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The influence of contact friction on the behavior of dense, polydisperse granular assemblies under
uniaxial (oedometric) loading and unloading deformation is studied using discrete element simula-
tions. Even though the uniaxial deformation protocol is one of the “simplest” element tests possible,
the evolution of the structural anisotropy necessitates its careful analysis and understanding, since
it is the source of interesting and unexpected observations.

On the macroscopic, homogenized, continuum scale, the deviatoric stress ratio and the deviatoric
fabric, i.e. the microstructure behave in a different fashion during uniaxial loading and unloading.
The maximal stress ratio and strain increase with increasing contact friction. In contrast, the
deviatoric fabric reaches its maximum at a unique strain level independent of friction, with the
maximal value decreasing with friction. For unloading, the reversal of stress displays a friction-
dependent delay with respect to strain, while the reversal of fabric is found to occur also with delay,
but slightly earlier.

On the micro-level, a friction-dependent non-symmetry of the proportion of weak/strong and slid-
ing/sticking contacts with respect to the total contacts during loading and unloading is observed.
Coupled to this, from the directional probability distribution, the “memory” and history-dependent
behavior of granular systems is confirmed. Surprisingly, while a rank-2 tensor is sufficient to describe
the evolution of the normal force directions, a sixth order harmonic approximation is necessary to
describe the probability distribution of contacts, tangential force and mobilized friction. We con-
clude that the simple uniaxial deformation activates microscopic phenomena not only in the active
Cartesian directions, but also at intermediate orientations, with the tilt angle being dependent on
friction, so that this microstructural features cause the interesting, non-trivial macroscopic behavior.

PACS numbers: 45.70.Cc, 81.05.Rm, 81.20.Ev

I. INTRODUCTION AND BACKGROUND

Granular materials are omnipresent in nature and
widely used in various industries ranging from food,
pharmaceutical, agriculture and mining – among others.
In many granular systems, interesting phenomena like
dilatancy, anisotropy, shear-band localization, history-
dependence, jamming and yield have attracted significant
scientific interest over the past decade [1, 19, 33]. The
bulk behavior of these materials depends on the behav-
ior of their constituents (particles) interacting through
contact forces. To understand their behavior, various
laboratory element tests can be performed [39, 46]. El-
ement tests are (ideally homogeneous) macroscopic tests
in which one can control the stress and/or strain path.
Such macroscopic experiments are important ingredients
in developing and calibrating constitutive relations, but
they provide little information on the microscopic origin
of the bulk flow behavior. An alternative is the Discrete
Element Method (DEM) [33], since it provides informa-
tion about the micro-structure beyond what is experi-
mentally accessible.

One element test which can easily be realized (experi-
mentally or numerically) is the uniaxial (or oedometric)
compression in a cylindrical or box geometry, involving
an axial deformation of a bulk sample while the lateral
boundaries of the system are fixed. During uniaxial load-

ing, isotropic compression and non-isotropic deformation
are superposed, so that both pressure and shear stress
build up. After reversal, pressure and shear stress decay
and the latter changes sign after a finite strain, which de-
pends on friction. When a granular material is sheared,
along with the shear stress, also anisotropy of the contact
network begins to develop. Besides density and stress,
anisotropy is an important ingredient to fully understand
the micro-macro mechanics of granular materials.

In addition, the effects of contact friction between
the constituent grains influences the micromechanical re-
sponse under uniaxial loading, such that a rather simple
element test begins to reveal interesting features. Sev-
eral studies have numerically investigated the extent to
which the response of granular media is affected by fric-
tion [2–4, 13, 48], especially in the triaxial geometry but
not many studies exist on uniaxial loading and unloading
of frictional systems [8].

Also, the transmission of stress between contacts is rel-
evant, as detailed in this study. Visualizations of the dis-
tribution of forces using photo-elastic particles in 2D is
about the only way to access this information experimen-
tally – see [38, 62] and references therein – even though
3D photoelasticity and other neutron diffraction methods
[60] have also been employed. Earlier numerical stud-
ies have highlighted the particular character of the con-
tact force network, showing that strong contacts carry-
ing force larger than the average, are oriented anisotropi-
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cally, with preferred direction parallel to the axis of com-
pression, while those originating from weak contacts are
isotropic or have a weak orientation orthogonal to the
compression axis [43, 53]. Another interesting issue is the
distribution and orientation of tangential forces during
the deformation of dense frictional packings [42, 52, 53].
In early, two-dimensional studies on frictional avalanch-
ing [42], it has been observed that friction is mobilized
mostly from weak contacts, whereas strong contacts re-
sist friction mobilization.

It is important at this point to distinguish between the
three-dimensional uniaxial element test and the triaxial
test. In the standard triaxial test, stress (or strain) is
imposed on the sample in the axial (vertical) direction
(σ1) while the stress in the lateral (horizontal) directions
(σ2 and σ3) are kept constant (i.e. σ1 6= σ2 = σ3). A
striking difference between both tests is in the lateral di-
rection where stress is kept constant in the triaxial test
(σ2 = σ3 = σ0) but considerably increases from its initial
value σ0, in the uniaxial test where (σ2 ≈ σ3)> σ0, since
the walls are fixed. As with the uniaxial test, the stress in
the axial direction is typically higher than the two lateral
stresses during triaxial loading. Even though the differ-
ence in the boundary conditions have been shown to lead
to different response [21], what has been less explored
is the microscopic origin of the the observed differences.
This is surprising as oedometric (uniaxial) tests are also
greatly relevant and widely used for the mechanical char-
acterization and study of the consolidation properties of
soils, as they reproduce field conditions. Thus, a deep
understanding of the kinematics at particle scale in such
device is of great importance. It is also worth mention-
ing that the triaxial test is mostly used in geotechnical
applications such as the testing of sands and rocks at
very high stress levels. Since the broader focus of our
research is the testing of frictional and cohesive granular
materials for applications in the food, chemical and agri-
cultural industries, we focus on the much simpler uniaxial
compression test where strong decrease in volume leads
to compression and considerable increase in pressure and
juxtapose our findings with those obtained in the triaxial
test.

In the present study, we use discrete element simu-
lations of confined uniaxial compression tests to inves-
tigate and relate the dependencies between the micro-
scopic observations presented hereafter with the evolu-
tion of macroscopic quantities such as pressure and de-
viatoric stress – and to further extend this to explain
the evolution of the structural/contact and force/stress
anisotropies.

This work is structured as follows. We first describe the
simulation method and model parameters along with the
preparation and test procedures in II. The definitions of
averaged micro-macro quantities including strain, stress
and structural anisotropies are presented in III. Where
given, anisotropy refers to not only the deviatoric stress,
but also to the direction-dependence and inhomogeneity
of forces, i.e., its microscopic origin. Next, we discuss the

results of the current study by presenting the evolution
of the stress and structural anisotropies during uniaxial
loading and unloading in IVB followed by the magnitude
and orientation of their respective eigenvalues in IVC.
Furthermore, we discuss friction mobilization in Section
IVE followed by the probability density functions of the
normal and tangential forces in IVF and the classifica-
tion of weak and strong forces in IVF. In Section V, we
discuss the polar representation of the contact distribu-
tion based on the constant surface and constant bin width
method and extract the structural anisotropy parameters
using a 6th order Legendre spherical harmonic approxi-
mation in section VA. Finally, the summary, conclusions
and outlook are presented in Section VI.

II. SIMULATION DETAILS

We use the Discrete Element Method (DEM) [33] with
a simple linear visco-elastic normal contact force law
fnn̂ = (kδ + γδ̇)n̂, where k is the spring stiffness, γn
is the contact viscosity parameter and δ or δ̇ are the
overlap or the relative velocity in the normal direction
n̂. The normal force is complemented by a tangential
force law [33], such that the total force at contact c is:
f c = fnn̂ + ftt̂, where n̂ · t̂ = 0, with tangential force
unit vector t̂. A summary of the values of the parame-
ters used is shown in Table I, with sliding and sticking
friction µ = µsl = µst and rolling– and torsion–torques
inactive (µr = µt = 0). An artificial viscous dissipation
force proportional to the velocity of the particle is added
for both translational and rotational degrees of freedom,
resembling the damping due to a background medium,
as e.g. a fluid.

A. Simulation set-up and boundary conditions

The simulation set-up is a cuboid volume [18], triaxial
box, with periodic boundaries on all sides. Since careful,
well-defined sample preparation is essential, to obtain re-
producible results [14], we follow a three-step procedure
where friction is active in all the preparation stages:

(i) Spherical particles are randomly generated in the
3D box with low volume fraction and rather large random
velocities, such that they have sufficient space and time
to exchange places and to randomize themselves.

(ii) This granular gas is then isotropically compressed
to a target volume fraction ν0 slightly below the jamming
volume fraction.

(iii) This is followed by a relaxation period at constant
volume fraction to allow the particles to dissipate their
kinetic energy before further preparation or the actual
element test is initiated.
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Value Unit Description

N 9261 [–] Number of particles

〈r〉 1 [mm] Average radius

w 1.5 [–] Polydispersity w = rmax/rmin

ρ 2000 [kg/m3] Particle density

kn 105 [kg/s2] Normal spring stiffness

kt 2.104 [kg/s2] Tangential spring stiffness

µ vary [–] Coefficient of friction

γn 1000 [kg/s] Viscosity – normal direction

γt 200 [kg/s] Viscosity – tangential direction

γbt 100 [kg/s] Background damping – translational

γbr 20 [kg/s] Background damping – rotational

tc 0.64 [µs] Contact duration (average)

TABLE I Summary and numerical values of particle
parameters used in the DEM simulations, where µ, the
contact coefficient of friction is varied in the following.

For more details, see Ref. [33].

B. Isotropic Compression Methods

After the three-step preparation, an isotropic compres-
sion test can be initiated to measure isotropic proper-
ties and to prepare further initial configurations at dif-
ferent volume fractions, with subsequent relaxation, so
that we have a series of different reference isotropic con-
figurations, achieved during loading and unloading, as
displayed in Fig. 1. The goal here is to approach a direc-
tion independent isotropic configuration above the jam-
ming volume fraction νc, i.e. the transition point from
fluid-like behavior to solid-like behavior [56]. Note that
the initial packings for the respective frictional configu-
rations are inherently different since they are prepared
with the different friction coefficients active from the be-
ginning of the first isotropic preparation stage (stage A
in Fig. 1). We only keep as control parameter the volume
fraction which is identical for the different configurations
even though other micro-macro quantities such as pres-
sure and coordination number will be different at a given
volume fraction.
In the current study, to obtain a homogeneous initial

isotropic configuration, several driving modes have been
compared and these modes are discussed briefly in the
following section. Later, for uniaxial tests, unless ex-
plicitly mentioned, the wall-driven uniaxial deformation
protocol is applied. We tested the wall-driven against
the strain-rate driven protocols for some quantities of in-
terest to this work and realize that they lead to mostly
the same results – besides some small details (see Sec.
II B 5). Note that particular attention must be placed on
the choice of the preparation protocol when other bound-
ary conditions or quantities are considered as this conclu-
sion may no longer hold. Even though strain-rate driven
produces more homogeneous systems, we use the wall-
driven mode since it more resembles the real experiment
therefore important for future experimental validation of
this work [9].

