazdchi et al., 2012).

The FE software ANSYSwas used to calculate the horizontal superfigigdharge)
velocity, U, from the results of our computer simulations as

u=1
A

J. udA = %Zueﬁb : )
A e

whereA, As andu are the total area of the unit cell, the areshefftuid and the intrinsic
fluid velocity, respectively. The subscripg’“indicates the corresponding quantity for
each triangular element. Using Eq. (1), the pernligabf the fibrous media can then be
calculated. On the flow domain, the steady stateiédaStokes equations combined with
the continuity equations were discretised into astuctured, triangular mesh. They
were then solved using a segregated, sequentiati@olalgorithm. The developed

matrices from assembly of linear triangular elersere then solved based on a Gaussian

elimination algorithm. Some more technical detaite given in Yazdchi et al. (2011,



2012). At the left and right pressure- and at the &and bottom and surface of the
particles no-slip boundary conditions, i.e. zerdoeiy is applied. Similar to Chen and

Papathanasiou (2007, 2008), a minimal distangg=0min/d=0.05 is needed in 2D to

avoid complete blockage. we assigned a virtual dtamd” =d(1+A,,,) to each fiber,

leading to the virtual porosity’ =1-(1-£)(1+4,,,)°. While £ represents the porosity

available for the fluid,s™ (i.e. porosity with artificially enlarged partigleis actually
used for packing generation. The effectAgfi, on fibre arrangement and macroscopic
permeability is investigated in Yazdchi et al. (2D1The mesh size effect was examined
by comparing the simulation results for differeesalutions (data not shown here). The
number of elements varied fromx%0° to 10 depending on the porosity regime. The
lower the porosity the more elements are needextdar to resolve the flow within the
neighboring fibres. The horizontal velocity fielfl such a simulation at porosity0.6 is
shown in Fig. 1. We observed some dominant flownoleés, especially at low porosities,
which contribute over-proportionally to the fluidahsport. More discussions on
guantifying these channels and their relation te thacroscopic permeability are

provided in Section 4.
3. Microstructure characterization

An important element in understanding of fibrougenals is the description of the local
fibre arrangements and the possible correlationwden their positions. The classical
way for characterizing the structure, like disortieiorder transition, is by inspection of
its radial distribution functiorg(r), which is defined as the probability of findinkyet

centre of a fibre inside an annulus of internaliuad and thickness rd(Chen and



Papathanasiou, 2007, 2008; Yazdchi et al., 201& &el., 2006). As the crystallization
begins to occur at moderate porosities, peaks agpesalues ofr which correspond to
the second (linear) neighbors in a hexagonal &tti2D or a FCC or HCP arrangements
in 3D. The complete randomness of the fibre diatidn on larger scale will assure that
g(r)=1. However, as pointed out by Rintoul and Torqu§i996), this method is
unsatisfying for two reasons: on the one hand th&ermce of clear peaks does not
necessarily mean the absence of crystallizatiod, anthe other hand it is difficult to
determine exactly when the peak appears. In thidose we propose another way to
characterize more quantitatively the microstructwe 2D, non-overlapping fibre
packings, namely by analyzing (i) the statisticabmpetry of the Voronoi/Delaunay

tessellation and (ii) the bond orientational orp@rameter, in a wide range of porosities.

3.1 Voronoi diagram (VD)

The Voronoi tessellation can be used to studydhalland/or global ordering of packings
of discs/fibres in 2D. Motivation stems from theiariety of applications in studying

correlations in packings of spheres (Oger et 8961 Richard et al., 1999), analysis for
crystalline solids and super-cooled liquids (Tsuayaret al., 1993; Yu et al., 2005), the
growth of cellular materials (Pittet, 1999), ance tbeometrical analysis of colloidal

aggregation (Earnshaw et al., 1996) and plasma chystals (Zheng and Earnshaw,
1995). For a review of the theory and applicatioh¥oronoi tessellations, see the books
by Okabe et al. (1992) and Berg et al. (2008), thiedsurveys by Aurenhammer (1991)

and Schliecker (2002).

For equal discs (i.e. a simplified 2D representatbunidirectional random fibre arrays),

as considered here, given a set of two or moreabfimite number of distinct points



(generators) in the Euclidean plane, we associateaations in that space with the

closest member(s) of the point set with respet¢héoEuclidean distance. The result is a
tessellation, called Voronoi diagram, of the plam® a set of regions associated with
members of the point set, see thick red lines g Ei This construction is unique and

fills the whole space with convex polygons. In adgonally close packed (densest)
configuration, i.e.s_ [10.093, the Voronoi tessellation consists of regular lyexes. It

allows us to define the notion of “neighbor” withit ambiguity for any packing fraction:
two spheres/discs are neighbor if their Voronoiypetlra share one face/edge. It can be
easily generalized to radical tessellation for d@perse assemblies of spheres (Richard
et al., 1998) or discs (Gervois et al., 1995) bingighe Laguerre distance between

obstacles, which takes into account the size dfi amt species.