1. Wall-driven isotropic compression

In the first method, the periodic walls of the box are
subjected to a strain-controlled motion following a co-
sinusoidal law such that the position of e.g., the top wall
as function of time t is

z(t) = zf +
z0 − zf

2
(1 + cos 2πft) (1)

with engineering strain

εzz(t) = 1− z(t)

z0
, (2)

where z0 is the initial box length and zf is the box length
at maximum strain, respectively, and f = T−1 is the fre-
quency. The maximum deformation is reached after half
a period t = T/2, and the maximum strain-rate applied
during the deformation is ε̇max

zz = 2πf(z0 − zf )/(2z0) =
πf(z0−zf )/z0. The co-sinusoidal law allows for a smooth
start-up and finish of the motion so that shocks and in-
ertia effects are reduced. Also, the walls were driven in a
quasi-static manner such that the ratio of the kinetic and
potential energy (Ek/Ep ≤ 10−5). By performing slower
deformations, the energy ratio can be reduced even fur-
ther [18].

2. Pressure controlled isotropic deformation

In the pressure controlled mode, the (virtual) periodic
walls of the system are subjected to a co-sinusoidal peri-
odic pressure-control until the target pressure is achieved,
for details see [31]. To achieve this, we set the mass of
the virtual periodic walls of the system mw, to be of the
order of the total mass of the particles in the system,
leading to consistent behavior. The pressure controlled
motion of the walls is described by [31]:

mwẍw(t) = Fx(t)− pAx(t)− γwẋ(t), (3)

where Fx(t) is the force due to the bulk material, pAx(t)
is the force related to the external load and the last term
is a viscous force, which damps the motion of the wall so
that oscillations are reduced. Ax is the area of the wall
perpendicular to x where x can be replaced by y or z in
Eq. 3, for other walls. We find that large values of mw

generally lead to large energy fluctuations/oscillations
while the final pressure is more rapidly approached for
systems with smaller mw. In contrast, too small mw can
lead to violent motions and should be avoided. Addition-
ally, we must mention that for our simulations, the sensi-
tivity of the system to the wall dissipation is small since
the simulations are performed in the very slow, quasi-
static regime.
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3. Homogeneous strain-rate controlled isotropic
deformation

In this method, we apply a homogeneous strain rate
to all particles in the ensemble and to the walls in each
time-step, such that each particle experiences an affine si-
multaneous displacement according to the diagonal strain
rate tensor:

Ė = ε̇v

 −1 0 0
0 −1 0
0 0 −1

 ,

where ε̇v (> 0) is the rate amplitude applied until a tar-
get maximum volume fraction of e.g., νmax = 0.82 is
achieved. The DEM dynamics allows the particles to ap-
proach mechanical equilibrium by following the new un-
balanced forces that lead to non-affine displacements due
to the new forces at each time-step, or after a relaxation
period.

4. Swelling of Particles

An alternative isotropic deformation protocol is to
allow the particle radii r to slowly ‘grow’ at rate gr
from an initial volume fraction according to the relation
dr/dt = grr. The swelling of the particles leads to a
change in the volume fraction until the target volume
fraction is achieved [35, 41]. During the growth period,
the particle mass changes with the radius. Additionally,
the volume fraction also changes with time according to
the relation dν/dt = 3νgr, leading to the volume fraction
ν = ν0 exp{3grt} as function of time t. The detailed form
of the growth law with time is not relevant here, since all
rates are very small.

5. Comparison of driving modes

In summary, comparing the preparation methods, we
find that isotropic quantities like pressure, coordination
number or isotropic fabric evolve in a similar fashion for
all driving modes. However, the strain-rate controlled
isotropic preparation leads to very homogeneous config-
urations especially when viewed in terms of the mobilized
friction. In the wall driven case, we find that friction is
more highly mobilized in the contacts closest to the vir-
tual periodic walls of the system leading to slight inho-
mogeneities. However, when the particles closest to the
wall (up to ≈ 30 % of the box length) are excluded from
the computation, the resulting probability distributions
as well as the field quantities show negligible differences
with respect to the data from the full sample analysis.
Due to this assessment, we choose here to focus on the
wall driven isotropic compression since this more resem-
bles experimental set-ups and is especially suitable for

the subsequent uniaxial compression mode. Additionally,
the cosinusoidal wall motion allows for a smooth start-up
and end of the compression cycle unlike the “kick” (even
though tiny) to each particle in the strain rate controlled
protocol. To be confident with our conclusions, some
data are checked by comparing them with simulations
performed with the strain-rate protocol, without coming
to different conclusions.
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FIG. 1 Evolution of volume fraction as a function of
time. Region A represents the initial isotropic

compression below the jamming volume fraction. B
represents relaxation of the system to fully dissipate the
systems potential and kinetic energy and C represents
the subsequent isotropic compression up to νmax = 0.820

and then subsequent decompression. Cyan dots
represent some of the initial configurations, at different
νi, during the loading cycle; blue stars, for the same νi
are different configurations, since obtained during the
unloading cycle; both can be chosen for further study.

C. Uniaxial Loading and Unloading

After isotropic compression, initial states can be cho-
sen from the loading or unloading branch (after relax-
ation to allow for kinetic energy dissipation) from which
the uniaxial test is initiated.

As element test, uniaxial compression is achieved by
moving the periodic walls in the z-direction according to
a prescribed co-sinusoidal strain path [18], as shown in
Eq. (1), with diagonal strain-rate tensor

Ė = ε̇u

 0 0 0
0 0 0
0 0 −1

 ,

where ε̇u is the strain-rate (compression > 0 and decom-
pression/tension < 0) amplitude applied in the uniax-

ial mode. The negative sign (convention) of Ėzz corre-
sponds to a reduction of length, so that tensile deforma-
tion is positive. During loading (compression) the vol-
ume fraction increases from ν0 (at dimensionless time
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τ = t/Tmax = 0) to a maximum νmax = 0.820 (τ = 0.5)
and reverses back to the original ν0 at the end of the cy-
cle (τ = 1), after complete unloading. For more details
on preparation and other parameters, see Ref. [18].
Even though the strain is imposed only on one mo-

bile periodic “wall” with normal in the z-direction, which
leads to an increase of compressive stress during com-
pression, also the non-mobile x and y directions experi-
ence some stress increase as expected for “solid” mate-
rials with non-zero Poisson ratio, as discussed in more
detail in the following sections.
However, during decompression the stress on the pas-

sive walls is typically smaller than that of the mobile,
active wall, as consistent with anisotropic materials and
findings from simulations and laboratory element tests
using the bi-axial tester [28, 61] or the so-called lamb-
dameter [29]. One of the main goals of this study is to
also understand the behavior of the packing when com-
pression is changed/reversed to tension.

III. DEFINITIONS OF AVERAGED
QUANTITIES

In this section, we present the general definitions of
averaged microscopic and macroscopic quantities.

A. General Tensor Formulation

To describe and better understand the relationships
between macroscopic quantities, tensors are split up into
isotropic, deviatoric and antisymmetric parts. Each ten-
sor can be decomposed as:

T =
1

2
(T + T T ) +

1

2
(T − T T ) = T sym + T skew, (4)

where T sym and T skew are the symmetric and antisym-
metric parts of the tensor and the superscript T stands
for transpose. Since we will focus on the symmetric part,
we further decompose T sym uniquely into its spherical
and deviatoric parts as

T = TvI + TD (5)

with Tv = (1/3)tr(T ) and the traceless deviator TD =
T−TvI. The latter contains information about the eigen-
system of T , that is identical to the eigensystem of TD

itself.
Any (deviatoric) tensor can be transformed using a

transformation matrix R to obtain its diagonal form:

T eig
D =

 T
(1)
D 0 0

0 T
(2)
D 0

0 0 T
(3)
D

 = RT · TD ·R, (6)

TD = Ti − Tv/3, where Ti’s are eigenvalues of T . Also,

T
(1)
D , T

(2)
D and T

(3)
D are the eigenvalues sorted such that,

as convention, T
(1)
D ≥ T

(2)
D ≥ T

(3)
D . R = (n̂1, n̂2, n̂3) is

the orthogonal transformation matrix, composed of the
corresponding eigenvectors, which transforms TD to its
eigensystem. According to linear algebra, Eq. (6) can
also be expressed as:

TD · n̂α = Tα
Dn̂α (7)

with Tα
D and n̂α the α-eigenvalue and eigenvector of TD,

respectively. The symbol “·” represents the inner product
of the tensor TD and the vector n̂α which leads to a
vector parallel to n̂α.

In the following, we provide a consistent decomposition
for strain, stress and fabric tensors. We choose here to
describe each tensor in terms of its isotropic part (first
invariant of the tensor) and the second (J2) and third
(J3) invariant of the deviatoric tensor:

J2 =
1

2

[
(T

(1)
D )2 + (T

(2)
D )2 + (T

(3)
D )2

]
(8)

J3 = det(TD) = T
(1)
D T

(2)
D T

(3)
D (9)

J3 can further be written as J3 = T
(1)
D T

(2)
D (−T (1)

D −
T

(2)
D ), since we are dealing with deviators.

B. Strain

For any deformation, the isotropic part of the infinites-
imal strain tensor εv (in contrast to the true strain εv) is
defined as:

εv = ε̇vdt =
εxx + εyy + εzz

3
=

1

3
tr(E) =

1

3
tr(Ė)dt,

(10)
where εαα= ε̇ααdt with αα = xx, yy and zz as the di-
agonal elements of the strain tensor E in the Cartesian
x, y, z reference system. The integral of 3εv denoted

by εv = 3
∫ V

V0
εv, is the true or logarithmic strain, i.e.,

the volume change of the system, relative to the initial
reference volume, V0 [15].

Several definitions are available in literature [54] to de-
fine the deviatoric magnitude of the strain. Here, we use
the objective definition of the deviatoric strain in terms
of its eigenvalues εd

(1), εd
(2) and εd

(3) which is indepen-
dent of the sign convention.

The deviatoric strain is defined as:

εdev =

√√√√(
ε
(1)
d − ε

(2)
d

)2

+
(
ε
(2)
d − ε

(3)
d

)2

+
(
ε
(3)
d − ε

(1)
d

)2

2
,

(11)
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where εdev ≥ 0 is the magnitude of the deviatoric strain.
Note that the wall motion is strain controlled and the

infinitesimal strain corresponds to the external applied
strain. Hence the eigenvalues for the strain tensor are in
the Cartesian coordinate system (thus no transformation
is needed). For the purely isotropic strain, εISO = εvI,
with εdev = 0, which is direction independent by defini-
tion. The corresponding shape factor for the deviatoric

strain Λ(−ε), is represented as the ratio Λ(−ε) := ε
(2)
d /ε

(1)
d .

C. Stress

From the simulations, one can determine the stress ten-
sor (compressive stress is positive as convention) compo-
nents:

σαβ =
1

V

∑
p∈V

mpvpαv
p
β −

∑
c∈V

fcαl
c
β

 , (12)

with particle p, mass mp, velocity vp, contact c, force
fc and branch vector lc, while Greek letters represent
components x, y, and z [18, 32]. The first sum is the
kinetic energy density tensor while the second involves
the contact-force dyadic product with the branch vector.
Averaging, smoothing or coarse graining [58, 59] in the
vicinity of the averaging volume, V , weighted according
to the vicinity is not applied in this study, since aver-
ages are taken over the total volume. Furthermore, since
the data in this study are quasi-static, the first sum can
mostly be neglected. The isotropic stress is denoted as
hydrostatic pressure:

p = σv =
1

3
tr(σ) (13)

As already mentioned, we will focus on the eigenvalues
of the deviatoric stress tensor λsi = σD

i = σi−p, as defined
in section IIIA, with the principal directions being the
same for σ and σD. The (scalar) deviatoric stress for our
3D uniaxial simulations is:

σdev =

√
(λs1 − λs2)

2 + (λs1 − λs3)
2 + (λs2 − λs3)

2

2
. (14)

The deviatoric stress ratio, sdev = σdev/p, quantifies
the “stress anisotropy” - where σdev =

√
3Jσ

2 , with Jσ
2

the second invariant of the deviatoric stress tensor. The
third stress invariant Jσ

3 = λs1λ
s
2λ

s
3 = λs1λ

s
2(−λs1 − λs2) =

λs1
3(−Λ1

σ − (Λ1
σ)2) can be replaced by the shape fac-

tor Λσ := λs2/λ
s
1, which switches from +1 at maximum

uniaxial loading to -1/2 after some unloading as will be
shown below.

D. Structural (Fabric) Anisotropy

Besides the stress of a static packing of powders and
grains, an important microscopic quantity of interest is

the fabric/structure tensor. For disordered media, the
concept of a fabric tensor naturally occurs when the sys-
tem consists of an elastic network or a packing of discrete
particles. A possible expression for the components of the
fabric tensor is provided in [32, 36]:

F ν
αβ = 〈F p〉 = 1

V

∑
p∈V

V p
N∑
c=1

ncαn
c
β , (15)

where V p is the particle volume of particle p which lies
inside the averaging volume V , and nc is the normal vec-
tor pointing from the center of particle p to contact c.
F ν
αβ are thus the components of a symmetric rank two

3 × 3 tensor. In a large volume with some distribution
of particle radii, the relationship between the trace of
fabric, volume fraction ν and the average coordination
number C is given by 3Fv

ν := F ν
αα = g3νC, as first re-

ported in [34] and also confirmed from our wider friction
(µ) data. The term g3 corrects for the fact that the co-
ordination number for different sized particles is propor-
tional to their surface area such that for a monodisperse
packing g3 = 1 and for a polydisperse packing g3 > 1
[15, 36, 47].

A different formulation for the fabric tensor considers
simply the orientation of contacts normalized with the
total number of contacts Nc, as follows [30, 40, 45]:

Fαβ =
1

Nc

N∑
c=1

ncαn
c
β , (16)

The relationship between Eq. (15) and Eq. (16) is:

Fαβ
∼=

F ν
αβ

g3νC
=

3F ν
αβ

Fv
, (17)

with the equality holding in the case of monodisperse
systems.

We can define the deviatoric tensor FD and calculate
the eigenvalues λfi = Fi − Fv/3 with Fv = 1, and Fi the
eigenvalues of the deviatoric fabric based on Eq. (16).

We assume that the structural anisotropy in the system
is quantified (completely) by the anisotropy of fabric, i.e.,
the deviatoric fabric, with scalar magnitude similar to
Eqs. (11) and (14) as:

Fdev =

√
(λf1 − λf2 )

2 + (λf1 − λf3 )
2 + (λf2 − λf3 )

2

2
, (18)

proportional to the second invariant of FD, Fdev =√
3JF

2 , where λf1 , λ
f
2 and λf3 are the three eigenvalues

of the deviatoric fabric tensor.
Alternatively, a simpler definition of the deviatoric fab-

ric for an axial symmetric element test takes into account
the difference between the fabric eigenvalue of the main
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compressive (axial) direction and the average values in
the isotropic plane as follows:

F ∗
dev = λf1 − λf2 + λf3

2
. (19)

Note that if λf2 = λf3 , Eqs. (18) and (19) coincide.
Analogous to equations (18) and (19), Fdev and F ∗

dev can
also be described using the definition of fabric presented
in Eq. (15).

E. Eigenvector Orientation

Due to the axial symmetry of the uniaxial compression
mode, the orientation of the eigenvectors of stress and
fabric can be defined with reference to the main com-
pressive z-direction as:

θα = arccos
(
n̂(α) · ẑ

)
(20)

where ẑ is the unit vector in the z-direction. Addition-
ally, orientations are projected such that they lie within
the range to π/2.

IV. RESULTS AND OBSERVATIONS

In this section, as results of the current study, first
we will discuss the influence of friction on the evolution
of stress and structural anisotropy as functions of de-
viatoric strain during loading and unloading. To com-
plement these results, we investigate the magnitude and
orientation of the eigenvalues of stress and fabric during
loading and unloading and their respective shape factors.
To gain insights into the relationship between the nor-
mal and tangential force on the macroscopic stress and
structure, we report briefly their probability density func-
tions (pdfs) for different frictional systems, as well as the
force intensity weighted by the contact state. Finally, we
present a 6th order harmonic approximation of the po-
lar representation of contacts and forces to describe the
axial-symmetric structural anisotropy, relating fabric to
the pdfs.

A. Pressure and Coordination Number

Isotropic quantities during loading and unloading for
various deformation paths were presented in Ref. [18] for
frictionless particles and in Ref. [16] for frictional parti-
cles and will not be discussed in detail here. We only
note that the coordination number and the hydrostatic
pressure scale quantitatively differently with isotropic
strain but behave in a very similar fashion in the cases of
isotropic, pure deviatoric and uniaxial compression. The

effects of polydispersity on the evolution of the isotropic
quantities have also been extensively studied in Ref. [25]
for various deformation paths. The isotropic quantities,
namely pressure, coordination number and fraction of
rattlers show a systematic dependence on the deforma-
tion mode and polydispersity via the respective jamming
volume fractions. In addition, the pressure is coupled
to the deviatoric strain via the structural anisotropy, as
discussed in the next subsection.

Our uniaxial test starts from an initial volume frac-
tion νi =0.692 above the jamming volume fraction and
reaches a maximum volume fraction νmax =0.82 during
loading before returning to νi for unloading. In Figs.
2(a) and 2(b), we plot the non-dimensional pressure p
for different friction coefficients µ = 0 to 1 during load-
ing and unloading, respectively. Here we define the non-
dimensional pressure as

p =
2〈r〉
3kn

tr(σ) (21)

where tr(σ) is the trace of the stress tensor. The load-
ing and unloading branches are close with the unloading
branch having a tiny shift to the right due to hysteretic
effects [15]. We observe that even though the different
initial configurations are identical with respect to the ini-
tial volume fraction, their initial pressure states are dif-
ferent since their friction coefficients are activated right
from the initial preparation stage (as in material being
filled into a constant volume sample-holder). An increase
in p with increasing µ is observed. Also, p increases with
increasing ν during uniaxial loading for all friction coeffi-
cients and for any given volume fraction. Extrapolating
the pressure data towards smaller ν to p→ 0 leads to the
respective jamming densities νc(µ), which decrease with
µ increasing [16]. Higher friction leads to more strongly
compacted packings, since jamming sets in at lower den-
sities, relative to the target density νi. The initial states
(with constant νi) are the basis of the sometimes counter-
intuitive behavior, observed in the uniaxial tests below.

Furthermore, in Figs. 2(c) and 2(d), we plot the evo-
lution of the coordination number C∗ as function of the
volume fraction ν and show its dependence on friction
during loading and unloading, respectively. The coordi-
nation number here is defined as the average number of
contacts per particle in the ensemble. Here, we exclude
the particles with less than four contacts (called rattlers)
since they do not contribute to the mechanical stability
of the packing [15, 18, 25]. During loading, we observe
an increase in the coordination number followed by a de-
crease after strain reversal. We observe a systematic de-
crease in the coordination number with friction with the
largest friction showing the smallest coordination num-
ber. This indicates that fewer contacts are necessary for
stability with increasing friction, even though p is larger.
For both p and C∗, the we observe a decreasing slope
with friction.

In the following sections, we will focus on the non-
isotropic quantities and their evolution with respect to
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FIG. 2 The non-dimensional pressure plotted as function of volume fraction under uniaxial deformation for different
friction coefficients during (a) loading and (b) unloading and coordination number (excluding rattlers) for the same
dataset during (a) loading and (b) unloading. The vertical arrows show increasing (and decreasing) µ while the

tilted arrows show the loading and unloading direction.

the deviatoric strain.