The Delaunay triangulation (DT) is the dual gragithe Voronoi diagram. This graph
has a node for every Voronoi cell and has an edgsvden two nodes if the
corresponding cells share an edge, see thin blaek in Fig. 2. DT cells are always

triangles in 2D, and are thus typically smallemthoronoi cells.

Recently, various studies have focused on the gemale properties of Voronoi

tessellations resulting from random point processes £ =1, to densely packed hard
discs or spheres. In particular, Zhu et al. (2084 Kumar and Kumaran (2005)
observed that by decreasing the porosity the degfreendomness of the tessellation is
decreased - the probability distribution functigR®Fs) of the statistical properties of the
geometrical characteristics become more and moakeoe and narrower - until the

unique critical value of a regular tessellatioa, of hexagonal cells, is adapted.



In order to gain further insight into the relatimerangement of the Voronoi cells, their
topological correlations and metric properties h&#een studied in the following. In
particular, we focus on (i) the distribution andokenion of the number of facep(n)
together with their ' and & moments and (i) the shape and regularity (orégny) of

the Voronoi polygons at different porosities.

3.1.1 Topological correlationsfor Voronoi tessellations

This section is dedicated to the study of the enauof the probability distribution af-
sided polygonsp(n) when changing the porosity. Note that only tHferimation obtained
from the inner fibres, which were at least 5 filoiameters away from the walls, was
included in our analysis. This treatment shoulds&attorily eliminate the wall/edge
effects up to high densities. To get better stafisthe results were averaged over 10

realizations with 1DMC perturbations. The two straightforward constoralaws are
> p(n)=1 (normalization), and (3)

> np(n)=6 (the average number of edges is 6), (4)

as the consequence of the Euler theorem (Okabd.,etl32; Smith, 1954). The
distributions of the cell topologieg(n) of Voronoi tessellations, generated at various
porosities are observed to follow a discretised tandcated Gaussian shape (not shown
here). The perfectly ordered structure is manitedig hexagonal cells, i.en=6 and
p(n)=1, and disorder/randomness shows up as the mwesdncells with other than six
sides (topological defects). The increase of dsord the disc/fibre assemblies at high

porosities leads to an increase of the topologle&tct concentration, i.e. a broadening of

p(n).
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In the literature, both the topological defect cemtcation 1p(6), and the variance 2
central moment), :<n2>—(n>2 E<(n—(n>)z> =Y p(n)(n-6)" of the cell topologies,

are used as measures of the degree of disordetiyMénd Hilgenfeldt, 2012; Le Caer

and Delannay, 1993; Lemaitre et al., 1991, 1998ieRi1994). Lemaitre et al. (1993)

were, to our knowledge, the first to suggest that equation of statg, = f ( p(6))
could be universal in mosaics. In this sense nfdirmation about topological disorder in
these systems is containedpi{). Astonishingly, Lemaitre’s law holds very robdudor
most of experimental, numerical, and analyticahd&ervois et al., 1992).

Fig. 3(a) shows the correlation betwg¥f) and the topological variangg for different
microstructures and at various porosities. In titeed regime, i.ep(6) > 0.65, mainly
5,6 and 7 sided polygons with(5) O p(7) O(1- p(6)) /Z occur, and by applying the
maximum entropy principle with the constraints iQsE(3) and (4) (Rivier, 1994), we

obtain , =1- p(6); it has the trivial virial expansion that corresgs to an ideal gas.

By increasing the porosity, i.e=>0.45 or £ >0.39, one enters the disordered regime

and 4, Dl/(2ﬂp2(6)). Finally, in the limit of vanishing densitys(=1), the fibres are

randomly distributed and one has(6) 00.3 and u, 01.78. This limit is obtained by

analyzing the Voronoi polygons generated from fandomly distributed points. The

transition porositye, [10.39 can be more clearly determined by plotting thedtlcentral
moments of then-sided polygon distributionsy3=<(n—<n>)3> against porosity, as

shown in Fig. 3(b). Note that this value is stdl fabove the random close packing limit

11



gfcp (00.16 (Berryman, 1983), as compared also to the mininhuragonal lattice
porosity &, [10.093, the freezing poink; [10.309 (Alder and Wainwright, 1962) or the

melting pointe,, (10.284 (Alder and Wainwright, 1962).