B. Deviatoric Stress and Fabric

Under uniaxial compression, shear stress, anisotropy
of the contact and force networks develop, related to the
creation and destruction of new contacts [18]. We term
the deviatoric part of the stress tensor and its microscopic
force-direction dependence as the “stress anisotropy”, in
parallel to the contact direction-dependency of the struc-
tural anisotropy.
The deviatoric stress ratio, sdev = σdev/p is shown in

Figs. 3(a) and 3(b) for a frictionless (µ = 0) and sev-
eral frictional (µ = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5
and 1.0) systems during uniaxial loading and unloading,
respectively. As the deviatoric strain applied to the sys-
tem is increased during uniaxial loading, the deviatoric
stress ratio initially grows for all the friction coefficients
shown. In some cases (for small µ), the maximal sdev
is reached before the maximum deviatoric strain applied
(εmax

dev =0.1549) is reached. For some of the configura-
tions studied, an asymptote (or steady state) is observed
in which further application of deviatoric strain does not

lead to visible further increase/decrease in the deviatoric
stress. At the maximum applied deviatoric strain, we
observe that not all configurations (especially the high-
est friction coefficients) have reached full saturation. For
the systems with lower microscopic friction coefficients,
a slight decrease of the deviatoric stress ratio for larger
deviatoric strains is seen. The slope of the deviatoric
stress ratio, which represents its growth rate shows a de-
creasing trend with increasing friction. Recall that the
initial packings are different since they are prepared with
different friction coefficients. Due to this, the pressure
increases with increasing friction while the coordination
number decreases with friction. The slope of the devia-
toric stress ratio in Fig. 3(a), related to the initial shear
stiffness of the isotropic packing is proportional to these
two quantities [12, 37, 57].

The evolution of the deviatoric stress during unload-
ing (after strain reversal) is presented in Fig. 3(b). Note
that due to the square-root definition used in Eq. (14),
the deviatoric stress remains positive. [63] During devi-
atoric unloading, sdev begins to decrease until the sys-
tem approaches an isotropic stress configuration, where
sdev = 0. The εdev values where sdev ≈ 0 consistently
decrease with increasing friction – as consistent with the
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trend of the maximum sdev values reached during uniax-
ial loading at larger εdev for stronger friction. For systems
with large friction coefficients (µ = 0.3, 0.5 and 1.0), the
εdev values at which sdev = 0 are closer to each other
than for weakly frictional systems – see Fig. 9 below.

Along with the deviatoric stress ratio, for a characteri-
zation of the contact network, we plot the deviatoric fab-
ric magnitudes Fdev (as defined in Eq. 18) of the systems
discussed above as function of the deviatoric strain dur-
ing uniaxial loading and unloading in Figs. 3(c) and 3(d),
respectively. In Fig. 3(c), the deviatoric fabric magnitude
builds up from different (random, but small) initial val-
ues and reaches different maxima within the same range
of deviatoric strain (εdev ≈ 4−6%). For larger strains, we
observe a decrease in the structural anisotropy towards
zero. This is explained by the fact that more contacts
are created in the axial compressive direction compared
to the horizontal plane at the beginning of the loading
cycle. At the maximum (εdev ≈ 0.06), the material be-
havior changes such that the number of contacts created
in the horizontal plane becomes higher with respect to
the vertical plane. This interesting behavior will be fur-
ther discussed when we analyze the magnitude and ori-
entation of the respective eigenvectors in Section IVC.

After strain reversal, as presented in Fig. 3(d), the ini-
tial isotropic state is not recovered – a clear signature of
history dependence and structural anisotropy being in-
dependent of (or decoupled from) the deviatoric stress
ratio. Additionally, a strong difference can be seen in the
fabric response of systems with lower and higher friction,
respectively. As we will see later, the orientation of the
eigenvalues of these systems provide interesting insights
into these observations.

In general, comparing the evolution of deviatoric stress
ratio and deviatoric fabric, we observe a strongly non-
linear qualitative even behavior though a linear contact
model used. This confirms that the non-linearity ob-
served is due to the structural reorganization in the pack-
ing.

In Fig. 4, we plot the maximum deviatoric stress ratio
and maximum deviatoric fabric reached from Figs. 3(a)
and 3(c) for the respective friction coefficients. Inter-
estingly, the maximum deviatoric stress ratios increase
with increasing friction coefficient until µ ≈ 0.25, where
it peaks at smax

dev ≈ 0.43 and subsequently decrease for
higher friction coefficients. From Fig. 3(a) we observe
that the highest friction coefficients (between µ = 0.1 and
1.0) appear not to have reached a final saturation; the
application of further strain could lead to a higher maxi-
mum deviatoric stress ratio. Due to this, the decrease in
the maximum deviatoric stress ratio at higher friction co-
efficients under uniaxial compression requires further at-
tention. For our system where we control volume, we ar-
gue that at a maximum volume fraction νmax = 0.82, we
are already close to the upper limit for realistic deforma-
tions with about 5% average overlaps, i.e. compression
is very strong. Note that the maximum deviatoric stress
ratio reached is termed the “macroscopic friction coeffi-

cient”, µmacro := smax
dev [18], representing the macroscopic

mobilized friction. We note that the maxima reached are
higher than the microscopic friction coefficient for sys-
tems with low friction, between µ = 0 and 0.4, while for
higher friction, the maxima are lower [55].

In Fig. 4, we also show the trend of the maximum
structural anisotropy reached, Fmax

dev , with increasing fric-
tion. Besides for µ = 0, the maximum deviatoric fab-
ric shows a decreasing trend with increasing friction and
saturates at Fmax

dev ≈ 0.025 for the highest friction coeffi-
cients. In comparison, the structural anisotropy is much
smaller than the deviatoric stress ratio. The decrease
in the maximal structural anisotropy is in disagreement
with observations reported for triaxial tests [4, 23], where
it is observed to increase with increasing friction. One
main reason is that under triaxial loading, the coordina-
tion number decreases with increasing strain (dilatancy),
but it increases under uniaxial loading (due to ongoing
compaction) while in both cases fabric anisotropy is in-
duced by shearing. The second reason is the stronger
compaction established initially for increasing µ. For our
system and preparation procedure, at a given density, the
distance from the jamming point increases with increas-
ing friction. The maximum fabric anisotropy decreases as
the distance from the jamming volume fraction increases
[18].

C. Eigenvalues and Eigenvectors of Stress and
Fabric

In this section, we will discuss the magnitude of the
eigenvalues of deviatoric stress and deviatoric fabric dur-
ing uniaxial loading and unloading as well as the orienta-
tion of the eigenvectors. As reference and representative
example, we will show the data for only one of the co-
efficients of friction (µ = 0.1) and discuss in words the
interesting trends for the others. Finally, we will couple
the observations to the evolution of stress and structural
anisotropies presented in section IVB.

In Figs. 5(a) and 5(b), we plot the eigenvalues of the
deviatoric stress for the frictional system with µ = 0.1
during loading and unloading against deviatoric strain
εdev. During loading λs1 which corresponds to the stress
eigenvalue of the axial compression direction increases
linearly from 0 and remains positive while the eigenval-
ues λs2 and λs3 of the two non-mobile direction are neg-
ative and very similar in magnitude. During unloading,
λs1 decreases but remains positive; at εdev ≈ 0.075, all
eigenvalues become zero and then switch order, so that
the axial direction eigenvalue is becoming increasingly
negative. The intermediate λs2 then gets identical to λs1,
both growing to positive values. After strain reversal, λs1
returns along a different path, visible from the difference
in slope before and after strain reversal. The orientation
of the corresponding eigenvectors during loading and un-
loading are shown in Figs. 5(c) and 5(d). At εdev = 0, the
orientations are different and random which is an indi-
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FIG. 3 The deviatoric stress ratio plotted as function of deviatoric strain during uniaxial (a) loading and (b)
unloading. The corresponding plots of the deviatoric fabric plotted during uniaxial (c) loading and (d) unloading,

for different microscopic friction coefficients.
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cation of the almost isotropic initial configuration. With
increasing strain, θs1, which corresponds to the orienta-
tion of the compressive stress eigenvalue, converges to
θs= 0◦ and remains until the end of the loading path.
During this period, the stress and strain eigenvectors are
said to be colinear with respect to each other. On the
other hand, the orientation θs2 and θs3 of the other eigen-

values also drops to θs= 90◦ showing a perpendicular
alignment with respect to the compression direction. Af-
ter strain reversal, the eigen-directions of stress do not
instantaneously respond to the directional change until
at εdev ≈ 0.10 where θs1 begins to increase to 90◦ and
finally reaches at εdev ≈ 0.03. Accordingly, θs3 drops to
0◦, while θs2 remains close to 90◦ all the time.

The corresponding eigenvalue and eigenvector orienta-
tions of the deviatoric fabric for µ = 0.1 are presented
in Figs. 6(a) and 6(b) during uniaxial loading and un-
loading. Similar to the eigenvalues of stress, the major

eigenvalue λf1 , remains positive while the two lower eigen-

values are negative. In contrast to stress, λf1 increases
and reaches a peak at εdev ≈ 0.05 after which it begins
to decrease towards zero as the maximum strain is ap-

proached. Also, λf2 and λf3 are not identical, i.e., λf3 has a

slightly higher magnitude than λf2 . This is an indication
of the existence of anisotropy in the plane perpendicu-

lar to λf1 even though the stress picture shows isotropy.
At maximum deviatoric strain, however, the magnitudes
of all the eigenvalues are close to zero. After strain re-

versal, λf1 and λf2 show an increasingly positive trend
from εdev ≈ 0.08 but are not exactly identical in magni-

tude while λf1 is negative and consistently decreases from
εdev ≈ 0.08 until the end of the decompression cycle. We
observe however that immediately after strain reversal,

λf1 returns with the same slope as the loading (indicated
by the black dotted lines in Figs. 6(a) and 6(b)) before
finally changing direction. When viewed in terms of the
opening and closing of contacts, this indicates that im-
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FIG. 5 Eigenvalues of deviatoric stress for µ = 0.1 plotted as functions of the deviatoric strain for (a) loading and
(b) unloading along with their corresponding orientations with respect to the compressive direction during uniaxial

(c) loading and (d) unloading.
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FIG. 6 Eigenvalues of the deviatoric fabric for µ = 0.1 plotted as functions of the deviatoric strain for (a) loading and
(b) unloading along with their corresponding orientations with respect to the compressive direction during uniaxial
(c) loading and (d) unloading. Dotted lines indicated the slope of the path, identical before and after strain reversal.

mediately after strain reversal, contacts that just closed
(mainly in the horizontal direction) re-open, leading to

the initial increase in λf1 along the same path. With
further unloading, more contacts are lost in the vertical
direction. With increasing friction, we observe that the

reversible range increases leading to longer delays before
the system responds actively to strain reversal deviat-
ing from such trend. In general, we conclude that the
response of stress and fabric to strain reversal are very
different with respect to each other.
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Shape factor τ ≈ 0 τ ≈ 0.5 τ ≈ 1
Λσ = λs

2/λ
s
1 Random -1/2 1

Λf = λf
2/λ

f
1 Random -1/2 1

Λ(−ε) = ε
(2)
d /ε

(1)
d Undefined -1/2 1

TABLE II Shape-factors of deviatoric stress and
deviatoric fabric in the respective tensor eigensystem at

the beginning, maximum and end of uniaxial
compression.