3.1.2 Metric properties

The metrical properties of two-dimensional frothe aften studied in terms of the

averagen-sided cell areas{A,) or the average cell perimeter§l. ). Lewis's law

(Lewis, 1931) and Desch’s law (Desch, 1919) aree¢mpirical relations which state that
the average cell areas and perimeters vary linegtlyn for certain systems, while for
others nonlinear analogs have been observed (LeaBdeDelannay, 1993; Quilliet et al.,
2008; Glazier et al., 1987). Only recently, usihg tocal, correlation-free granocentric
model approach with no free parameters, Miklius &hlhenfeldt (2012) construct
accurate analytical descriptions for these empitaas in 2D and Clusel et al. (2009) in

3D.

Combining the cell area and its perimeters, we yapipé concept of shape factor, to
further quantify the shape/circularity of the Voooiells as
L2

¢= 4rtA’ ©)

In this dimensionless representation, two Vororatygons can have the same number of

sides,n, but different values of (due to the irregularity of the polygons), since @f
the advantages is that the shape facforis a continuous variable while is discrete.

This quantity was recently used to study crystafion of 2D systems, both in

simulations (Moucka and Nezbeda, 2005) and expatsn@eis et al., 2006; Abate and

12



Durian, 2006; Wang et al., 2010). By constructigs1 for a perfect circle, and is larger
for more rough or elongated shapes, like pentagomeptagons. For a hexagonal lattice

(densest packing) one hag, =1.103 and, in general, for a regularsided polygon

¢ =(n/n)tan(n /m).

The shape factor distributionsp(() and the way they change with porosity are

displayed in Fig. 4(a). For dilute systems (discederegime),p({) exhibits a broad and
flat distribution with values abové,, , maximum at abouf =1.25 and an exponential

tail. In this case, in fact, the particles are @ndy distributed with no preferential type of
polygons. At lower porosities, this peak progresivmoves towards lower values, i.e. to

more circular domains, and eventually bifurcates two sharper peaks. Fig. 4(b) shows

the average shape factqy) taken over all polygons at different porosities ¥arious

system sizes (number of particld¥). The numerical results show tha{) is not

noticeably affected by system size. Interestinglhg, observed that its value increases
almost linearly with porosity (for0.3<¢< 0.85). A similar linear dependence was
observed for packing configurations obtained frondiferent generation algorithms,
namely an energy minimization approach (Yazdchalet2012), data not shown here.
Unlike the data presented in Fig. 3, the trend du#sndicate a change at the transition
porosity & [10.45 (& [0.39), and therefore this is not a good criterion fetetting the
order to disorder transition. Finally, in the linaf random point distributions one has

(¢) D1.4. This value is obtained from 16andomly distributed points.

13



A drawback of the shape factor is that, with thedirdtion, the regularity (or isotropy) of
the Voronoi polygons can not be deduced. In othendg; one has no information about
the deviation of each vertex of a polygon from phicipal axis. Therefore, we define a

new dimensionless parameter, as

- L=l

[ +1,

: (6)

wherel; andl, are area moments about the principal axes of ygpol For all Voronoi
shapes,® varies between zero and unity, although our nwakrnesults show that it
does not exceed a maximum value correspondingrémdom cloud of pointsb [10.43

(see Fig. 5). For the polygons which are “isotrpike hexagons, one hak 1, and

therefore ® (JO. Polygons which are stretched along one of thencgpal axes have

larger values ofd, with ® =1 for as possible maximum.

Fig. 5 shows the averag(@) taken over all polygons against porosity. As tbeopity

increases, théCID) also increases, indicating a more anisotropic eshaptil it reaches its

maximum value for random points, i.@.[10.43. Interestingly, two linear functions with

different slopes can be fitted to the disordered amlered regimes. Just as was observed

in Fig. 3(b), the transition (crossing of the timek) occurs at, [10.45 (& [0.39).

3.2 Bond orientational order parameter

The bond orientation angley,, which is defined in terms of the nearest-neightand

angles, measures the hexagonal registry of neaeegtbors. This quantity has been used

to detect local/global crystalline regions bot2Ih and 3D, see for example (Kumar and

14



Kumaran, 2006; Halperin and Nelson, 1978; Jas®@99;1Kuwasaki and Onuki, 2011;
Kansal et al., 2000) and references therein. Tkieldi global bond-orientational order

parameter of the 2D, non-overlapping fibrous systedefined as

(7)

iy
ERLIE

where ¢; is the angle between partidland its neighborg with respect to an arbitrary

but fixed reference axis, amgdenotes the number of nearest neighbors of partigt]

is sensitive to (partial) crystallization and inases significantly fromyy ~ 0 for a dilute

system toy, =1 for a perfect hexagonal lattice.