Similar to the stress, the orientations of the fabric com-

ponents are interesting. Starting from random values, θf1
decreases and is close but distinct from 0◦ during load-

ing, while θf2 and θf3 are close to 90◦ during the same pe-

riod. This indicates that θf1 is not fully aligned with the
strain eigenvector with the deviation showing the non-
colinearity. After strain reversal, a delay can be seen be-

fore θf1 and θf3 transit to 90◦ and 0◦, respectively, while

θf2 remains close to 90◦.
Additionally, to fully describe the tensors, one can cal-

culate the respective shape factors for stress and fabric,
respectively, as the ratio of the eigenvalues as shown in
Table II at the initial, maximum and end of the uniaxial
compression–decompression cycle.
In the following analysis, we will investigate how the

orientation changes with increasing the microscopic fric-
tion coefficient and the relationships with the force net-
work.
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FIG. 7 Shape factors of (a) stress and (b) fabric as
function of the deviatoric strain for some exemplary

friction coefficients.

In Figs. 8(a) and 8(b), we plot the orientations of the

first eigenvectors of stress θs1 and fabric θf1 for all con-
tacts and different friction coefficients, respectively. The
initial value of θs1 is random at the beginning of the load-
ing path for the different friction coefficients. As loading
begins, θs1 decreases and at εdev ≈ 0.02, θs1 ≈ 0◦ for all
friction. The relaxation rate (data scaled with the ini-
tial value of the respective θs1), shown as an inset on a

log-scale is non-systematic for the different friction coeffi-
cients possibly due to the initial isotropic configuration.
Note that since the angle θs1 does not exactly decrease
to zero since θs1 is always positive even though it fluctu-
ates around zero. Observing the behavior of the eigen-
vectors, we find that during loading, they approach zero
(aligned with the compression direction) and remain un-
til maximum compression. A slight delay is seen before
the vectors finally flip back to the plane [17]. After strain
reversal at εdev = 0.16, the response of θ1(s) is slow and
it only begins to increase at εdev ≈ 0.12 for µ = 0. It
is interesting to note that the delay time increases with
friction and possibly due to the higher maximum devia-
toric stress values reported with increasing friction. The
corresponding orientation of the major eigenvector of fab-
ric θ1(f) for all contacts and different friction coefficients
also starts from different random values before decreas-
ing to 0◦ with increasing loading. Surprisingly at εdev =
0.08, for the configurations with lower friction (µ =0,
0.01, 0.02 and 0.05), θ1(f) remains close to 0◦ while those
with higher friction (µ =0.2, 0.3, 0.5 and 1.0) begin to
increase towards 90◦ as we approach maximum compres-
sion. This indicates that the orientations and build-up of
contacts for systems with lower/higher friction behave in
opposite fashion to each other and makes clear the reason
for the decrease seen in the deviatoric fabric evolution in
Fig. 6(a). At the beginning and with increasing loading,
contacts are mostly built along the main compression di-
rection. However with increasing friction, a ‘saturation’
of contact build-up in the vertical direction sets in and
an increasing number of contacts begin to build-up in the
horizontal direction. As strain is reversed, the eigenvec-
tor orientation for systems with low friction increases to
90◦ while a decrease before an increase to 90◦ is seen for
systems with higher friction.

We also plot the respective shape factors as ratio of
the eigenvalues of stress and fabric for some exemplary
friction coefficients during uniaxial loading and unload-
ing in Fig. 7. For stress, shown in Fig. 7(a), beginning
from random values, Λσ decreases to -1/2 during loading
and reverses to 1 at the end of the unloading cycle. The
rates of change during loading and unloading are almost
identical, for different µ while during unloading, the devi-
atoric strain at which the increase occurs decreases with
increasing friction. As with the stress, the shape factor
of fabric Λf , shown in Fig. 7(b), also begins from random
values and during loading approaches Λf ≈ −1/2 with
stronger fluctuations for higher friction coefficients. At
the end of unloading however Λf approach unity.

D. Weak and Strong Subnetworks

To further understand this interesting observation we
sub-divide the respective systems into strong and weak
contacts and we plot the orientation of the stress and
fabric eigenvector corresponding to the compression di-
rection for the two sub-divisions. Strong contacts are



13

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  0.04  0.08  0.12  0.16

θ 1
s   [

°]
εdev

10
-3

10
-2

10
-1

1

10

0 0.02 0.04

0.12 0.08 0.04  0

εdev

µ=0
µ=0.01
µ=0.02
µ=0.05

µ=0.1
µ=0.2
µ=0.3
µ=0.5
µ=1.0

(a)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  0.04  0.08  0.12  0.16

θ 1
f   [

°]

εdev

0.12 0.08 0.04  0

εdev

µ=0
µ=0.01
µ=0.02
µ=0.05

µ=0.1
µ=0.2
µ=0.3
µ=0.5
µ=1.0

(b)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  0.04  0.08  0.12  0.16

θ 1
s(

st
ro

ng
)   [

°]

εdev

10
-3

10
-2

10
-1

1

10

0 0.02 0.04

0.12 0.08 0.04  0

εdev

µ=0
µ=0.01
µ=0.02
µ=0.05

µ=0.1
µ=0.2
µ=0.3
µ=0.5
µ=1.0

(c)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  0.04  0.08  0.12  0.16

θ 1
f(

st
ro

ng
)   [

°]

εdev

0.12 0.08 0.04  0

εdev

µ=0
µ=0.01
µ=0.02
µ=0.05

µ=0.1
µ=0.2
µ=0.3
µ=0.5
µ=1.0

(d)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  0.04  0.08  0.12  0.16

θ 1
s(

w
ea

k)
  [

°]

εdev

0.12 0.08 0.04  0

εdev

µ=0
µ=0.01
µ=0.02
µ=0.05

µ=0.1
µ=0.2
µ=0.3
µ=0.5
µ=1.0

(e)

 30

 40

 50

 60

 70

 80

 90

 100

 0  0.04  0.08  0.12  0.16

θ 1
f(

w
ea

k)
  [

°]

εdev

0.12 0.08 0.04  0

εdev

µ=0
µ=0.01
µ=0.02
µ=0.05

µ=0.1
µ=0.2
µ=0.3
µ=0.5
µ=1.0

(f)

FIG. 8 Orientation of the largest positive (a) Stress eigenvector for all contacts (b) fabric eigenvector for all contacts
(c) Stress eigenvector for strong contacts (d) Fabric eigenvector for strong contacts (e) Stress eigenvector for weak
contacts (f) Fabric eigenvector for weak contacts plotted against dimensionless time for different coefficient of

friction.

termed as those whose normal force intensity is greater
than the mean normal force while those with lower in-
tensity with respect to the mean normal force are termed
weak.

We plot the orientation of the major direction eigen-
vector of stress and fabric respectively in Figs. 8(c) and
8(d) for strong contacts. From Fig. 8(c), the orientation
of the strong contact main eigenvector of stress and fab-
ric behaves in a similar fashion as the total contact in
the ensemble. This is consistent with earlier findings [53]
where the strong contacts have been observed to carry
most of the load during deformation. Interestingly and
in contrast to the observation for all contacts, the fabric
eigenvalue for systems with both low and high friction all
stay close to 0◦ during loading and initial unloading.

Next, the orientation of the main eigenvector of stress
and fabric for weak contacts is shown in Figs. 8(e) and
8(f). Similar to the strong contacts, the stress and fabric
orientation of weak contacts are mostly oriented at 90◦

during loading. During unloading, the orientation tends
towards 0◦.

Comparing Figs. 8(b), 8(d) and 8(f), it can be seen
that strong contacts predominate for the system with
very low friction while for higher friction, the orientation
of the weak contacts play a much significant role.

In Fig. 9, we plot the deviatoric strains at which the
major eigenvalues θs1 cross 45◦ during unloading for dif-
ferent friction coefficients. Additionally, we also plot the
deviatoric strains at which the deviatoric stress ratio,
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deviatoric fabric and the stress shape factor cross zero
from Figs. 3(b), 3(d) and 7(a), respectively. As shown,
the transition point decreases non-linearly with increas-
ing friction. All data originating from the stress tensor,
namely the major eigenvalue of stress, its orientation and
the stress shape factor all collapse on each other. On the
other hand, it is not surprising that the transition points
for the fabric quantities are slightly off since the fabric
behaves differently from the stress. The definition of the
fabric tensor takes into account only the normal direc-
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tions and does not include the strong tangential contri-
butions to the force introduced by friction. Therefore, as
friction is increased, the deviations can be stronger.
In the following section, we will investigate in more

detail the fraction of weak and strong contacts in these
systems and discuss their interplay and relation to the
observations on the orientations of the strong and weak
contacts. For clarity and to better view the evolution of
the quantities, instead of the deviatoric strain εdev, we
will study the evolution of the quantities against dimen-
sionless time τ = t/T – where T is the simulation time.

E. Friction Mobilization

Mobilization of contact friction, during uniaxial defor-
mation of the bulk material, is quantified by the factor
ft/µfn ≤ 1 for each contact. The tangential forces grow
towards their limit and support larger shear stress; for
tangential forces at/above the Coulomb limit, i.e., at fully
mobilized friction, sliding sets in and rearrangements of
contacts can lead to new, more stable configurations. It
has been observed [50] that sliding is mostly active at
weak contacts (termed weak sliding, wsl), while stronger
contacts stay in the sticking regime and sustain larger
friction forces while being less mobilized (termed strong
sticking sst). We refer to this as the ws–rule. Weak and
strong contacts are defined relative to the average normal
force at each timestep;

f∗ = fn/〈fn〉 < 1 (22)

are termed weak and

f∗ = fn/〈fn〉 > 1 (23)

are termed strong [50], with dominating sliding and stick-
ing, respectively.
As we will see shortly, we find that this friction mo-

bilization rule may not strictly hold in certain cases, as
there may be a considerable number of weak contacts
with friction not fully mobilized (termed weak sticking,
wst), as well as strong contacts fully mobilized (termed
strong sliding, sst).
As representative examples, in Fig. 10, we track two

different contacting pairs during uniaxial loading and un-
loading of the system with µ = 0.1 and study the force
intensity and friction mobilization as they evolve as func-
tion of the dimensionless time τ . For the first contact
pair shown in Fig. 10(a), during the first stages of load-
ing, the contact is weak since f∗ < 1; friction is fully
mobilized and sliding occurs at the contact, i.e. weak
contacts tend to full friction mobilization. For a short pe-
riod at τ ≈ 0.2, the contact becomes stronger and ft/µfn
correspondingly reduces (with strong fluctuations) indi-
cating a strong contact where sticking predominates. At
τ ≈ 0.36, the contact between this particle pair is lost
(opened) and is only recovered at τ ≈ 0.7, where it can

again be classified as weak sliding (wsl) contact. As the
end of the compression cycle is reached, the contact in-
tensity increases and ft/µfn decreases, with strong fluc-
tuations again, and sometimes sliding. In general, the
ws–rule is mostly true for this contact pair except during
the transition from weak to strong where some fluctua-
tions in ft/µfn can be seen, transitions from sliding to
sticking can happen for weak contacts (wst) well below
f∗ = 1 during increase of f∗, but also sliding can happen
for strong contacts (ssl).