A more local measure of orientational order canobtained by evaluating the bond-
orientational order of each particle individualgnd then averaging over all particles to

give

(8)

such a local measure of order is more sensitintall local crystalline regions within a
packing compared to its global counterparf, and thus avoids the possibility of
“destructive” interference between differently oied crystalline regions (Kansal et al.,
2000). Sincey? andy, differ in the averaging procedure, they yield eliéint numerical

values.

The first step in evaluating/,, which was not precisely addressed before, i®tedal the

nearest neighbors of a reference pariicl€ig. 6(a) shows the sensitivity of the logz|

15



to the number of nearest neighbors obtained from ¢utoff distance taken from the first
minimum in the radial distribution functiog(r) (ii) Voronoi/ Delaunay neighbors or (iii)
using up to and including the 6 nearest neighbathough the average of Voronoi
neighbors is 6 (Eq. (4)), the locgl, calculated on the Voronoi neighbors have lower
values than the ones calculated from the 6 neasghbors. Voronoi neighbors and the
neighbors based on the cutoff distance result nmosat the same numerical values. For
decreasing porosity, the locghk, rises sharply at, J0.45, indicating highly correlated

local order. However, the transition is not shaimce the order parameter increases

slightly for £<0.7. In very dilute regimes, the local order parame(t,eg) [00.21 is

ran

larger than zero, leading to the interesting qoestf whether there is a minimum,
nonzero value of this parameter for a random sysfepossible answer is that in random
non-overlapping fibre arrays, there are still sdawal crystalline regions, due to the lack

of geometric frustration, which are not correlatedFig. 6(b) the numerical values of the

global, ¢¢ and local, are compared and plotted against porosity, usiegMoronoi
neighbors. Unlike the local definition, the globgf is almost zero in the disordered

regime, due to phase cancellations, and incredseplyg at £ [10.37 , i.e. the freezing

point (Alder and Wainwright, 1962), with the onséhexagonal order.

Beyond the classification of the microstructureeorould like to understand how
(dis)order affects the transport properties, likenpeability, of the fibrous material. This

is the topic of the next section.
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4. Macroscopic properties

Recently, Yazdchi et al. (2012) showed that the mealues of the shortest Delaunay
triangulation (DT) edges are nicely correlated wite macroscopic permeability at dilute
and moderate porosities. In this section, we ektbomore on characterizing these

channels (edges).

4.1 Effective channels based on Delaunay triangulations

Similar to Yazdchi et al. (2012), we define as the mean channel width (gap), i.e.

surface-to-surface distance based on the shortelstubay edgeéq), (averaged over

Delaunay triangles) normalized by the fibre diamete= ((q)—d)/d. Fig. 7 shows

these shortest edges with channel width indicatelinle thickness. These edges form a
percolated edge-network channels through which ftbee must go and, therefore
correlate nicely with the permeability (see nexdtem). Fig. 8 shows the PDF of widths

and the histogram of the orientations of these wlisn The distribution of the width of
the channels,p(y) undergoes a transition from a very wide distritmitto a narrower
with increasing peak at lowgr, and eventually to a steep exponential distrilbuéie the

porosity decreases. For a perfect triangular ktiicreduces to exactly the inter fibre

(surface-to-surface) distance, ig=A, =0.05. The orientation of the channels is not

much affected by the porosity and remains isotrdpea preferential direction) even for

partially ordered structures at=0.4.

4.2 Permeability calculation

17



Based on the Navier-Stokes equation, Gebart (19@P)yved the permeability of an
idealized unidirectional reinforcement consistirigegularly ordered, parallel fibres both
for flow along and for flow perpendicular to théres. The solution for flow along fibres
has the same form as the Carman-Kozeny (CK) equétiazdchi et al., 2011; Carman,

1937), while the solution for transverse flow hatifeerent form

K _~ [1-¢ _ *
?—C( 1-¢ 1] ’ S

where &, is the critical porosity below which there is nermeating flow andC is a

geometric factor € J0.1, &, [10.214€ for square andC [J0.057€, &, J0.0931 for

hexagonal arrays (Gebart, 1992)). Eq. (9) can Wwetten in terms of/ as

o (10)
which is exact for regular/ordered arrays and wesve to be valid also for disordered
arrays at high and moderate porosities (Yazdchl.e2012), withC [J0.2. Relation (10)
is remarkable, since it enables one to accuratetgrohine the macroscopic permeability
of a given packing just by averaging the narrow@slaunay gapsy from Delaunay
triangles. Fig. 9(a) shows the variation of themmalized permeability (in red) as a
function of y together with the local bond orientational ordargmeter,y (in blue
points). The structural transition from disorderawler, indicated by strong increase in
@, directly affects the macroscopic permeability. tlisordered regimes, the

permeability data nicely collapse on the theorétipawer law relation (Eq. (10)).