The second contact pair shown in Fig. 10(b) is even
more interesting. Like the first particle pair, the second
pair also begin as a weak sliding contact and f∗ grows
until τ ≈ 0.15, where it becomes strong. Interestingly,
while the contact remains very strong for almost all of
the loading–unloading cycle, friction is highly mobilized
ft/µfn remains close to 1.

Since studying just two contact pairs within an en-
semble containing tens of thousands of contacts provides
very little information, we first extract the total fraction
of weak and strong contacts in the system. In Fig. 11(a),
we plot the total proportion of weak contacts with ref-
erence to the total number of contacts for the different
friction coefficients (which was studied in detail in Refs.
[18, 25] so that those data are not shown here). Surpris-
ingly, as with the orientation of the largest eigenvalue
of fabric for weak and strong forces plotted in Fig. 8,
we see a clear difference between the fraction of weak
and strong contacts. In the following, we will discuss in
detail the observations for weak contacts – which have
opposite trends as the observations for strong contacts.

The first observation from Fig. 11(a) is that a greater
fraction (over 50%) of the contacts in the respective sys-
tems are weak – an indication that fewer contacts carry
a larger proportion of the load in the system, which is
related to the shape of the force probability density func-
tion P (f∗), see Section IVF. Secondly, for systems with
lower friction, the fraction of weak contacts at the be-
ginning of the loading cycle is significantly higher than
for higher friction, meaning that the load is more evenly
(not exactly proportionally) distributed between weak
and strong contacts for systems with higher friction co-
efficient. With increasing loading, while the total num-
ber Ctot strongly increases (see Fig. 2(c)), the fraction
of weak contacts decreases for packings with lower fric-
tion coefficients, and increases for those with higher fric-
tion. Also, the decrease of weak contacts with increasing
loading for lower friction systems is stronger and occurs
earlier than the increase for systems with higher friction.
At maximum loading τ = 0.5, the proportion of weak
contacts are close for all friction coefficients with slightly
higher fraction for the highest friction coefficients µ =
0.5 and 1.0. This observation, that the packings with
higher friction behave in a qualitatively different fash-
ion, is consistent with the earlier observation in Fig.8(b),
where the difference in orientation of strong/weak con-
tacts for low/high friction coefficients can be seen too.

It is surprising that the fractions of weak contacts are
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FIG. 11 Proportion of (a) weak contacts (c) sliding contacts with respect to the total number of contacts during
uniaxial loading- and unloading-cycle for different friction coefficients.

close for systems with lower friction and evolve in a sim-
ilar (almost symmetric) fashion during loading and un-
loading. For µ = 0.01 and 0.05, the fractions of weak
contacts at the end of unloading are slightly lower than
at the beginning of loading. With increasing friction,
the fractions of weak contacts at the end of unloading
are higher than at the beginning of loading; the anti-
symmetry between the loading and unloading phases is
more visible for µ ≥ 0.1.

From Fig. 11(b), we plot the number of sliding con-
tacts with respect to the total contacts for different con-
tact friction coefficients. The number of sliding con-
tacts increases as contact friction coefficient reduces with
stronger fluctuations for lower contact friction. The con-
figurations with low friction are less stable and require
more contacts to stabilize them. This contrasts with the
observation when contact friction is high, where fewer
contacts are needed for stability. Also, the fluctuations
for lower friction coefficient resemble stick-slip behavior
where sliding and sticking alternate. Comparing the ki-
netic energies for low and high friction, we observe that
the kinetic energy reduces with increasing friction lead-
ing to higher kinetic energy during slip events and thus
stronger fluctuations for the systems with lower friction
coefficients.

To evaluate the proportion of weak and strong con-
tacts contributing to sliding and sticking at contacts, we
plot in Fig. 12, the number of weak sliding (

∑
wsl) and

strong sticking (
∑
sst) contacts with respect to the the

total weak (
∑
w) and strong (

∑
s) contacts, respectively.

From Fig. 12(a), the fraction of weak sliding contacts
grows during loading and reaches a peak before it begins
to decrease towards zero as maximum loading (τ = 0.5)
is approached. The initial growth rate of the weak sliding
contacts and the peak reached decreases with increasing
friction but all approach zero at τ = 0.5 because the
deformation rate decreases to zero before reversal. Dur-
ing unloading, a second growth phase of the weak slid-
ing contacts is seen and the maximum reached is higher
than that reached during loading – thus leading to a non-
symmetry around τ = 0.5. Additionally, only a small
proportion (much less than ≈ 50%) of the total weak
contacts are sliding. This indicates that even though an
increase in the number of weak sliding contacts is seen
during loading and unloading, more and more weak con-
tacts stick (ft/µfn < 1) for increasing µ.

In contrast to the weak sliding contacts, the fraction
of strong sticking contacts, as presented in Fig. 12(b) de-
creases during loading until it reaches a minimum before
an increase towards τ = 0.5 can be seen. The rate of de-
crease and the minima reached decrease with increasing
friction and the minima are lower during unloading, i.e.
all data are non-symmetric around τ = 0.5.

In Fig. 13, we plot the number of weak sliding (
∑
wsl)

and strong sticking (
∑
sst) contacts with respect to the

total sliding and sticking contacts, respectively. In Fig.
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FIG. 13 Fraction of (a) weak sliding contacts (wsl) and (b) strong sticking contacts (sst) with respect to the total
number of sliding (

∑
sl) and sticking (
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st) contacts, respectively, during uniaxial loading- and unloading for
different friction coefficients.

13(a), we confirm that a higher proportion (> 0.5) of the
sliding contacts are weak [5, 6, 50, 51]. The proportions
of weak sliding contacts for µ = 0.01 − 0.3 are almost
identical and decrease during loading. During unload-
ing, however, the proportions of weak sliding contacts
behave differently with increasing friction. We again ob-
serve the non-symmetry of the loading and unloading
data. In Fig. 13(b), we plot the fraction of strong stick-
ing contacts with respect to the total sticking contacts.
A little less than 50 % of the sticking contacts are strong.
The fractions of strong sticking contacts increase initially
during loading and later decreases as maximum compres-
sion is approached. The fraction of strong sticking con-
tacts show a decreasing trend at τ = 0.5 with increas-
ing µ. During unloading, the fractions of strong sticking
contacts increase and later decrease towards the end of
the unloading branch. With increasing friction, the non-
symmetry of the data decreases. For the highest friction
coefficients, the fraction of strong sticking contacts dur-
ing loading is slightly more than those present during
unloading.

In summary, strong and weak forces have been ana-
lyzed along with the level of friction mobilization. It has
been shown that a higher proportion of the total contacts
in the system are weak, irrespective of the friction coef-
ficient. Among these weak contacts, the contacts which
are sliding are less in number compared to the sticking

contacts. In contrast, when the total sliding contacts are
considered, a higher proportion of them are weak, as also
reported in earlier literature.

F. Probability density function

To better understand the relationship between con-
tact forces and the macroscopic stress and structure, we
study the probability density function of normal contact
forces in different directions [23, 24]. We will consider
the probability distribution of the normal forces during
uniaxial compression with reference to the compressive
z−direction and the two lateral x and y−direction. Keep-
ing each direction as reference, we define a cut off χ such
that the contact forces admitted for the probability dis-
tribution analysis fulfill the criteria |n̂c · n̂ε| > χ where n̂c
is the normal unit vector of the reference direction and
n̂ε is the strain eigenvector corresponding to a compres-
sive or tensile direction. The strain eigenvector is fixed
due to the deformation mode, but will be different for
other test set-ups. In the case χ = 0, all contact forces in
the ensemble will be considered while no contacts exist
when χ = 1. For the present study, we set χ = 0.8 and
only note that as χ approaches 1, less data are available
and the noise level increases, but the general trend of the
results is not affected.
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FIG. 14 Normalized probability density of the normal force P (f/〈fall〉) for the three reference directions and for all
contacts forces plotted against the normalized force f∗ = f/〈fall〉 for µ = 0.1 and cut-off χ = 0.8. Three snapshots

are shown at (a) initial state τ= 0, (b) maximum, τ =0.5, and (c) final state τ= 1.0.

In Fig. 14, we plot the normalized probability density
of the normal force P (f/〈fall〉) against the normalized
force f/〈fall〉 for the three reference directions (x, y and
z) and for all contacts. In this case, µ = 0.1 and cut-
off χ has been set to 0.8. To allow for comparison, the
forces have been normalized with the mean of the nor-
mal force for all contacts. As shown in Fig. 14(a), at
τ = 0, the force probabilities from the three reference
directions and for all contacts are virtually the same evi-
denced by the apparent collapse of the different curves on
each other. This is not surprising since the initial state
is isotropic and no direction-dependent deformation has
taken place. At maximum compression (in Fig. 14(b)),
a difference between the force distribution in the com-
pression z−direction and the radial x and y direction is
evident. Firstly, we observe that the force probability in
the radial directions (x,y) are close since no relative de-
formation takes place in these directions. Another obser-
vation is that the proportion of weak forces in the radial
direction significantly exceeds those in the compression
direction. Also, the mean force in the z−direction is ob-
served to be higher than in the radial direction. Finally,
at maximum compression, we observe a wider distribu-
tion in the compressive z− direction compared to the
force distribution for all contacts and the two lateral di-
rections. The longer tail seen in the force distribution in
the z−direction is due to the presence of stronger forces
compared to the other directions.
At the end of the decompression cycle, shown in Fig.

14(c), we observe that the initial state is not recovered
due to the deformation history of the sample and there is
a higher proportion of weak forces in the decompression
z−direction compared to the radial directions.