However, by appearance the local crystalline regetre < 0.45, the data start to deviate

18



from the power law. In fact the lubrication theorg,. Eqgs. (9) or (10), are only valid for
perfectly ordered (hexagonal/square) or disorde(ehdom) configurations with
different pre-factor,C, in Eq. (10). Systems that are partially orderexeh lower
permeability compared to the predicted value in @), i.e. K/d)a, due to stagnancy
of the fluid between fibre aggregates or withinstajline regions of close-by fibres. With
decreasing porosity the data deviate from the sliid showing the appearance of
ordering in the structure. In Yazdchi et al. (20Me showed that this deviation can be

represented by an exponential term

K . .
?:Cy”g(y) with g(y):(l— € V), g, 00.5, mO3. (11)
Fig. 9(b) shows that indeed, for both permeabiktyd local bond orientation order

parameter, this deviation, i.e,y, =[1-K /K |=g,e™ and Xw,ﬁ=‘1—wg/(wg)

respectively, can be well represented by an expg@ieterm. The macroscopic
permeability departs from the random predictiors Istsongly than the microscopic local
bond order parameter — while both are functionthefDelaunay mean gap distange,
The numerical results show that the other microsuess do not display this exponential
deviation and, therefore, the local bond orientatloorder parameter seems better

representing the transition from disordered to exdeonfigurations.

4.3 Further discussion and perspective for applications

Composite materials with various microstructure® adeally suited to achieve
multifunctional features for the applications in deon technology at various length

scales. Progress in our ability to synthesize caig® or porous materials at a wide
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range of length scales and smart designing via abengimulations is expected to lead
to new multifunctional materials. To our knowledghere is so far no effective
(semi)analytical method that can predict, with @table accuracy, the effective
properties (such as permeability) of fibrous maisri while taking into account the
effects of microstructure. To achieve a reliablediction, one needs to work on a full
description of the structural details of fibrous terals. However, it is extremely
difficult, if not impossible, to completely desceilthe internal structure of a fibrous
medium due to its complex and stochastic nature.ddudy is only one step towards a

more complete multi-scale modeling of realistic @ddom fibrous structures.

The simple microstructural relationships proposerelas predictions of the macroscopic
permeability are remarkable: (i) they enable uadourately determine the macroscopic
permeability of a given packing just by measuring 2nd narrowest channels (or equally
the narrowest Delaunay edges), from only partide#f positions; (ii) they provide a

powerful predictive tool for various fibrous produaesigns and performance
optimizations; and (iii) they can be utilized totain simple (manufacturable) composite
microstructures with targeted effective proper{iesrquato et al., 2002; Torquato, 2009).
Such analyses will lead to more insights into tkee@egis of optimized microstructures
and can be pursued in future work. Furthermore,results can be used for calibration
and validation of more advanced models for partitléd interactions within a multi-

scale coarse graining and two-way coupled apprdacimoving fibres and deforming

fibre-bundles, as carried out in our ongoing wd@k\astava et al., 2013).

20



5. Darcy’s law — upscaling the transport equations

The empirical Darcy’s law, Eq. (1), is the key citugive equation required to model up-
scaled (under)ground water flow at low velocitiex &o predict the permeability of
porous media. Though the volume-averaged equatilkes, Darcy’'s law, are used
extensively in the literature, the method reliedesrgth- and time-scale constraints which
remain poorly understood. As shown in the previsestion, the macroscopic transport
properties, such as permeability, are linked toarfandamental equations describing the
microscale behavior of fluids in porous materiakse also Bird et al. (2001) and Grouve

et al., (2008).

In this section, we verify the validity of the mascopic phenomenological Darcy’s law
at various length scales in a wide range of paessitVe recognize that the application of
the pore-scale analysis requires characterizatiadheopore-scale geometry (and/or size)
of the porous material. The Voronoi/Delaunay tdaieh and their statistics are

employed to obtain this essential geometrical @nléhgth-scale) information.

5.1 Uniformcells

In order to study the validity of Darcy’s law atffdrent length scales, we divide our
system into smaller uniform square cells as showiig. 10(a) for porosity =0.6. The
corresponding fully resolved horizontal velocitgl@l is shown in Fig. 10(b). Since we
have sufficient number of elements between neighbdibers, i.e. at least ~10 elements,
all the velocity fluctuations and flow patterns da@ captured at this length-scale. By
upscaling (smoothing out) the velocity field, thermeability of each square ceflg can

be calculated from Darcy'’s law, as
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_MJC H _i - 2
K°_Dpc’ with UC—A:EUGCA%, A =2, (12)

whereU, a_, e and Op, :[( p. + p}’)/2—(p|t + gb)/z} la, (t, b, r andl represent the

pressure values at top, bottom, right and leftssiolethe cell, respectively) are average
velocity, cell length, the elements within the cetid the pressure gradient for each

individual cell, respectively. The variation of agge cell velocitylJ. at porositye =0.6

for the different cell areag\. normalized by the particle ared, = m? /4 is shown in
Fig. 10(c) and (d) forA, / A, J20 and A / A, [J160, respectively. At higher resolutions,
i.e. smalleA,/ A, we see larger fluctuations (i.e. more flow hegereity/details)

around the macroscopic average veloclty= 4.07x 10°[m/s] obtained for the whole
system, using the parameters specified in Sectiofrh can be observed more clearly

from the PDF of the cell average velocitiek,at different resolutions as shown in Fig.

11(b). For small averaging cells, i.é,/ A, ~1, the probability distribution of average

cell velocities, p(Uc) can be described by the two-parameter Gammaluistn as

6

p(U,) = A UZtexp(-&J,), for 6,4>0, (13)

r(e)
where § and A are, by definition, shape and scale parametersid&) is the Gamma

function.

The mean value of Gamma distributed average chitites is(U ) =U :g . Written in

terms of averaged velocit;p(UC) has only one free parameter which is
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p(%j:ré(’;)(%jg_lexp[—e(%n, for 8>0. [14
The value of @ starts from &=1, i.e. exponential distribution, for small cell &jz
Al A 1 (see the black line in Fig. 11(b)) and increases-3 for larger cell sizes,
A I A, 010. For largerA,/ A, > 20, the p(U,/U) becomes more and more peaked and

narrower. The PDF of cell porositie$1(£c/ 5) at the macroscopic (average) porosity

£=0.6 is shown in Fig. 11(a). We observed that at small sizes, thep(e,/¢)
follows a uniform distribution, i.e. horizontal &n However, at larger resolutions, the

p(e./¢) is fitted best by a Gaussian distribution as

E\_ 1 21 50/5—12
(%) ome 30 ) )

where o is the standard deviation of the data. By increashe cell sizeg decreases

till it becomes only scattered points around theamealue, i.e.g /&=1. Similar

behavior and distributions were observed at diffeygorosities (data not shown here).
Note that at all cell lengths, the mean value adrage cell velocity, ¥.> or pressure
gradients, €lp.> are equal to their total average velocltyor pressure gradient]p
(with maximum discrepancy of 2% due to ignoring th@undary elements and size

effect, not shown here).

Knowing the average velocity and pressure gradergach cell, one can calculate, from

Eq. (12), the permeabilities for each individuall shown in Fig. 12(a) as scattered
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data for different porosities and cell sizes. Tluidsline shows the macroscopic

permeability obtained for the whole system.

As expected, smaller cell areas lead to more sedti{@uctuating) permeabilities around
the macroscopic value (black line). For sufficigndrge cell sizes, i.a.~L, the average
of cell permeabilities, K> approaches the macroscopic permeabiitpbtained for the
whole system. Fig. 12(b) shows the deviation &f><from the macroscopic permeability
plotted against normalized cell are&/A, at different porosities. By increasing the
normalized area, the deviation decreases lineatly slope ~ -1. Interestingly, this trend

is almost the same at all porosities.

In summary, the permeability for each cell is veensitive to the averaging area with
slow statistical convergence to the macroscopicesabmall areas, i.é:~A,, lead to
more fluctuations in permeability in which the aage, unlike velocity and porosity, will
not approach the macroscopic value. Incorporatiegabserved distributions in a more
accurate stochastic drag closure (or permeabifity) advanced, coarse fluid-particle
simulations is partly done in Srivastava et al.1@0and can be further conducted in

future.