V. POLAR REPRESENTATION

To understand the orientation and arrangement of the
contacts over the whole angular spectrum during uniaxial
deformations, we introduce now the polar representation
of contacts, forces and mobilized friction. For the analy-
sis, we test two different averaging methods, namely the
constant bin width (b) and constant height (h), which

give comparable results and are shown in detail in Ap-
pendix I. In the following, we will use data obtained using
the constant bin width method.

A. Harmonic approximations

The axial distribution of contact force orientations
P (θ), along with the degree of anisotropy in a granu-
lar packing, can be approximated by a Legendre polyno-
mial based on spherical harmonics of the form Y m

l (θ,ϕ)
[7, 10, 23, 24]. The approximation is simplified by ad-
mitting only functions that are consistent with the sym-
metry of the deformation mode, namely functions inde-
pendent with respect to ϕ and periodic as a function of
θ. With this criteria, the two lowest admissible functions
are Y 0

0 =1 and Y 0
2 = 3 cos2 θ − 1 such that the second

order harmonic representation of contacts is of the form:

P2(θ) = a0[1 + ε(3 cos2 θ − 1)] (24)

with the factor a0 as constant and a unique anisotropy
descriptor ε. In our case, due to normalization, a0 ≈ 0.5..
For the uniaxial mode, snapshots of the contact probabil-
ity density data are presented in Fig. 16(a) during uniax-
ial loading and unloading. We observe distributions with
two peaks and a dip around π/2 indicating that a higher
approximation with order higher than 2 (when only one
peak is expected), is needed. The higher order required
to describe the present uniaxial dataset is possibly due to
the peculiarity of the deformation mode. Unlike the tri-
axial test which involves an active stress control on the
lateral boundaries of the system, the stress on the lat-
eral boundaries of the uniaxial mode evolve, albeit with
smaller magnitude in comparison to the stress in the axial
direction.

Eq. (24) can be extended to admit higher order spher-
ical harmonic functions with l = 4, 6. For l= 4, Y 0

4 =
35 cos4 θ − 30 cos2 θ + 3 and for l =6, Y 0

6 = 231 cos6 θ −
315 cos4 θ+105 cos2 θ−5 all with different prefactors. For
a 6th order expansion, the contact distribution will take
the form:
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θ P2(θ) P6(θ)

θ = 0 a0[1 + 2ε] a0[1 + 2ε2 + 8ε4 + 16ε6]

θ = π/2 a0[1− ε] a0[1− ε2 + 3ε4 − 5ε6]

θ = π a0[1 + 2ε] a0[1 + 2ε2 + 8ε4 + 16ε6]

TABLE III Second and sixth order harmonic expansion
of the contact distribution for the axial direction
(compression: θ = 0, π) and the lateral direction

(θ = π/2).

P6(θ) = a0[1 + ε2Y
0
2 + ε4Y

0
4 + ε6Y

0
6 ], (25)

where the axial symmetry is implied. Eq. (25) introduces
now three anisotropy state descriptors εi, with i = 2, 4, 6.
Also, Equations (24) and (25) can be further simplified
for the well defined limits at θ = 0, π/2 and π as shown
in Table III.
Different methods of obtaining the anisotropy state de-

scriptors have been attempted in this study. The de-
tails and comparison of the methods are discussed in
Appendix II. For all methods, we consistently observe
that the contact distribution is approximated by a sixth
order polynomial with two peaks and a strong depression
at π/2. In the following, as a reference case, we use the
azimuthal fit to the constant probability data discussed
in Appendix II.

B. Discussion of Results

Having established that the contact distribution is
approximated by a sixth order distribution with three
anisotropy state descriptors, we compare descriptors ε2,
ε4 and ε6 for different friction coefficients as functions of
the deviatoric strain during uniaxial loading and unload-
ing. From Fig. 15(a), besides a slight increase in the max-
imum ε2 values between µ = 0 and 0.02, the maximum ε2
value shows a decreasing trend with friction and almost
saturates for the highest friction coefficients. This is con-
sistent with the trend of the maximum deviatoric fabric
shown in Fig. 4. Also consistent with the deviatoric fabric
evolution during unloading is that the initial state is not
recovered. In Fig. 15(b), beginning from different ran-
dom values, ε4 is negative and systematically decreases
for all friction coefficients during loading followed by a
slight increase during unloading. The descriptor ε6 is
distributed around zero and remains fairly constant dur-
ing loading and unloading but has some variation within
either deformation.
In addition to the contact probabilities in Fig. 16(a),

we now study the probability distribution for other quan-
tities. The polar distributions of the normal force shown
in Fig. 16(b) during loading displays a high and increas-
ing normal force along the compression (0◦) direction
compared to the lateral (π/2) direction reaching their
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FIG. 15 Comparison of the 6th order anisotropy state
descriptors (a) ε2 (b) ε4 (c) ε6 as a function of the

deviatoric strain for different friction coefficients during
loading (left) and unloading (right).

maximum at τ = 0.5. After strain reversal (unloading),
the normal force in the tensile (extension) direction is
reduced until the force in the lateral (π/2) direction be-
comes higher. Interestingly, in contrast to P (θ), the dis-
tribution of the normal forces fn(θ) is well described by a
second-order harmonic approximation similar to Eq. (24)
during loading and unloading.

For the distribution of the tangential force and mobi-
lized friction, shown respectively in Fig. 16(c) and 16(d),
we observe a distribution similar to that of the contacts
shown in Fig. 16(a), with two strong peaks and a depres-
sion around π/2. This indicates the need for a higher
order tensorial descriptor also for these two quantities
that appear to be strongly related with the behavior of
the contact network, rather than with the normal forces.
Similar to fn(θ), the distribution of the tangential force
ft(θ) also shows an increase along the compression direc-
tion followed by a decrease during decompression. We
also find that during loading, the mobilized friction in-
creases along the tensile (π/2) direction while remaining
fairly stable and flat in the lateral direction. After strain
reversal, the mobilized friction increases again along the
tensile direction (which is now 0◦). Coupling these obser-
vations to the normal force distribution, we find that fric-
tion is less mobilized along the direction where stronger
forces exist (compression) and more mobilized along the
direction where weaker forces (tension) are seen. Simi-
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FIG. 16 Snapshots of the polar distribution of the (a) contacts P6(θ) (b) normal force fn(θ) (c) tangential force
ft(θ) (d) mobilized friction ψt(θ) at different dimensionless time (τ) during uniaxial loading and unloading for

friction µ = 0.1.
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FIG. 17 Polar distribution of the (a) contacts P6(θ) (b) normal force fn(θ) (c) tangential force ft(θ) (d) mobilized
friction ψt(θ) at dimensionless time (τ = 0.5) for friction µ = 0.1.

lar to the directional probability distribution of the nor-
mal force presented in Section IVF, the initial state (at
τ = 0) which is mostly isotropic is not recovered at the
end of unloading (τ = 1). As a complement, in Fig. 17,
we show the pictorial representation of the distributions
of contacts, normal force, tangential force and mobilized
friction at τ =0.5 for the same dataset shown in Fig. 16,
clearly visualizing the ε4 and ε6 contributions in 17(a),
17(c), and 17(d).

VI. SUMMARY AND OUTLOOK

The discrete element method has been used to inves-
tigate the microscopic and macroscopic response of fric-
tional, polydisperse granular assemblies under uniaxial

loading and unloading paths. The main goal was to inves-
tigate the effects of contact friction on the force and con-
tact network orientation and distribution and to relate
this to the evolution of structural anisotropy – which is
the key ingredient that quantifies the response of granular
materials under non-isotropic loading conditions. Since
the uniaxial test is readily realizable in laboratory ex-
periments, our findings should be relevant for both ex-
perimental and numerical research on in the behavior of
packings under different deformation and stress condi-
tions. The present study covers a wide range of fric-
tion coefficients for systems that are already “jammed”.
Since the boundary walls are periodic, the effects of walls
and system geometry should be minimal, which allows to
understand the bulk behavior with rather few particles
(N ≈ 10,000).
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As preparation procedure, in order to obtain homoge-
neous initial isotropic states, we attempted several prepa-
ration protocols and found that the methods lead to
mostly identical initial states even though care has to
been taken in the presence of friction which leads to pro-
tocol dependence.
Given the same initial density, packings with differ-

ent coefficients of friction are highly are highly different
in many respects. The evolution of the deviatoric stress
ratio and the deviatoric fabric, as functions of the devia-
toric strain, in the presence of friction, are different with
respect to each other. Even though the contact model
is linear, both quantities show a non-linear behavior due
to the structural changes during loading and unloading.
For the configurations with lower friction, a saturation in
the deviatoric stress ratio during loading was observed.
However, when friction is increased, a clear saturation
of the deviatoric stress ratio is not seen within the same
maximum strain. During loading, the deviatoric fabric,
which quantifies the structural anisotropy reaches a max-
imum before maximum εdev independent of µ, and then
decreases as the maximum strain is approached. Interest-
ingly for the higher friction coefficients, a second increase
was observed. The peak deviatoric stress ratio smax

dev
reached during uniaxial loading increases up to a peak at
smax
dev = 0.42 and subsequently decreases for higher fric-
tion to smax

dev ≈ 0.33. The peak deviatoric fabric reached,
Fmax
dev , largely shows a decreasing trend with increasing

friction and eventually saturates at Fmax
dev ≈ 0.025.

The orientation of the largest stress eigenvector θs1,
during loading, with non-systematic rates, aligns to 0◦,
i.e. the compression direction. When strain is reversed,
we observe that θs1 remains oriented along the vertical di-
rection before reverting to 90◦. The deviatoric strain at
which the reversal happens is observed to decrease with
increasing friction. On the other hand, the orientation of

the largest fabric eigenvector θf1 shows a stronger depen-

dence on friction. For systems with low friction, θf1 aligns
with the compressive direction during loading, whereas
the configurations with high friction begin to align per-
pendicular to the axial direction as maximum deviatoric
strain is approached.
The deviatoric strains (relative to the original config-

uration) at which the stress tensor changes can be iden-
tified in different ways, i.e. sdev = 0, θs1 = 45◦ and stress
shape factor Λσ = 0 (zero). All are identical to each other
and show a decreasing dependence on friction, i.e. rever-
sal happens later for larger µ. Quantities relating to the
microstructure, e.g. the strain at which, e.g., Fdev = 0,
are different from the stress.
In comparison to other deformation protocols studied

in literature, while the coordination number is found to
decrease with increasing triaxial loading (or increasing
deviatoric strain) [4, 44], we find that the coordination
number always increases with strain under uniaxial com-
pression. Under triaxial loading, the number of contacts
is found to increase in the vertical (compression) direc-
tion while decreasing/dilating in the horizontal (fixed

stress) direction [23], but in the uniaxial mode, the num-
ber of contacts is found to increase in both the horizontal
and vertical directions. Also, the peak deviatoric fabric
is found to increase with increasing friction under triaxial
loading [4, 44], whereas in the uniaxial mode, the peak
deviatoric fabric decreases with increasing friction.