5.2 Unstructured cells

To study the effect of shape of the averaging aelthe macroscopic permeability and
averaging procedure, the Voronoi polygon and théiral graph, the Delaunay

triangulations (DT), are employed as basic avegagiea in this section.

The variation of average velocity at porosity=0.6 is shown in Fig. 13 using (a)

Delaunay triangulation and (b) Voronoi polygonsagsraging area. The average Voronoi
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area Ayp> is always identical to the inverse of fibre dépgnumber of fibres per unit
area) equal to Ap>=0.5. Similarly, the average Delaunay triangleaai® half of the

Voronoi areas, i.e. Apr>=<Ap>/2=0.25. As expected using DT, due to smaller ayer
cell area or higher resolution, one can captureenfarid details/heterogeneity and

distinguish the dominant fluid channels.

The probability distribution function of cell poities and average cell velocities at
macroscopic porositye =0.6 is shown in Fig. 14. We observe that the PDF &f th
average cell porosity not only depends on thesiedis but also on the shape of the cell
area. Although the average cell area for both VD Bl are relatively small, however
the PDF of cell porosities can be fitted by a Gausslistribution, i.e. similar to larger
uniform cell sizes. Surprisingly, the PDF of averamll velocities is not much affected
by the cell shape/size and can be well approximiayeal Gamma distribution for all VD,

DT or uniform cells with@ ~ 1, see Eq. (14).

Fig. 15 shows the PDF of (a) pressure gradients(lndormalized permeabilities using
Voronoi cells at various porosities. We observedt tRDF of pressure gradients in

Voronoi polygons follows a Cauchy distribution as

Op ) | (Opp/Op-1) +a?

where a is the scale parameter and specifies the halfnatihalf-maximum (HWHM).
For an infinitesimal scale parametar { 0), the Cauchy distribution reduces to Dirac

delta function. However, the PDF of permeabilittgthin each Voronoi cell can be best
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fitted to a Gamma distribution. The both pressusdgnt and permeability distributions

seem to be weakly dependent on macroscopic porosity

Similar to the analysis for uniform cells (Fig. 1bne can now define a coarse-grained
length scale for Delaunay or Voronoi cells to irtigeste the evolution of distributions of
pressure gradient or fluid velocity at coarser lev&his has been carrying out in our

ongoing research.
6. Summary and conclusions

The transverse permeability for creeping flow tlglownidirectional (dis)ordered 1D an
array of fibers/cylinders/discs has been studiethernically using the finite element
method (FEM). Several micro-structural order par@msewere introduced and employed
to characterize the transition, controlled by tHeative packing fraction, from disorder
to partial order. In this context, the Voronoi ddelaunay diagrams are of interest as they
provide information about nearest neighbors, gapadces and other structural properties
of fibrous materials. In an ongoing research, tedabnay triangulations have been also
used both as a contact detection tool and a FE met#nse particulate flows (Srivastava
et al., 2013). Recently, we observed that the sitrattransition also affects the flow
behavior at inertial (high Reynolds numbers) regin{®azdchi and Luding, 2012;

Yazdchi, 2012; Narvaez et al., 2013).

The microstructure can be characterized by the meamd distributions of local
parameters, such as the number of faces, shapeegnthrity of Voronoi polygons,
shortest Delaunay triangulation edges or gaps acal bond orientation measures. The

numerical results show that th& 8roment of the probability distribution of six-sitle
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Voronoi polygons shows an increase at the tramsipiorosity & [10.39 . The average
shape of the Voronoi pongon(s() increases almost linearly by increasing the ptypsi

regardless of the system size and packing geneafgorithm. Furthermore, the average

area moment of the Voronoi pongor(sp) increases linearly by increasing the porosity

with larger slope in the ordered case, relativihéodisordered one.

The numerical experiments suggest a unique, scpbmger law relationship between the
permeability obtained from fluid flow simulationsié the mean value of the shortest
Delaunay triangulation gaps. Locally ordered regjowhich cause a drop in the

macroscopic permeability, can be detected by thealladefinition of the bond
orientational order parameteg, . With decreasing porosity, both permeability ancal

bond orientational order parameter display an e&pbtal deviation from the random

case — where the bond order parameter deviationsgabout three times faster.

Finally, the validity of the macroscopic Darcy’sMat various length scales was studied
using both uniform and Voronoi/Delaunay cells, iwide range of porosities. We found
universal but different distributions for pressugeadient and permeabilities using
Voronoi polygons as an averaging area. The physidairpretation and correlation
between these probabilities has to be addresséueifuture, as the application of the
proposed model/distributions for other macroscpaperties, like the heat conductivity.
Moreover, the extension to real, non-parallel, defog 3D structures of (possibly)

moving fibres with friction and reptation remainshallenge for future work.
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Figure caption:

Figure 1: lllustration of N=3000 randomly distributed fibres (particles) usadvionte
Carlo procedure at porosity =0.6 with minimum inter fibre distanca,,=0.05. The
zoom shows the corresponding horizontal veloceidfi

Figure 2: lllustration of the Voronoi (red line) and Defay (black lines) tessellations
for the center part of a system of identical diglos#s at (a) diluteg =0.8 and (b) dense,
£ =0.4 regimes for\n,i=0.05.

Figure 3: (a) The correlation betwegi{6) and the topological variangg for various

structures and porosities. The analytical theoriepresented by solid lines, are
calculated by the Maxent method (Rivier, 1994).\{h}iation of the third moment of-

sided polygon distributionsi, plotted againsp(6). The transition from order to disorder
occurs ate, [10.45( &, [10.39).

Figure 4: (a) The probability distribution of the shapetta¢ ¢ at different porosities.

(b) Average shape factor plotted against porositydifferent number of fibres/discs. The
solid red line shows the best linear least squéreAfl data are averaged over 10
realizations with 1DMC perturbations.

Figure 5: Variation of average{d>> plotted against porosity. The solid lines show the
best linear least square fits. Similar to tpe= f(p(6)) relation, the transition from
order to disorder occurs at [10.45 (& [10.39).

Figure 6. (a) lllustration of the sensitivity of the local, to the nearest neighbor

selection method. (b) Variation of the globgl? and the localg, bond orientational
order parameter plotted against porosity, usingvibinoi/Delaunay neighbors.

Figure 7. The minimum Delaunay edges plotted for each Dedguiriangle for (a) dilute,
£=0.8 and (b) denseg =0.4 systems. The link between two particles is thioklen
the channel is wider. Only the center part of tygesm is shown.

Figure 8: (a) The probability distribution function of shest Delaunay edges at

different porosities. (b) Polar histogram of theentation of shortest Delaunay edges. All
data are averaged over 10 realizations withMG perturbations.

Figure 9: (a) Variation of normalized permeability (redatmgles, left axis) and local
bond orientational parameter (blue dots, right)axssfunction of mean shortest Delaunay
gap length, y. The solid line represents the power law, Eq. ,(1dhtained from
lubrication theory and the dashed line represdmscorrected power law, Eq. (11), see
Yazdchi et al. (2012). At the transition porosiy10.45, the permeability data deviate
considerably from the solid line power law for rand structures. (b) Deviation of
normalized permeability and local bond orientatader parameter from their random
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(disordered) values, i.e.y, =[1-K/K_| and Xwg:‘l—w'e/(w'ﬁ) ‘ respectively,

ran

plotted againsy .

Figure 10: (a) Centre part oN=3000 randomly distributed fibres (particles) atgsity
£=0.6. The red cells show the various averaging asdas; (b) the corresponding
horizontal velocity field. The variation of averagelocity, U. at porositys = 0.6 for the
cell sizes of (c)A,/ A, 020, and (d)A,/ A, 160.

Figure 11: (a) The PDF of the cell porositys, normalized with the macroscopic
porosity, € =0.6 at different resolutions. The solid lines show Hest fitted Gaussian
distribution, see Eq. (15) foA, /A, =5 (black line) andA, / A, =20 (red line). (b) The
PDF of the cell average velocitidd; normalized with the macroscopic or mean valle,
at different resolutions at porositgy=0.6. The solid lines show the best fitted gamma
distribution, see Eq. (14) foA, / A, =1.25 (black line) andA, / A} =5 (red line).

Figure 12: (a) variation of normalized permeability as adtion of porosity for various
averaging cell sizes. The circles and squares sjoorel toa/L=0.05 anda/L=0.15,
respectively. (b) Deviation of averaged permeahilikks> from macroscopic
permeability K as a function of normalized cell area at diffeqgortosities.

Figure 13: Variation of average velocity at porosity =0.6 using (a) Delaunay
triangulation and (b) Voronoi polygons as an avierg@rea.

Figure 14: The probability distribution function of (a) cqlbrosities and (b) average cell
velocities at macroscopic porosity=0.6.

Figure 15: The probability distribution function of Voronaell (a) pressure gradients
and (b) normalized permeabilities at various pdiesi The solid lines show the best
Cauchy distribution, Eqg. (16), and Gamma distrimuitiEqg. (14), at porosity =0.6 in
(a) and (b), respectively.
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