As reported in previous studies [43], we also confirm
that the orientations of the eigenvectors of stress corre-
sponding to the compression direction for strong (forces
greater than average) and weak (forces less than average)
contacts are orthogonal with respect to each other. As
a consequence of the definition of the stress tensor, the
effects of strong contacts are more dominant for stress.
For fabric, however, strong contacts are more dominant
when friction is low while the weak contacts are found
to play a bigger role for stronger friction, causing the
qualitatively different behavior.

In terms of the behavior of contacts, we confirm that a
larger proportion of the total contacts are weak, while the
proportion of sliding contacts out of the total contacts are
less than 45%. More importantly, we find less than 50%
weak sliding contacts with respect to the total number
of weak contacts. On the other hand, the proportion
of weak sliding contacts with respect to the total sliding
contacts is significantly higher. The latter is in agreement
with earlier studies that show that friction is more highly
mobilized in weak contacts [50, 51].

As a consequence of the isotropic initial configuration,
we find that the directional distribution of normal forces
at the initial state are isotropic for all µ. At maximum
compression, we observe a higher mean, a lower peak
and a wider tail of the force distribution in the compres-
sive z−direction, while the distributions in the two lat-
eral directions remain identical, narrower, with a shorter
tail. Due to history, after uniaxial compression and ten-
sion, the initial states are not recovered when the original
state, εdev =0, is reached. Forces are weaker and one has
less contacts in the tensile z− direction.

We have also presented two averaging methods for the
polar representation of contacts using the constant az-
imuthal and constant height methods. For our data, a
second order tensor is insufficient to describe the struc-
tural anisotropy. We find a sixth order distribution with
two peaks leading to three anisotropy state descriptors
(ε2, ε4 and ε6).

The second harmonic ε2 is close to F s
dev/

√
3, so that

for different friction, the maximum ε2 values behave in a
similar fashion to the maximum deviatoric fabric. A sec-
ond order tensorial descriptor is sufficient for the normal
force but the tangential force and mobilized friction show
a similar behavior to the contact distribution – requiring
a higher order harmonic approximation due to the two
strong peaks at π/4 and the dip around π/2, i.e. the mi-
crostructural and force features that kick in at non-axial
different directions.

Future studies should concern exploring higher order
tensors and the validity of the findings for other non-
isotropic deformation modes (e.g. under simple and pure
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shear or triaxial tests). Furthermore, recent experiments
[9] will allow to validate the present observations from
DEM. The final goal is to develop constitutive models
of particulate matter based on the microscopic insights
gained, and apply those e.g. to cyclic loading as relevant
in many applications as e.g. roads.

Appendix I: Averaging Methods

In this appendix, we describe the two averaging meth-
ods namely the constant azimuthal angle method (b) and
the constant height method (h).

A. Constant azimuthal angle (bin width) method

Given the three normal unit vector components n̂x, n̂y,
and n̂z for each contact pair, to calculate the azimuthal
angle, one needs the polar orientation arccos(n̂z) of the
normal unit vector in the direction relative to the active
(axial) direction as schematically described in Fig.18(a).
We average over the spherical azimuthal (vs. polar) (r, ϕ)
coordinate and then distribute the vectors, based on their
orientation into bins of width ∆θ.

The fraction of contacts in a single bin is defined as
φθ = Cθ/Ctot, where C

θ =
∑

C∈b 1 and b ∈ [θ−∆θ/2; θ+

∆θ/2]. Furthermore, φθ is normalized with the surface of
the spherical annulus for each b by the factor ∆θ sin θ to
yield the azimuthal contact probability density P (θ) =
(φθ/∆θ sin θ) such that

∫ π

0
P (θ) sin θ∆θ = 1. [64] The

polar distributions of the normal forces, tangential forces
and mobilized friction are given respectively, by fn(θ) =
(
∑

C∈b fn)/(C
θ), ft(θ) = (

∑
C∈b ft)/(C

θ) and ψt(θ) =

(
∑

C∈b(ft/µfn))/(C
θ), where the normalization with the

number of contacts in each bin has been used.

(a) (b)

FIG. 18 Schematic representation of the angles of the
contact unit vector (green arrow) for (a) the constant
bin width ∆θ method and (b) the constant height

method. The angles θ and ϕ are the azimuthal angle
and polar angle of the system, respectively.

B. Constant height method

In the constant height method, we sort the vectors
based on their orientations into n azimuthal spherical
segments with equal heights ∆h = cos θ2−cos θ1 as shown
schematically in Fig 18(b). Given the polar radius r, and
the height from the center of each segment to the middle
of the sphere h, the polar angle θ of each vector is calcu-
lated for every n̂z ∈ h. The fraction of contacts within
each segment range is then given as φh = Ch/Ctot, where
Ch =

∑
C∈h 1 and h ∈ [h − ∆h/2;h + ∆h/2]. With

−1 ≤ h ≤ 1, specifying the number of bins Mh (e.g.
Mh = 20), allows to compute all h−intervals and bound-
aries.

Other quantities, including the normal and tangential
forces and mobilized friction can be computed similar to
the constant bin width method, just by summation and
normalization with Ch instead of Cθ.

Appendix II: Fit Methods

In the following, we describe different methods of ob-
taining the anisotropy state descriptors using the data
obtained using the constant bin width or the constant
height methods.

C. Method 1: Fit azimuthal contact probability
density P (θ) = (φθ/∆θ sin θ)

In the first case, we fit the azimuthal contact proba-
bility density data P (θ) = (φθ/∆θ sin θ) using the har-
monic equation (25). Note that for the special case of
uniaxial compression, Eq. (24) does not lead to consis-
tent results across the methods and is thus disregarded.
However, as shown in different literature especially un-
der triaxial compression, the second order approximation
P2(θ) is sufficient to fully capture the contact probability
density data. Exemplary (not exhaustive) references of
works where forms of Eq. (24) as applied to various tri-
axial tests are presented in table IV. Other experimental
and numerical set-ups are also shown. Note that in these
cases, the orientational contact distribution obtained is
not of second order and are not fitted.

D. Method 2: Fit to the constant height data

In the second case, we directly fit the fraction of con-
tacts φh, generated using the constant height method
such that the bad statistics at the poles are not over-
exposed as in Method 1. In this case, we set the zero
order parameter a0 = 0.5.
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Reference Mode Contact Harmonic function

probability P (θ)

1. Azema et al. [7] triaxial second order 1
4π

[1 + ε(3 cos2 θ − 1)]

2. Deng and Dave [11] particle Settling higher order –

in a cylindrical geometry

3. Ishibashi et al [20] triaxial second order K(1− ε+ 3ε cos2 θ)

4. Jenkins [22] triaxial second order C
4π

[(1− ε) + 3ε cos2 θ]

5. Silbert et al. [49] 3D particle settling higher order –

on a flat base

6. Staron and Radjai [50] 2D avalanche higher order –

TABLE IV Selected references on the orientational contact distribution for various modes. For an isotropic sample,
K = C/4π and C is the coordination number.
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FIG. 19 6th Order Fits of methods 1 and 2 and 3 to the
P (θ) = (φθ/∆θ sin θ) data at dimensionless time
τ = 0.076. The solid red symbols represent data

obtained using the constant height method (h), while
the triangles are those obtained with the constant bin

width method (b).

E. Method 3: Fit to fraction of contacts φθ with a
∆θ sin θ scaling

In the third case, we fit the fraction of contacts φθ data
directly using harmonic equation (24) or (25) multiplied
by ∆θ sin θ. The original signal is a first order sinus, i.e.
less weighting is given to the areas close to the poles such
that their larger statistical errors are suppressed.
In Fig. 19, we show the sixth order harmonic fits using

methods 1 (M1), 2 (M2) and 3 (M3) to the constant bin
width (b) and constant height (h) data for µ = 0. For
each method, three anisotropy state descriptors, namely
ε2, ε4 and ε6 are obtained. Here, as an example, we show
a single snapshot, namely at τ = 0.076. Note that the
original data is from 0 to π/2 and the extension from π/2
to π is only a mirror image. Focusing on the numerical
data (symbols), we observe two strong peaks at about
π/2± π/4 and a local maximum at π/2. The twin peaks
indicate that a distribution higher than second order is
needed. The data are well captured by a sixth order
approximation P6(θ) (solid lines). Comparing the b and
h, we observe stronger scatter at the boundaries for the b

data due to the weak statistics at the extreme θ values (0
and π). For the fits, we observe that M1, M2 ad M3 are
close and the major differences between them are most
pronounced at both peaks and extrema.

In Fig. 20, we plot the evolution of the anisotropy
state descriptors ε2, ε4 and ε6 as functions of the devia-
toric strain and compare the three methods. From Fig.
20(a), during loading, ε2 grows and reaches a maximum
at εdev ≈ 0.025 from where it slightly decreases. After
maximum loading, ε2 decreases (taking well into account
the sign change) and becomes increasingly negative un-
til it reaches ε2 ≈ −0.055 at complete unloading (τ=1).
Comparing the three methods, M3 is slightly off (higher)
during loading while M1 is also slightly off at the end of
unloading. Interestingly, we find that the evolution of ε2
is similar to the simple definition of the deviatoric fabric
in Eq. (19) involving a difference between the fabric com-
ponent of the axial direction and the average of the com-
ponents of the two lateral components. Note that the def-
inition of the fabric used here is based on Eq. (16) which
considers only the contacts and not the dependence on
the volume fraction. We note that the magnitude of ε2 is
proportional to Fdev/

√
3 (black diamonds in Fig. 20(a))

with M3 slightly off during loading and the unloading
data also showing slight variations. From Fig. 20(b) and
20(c), the values of ε4 and ε6 appear small compared to
ε2 but must not be neglected. When ε2 is taken as the
structural anisotropy state descriptor, it much resembles
Fdev. However, the higher order anisotropy is quantified
by the ε4 (which is negative) and ε6 (which is strongly
fluctuating and different for different methods).
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deviatoric strain using the three methods for µ = 0.
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Mat., 14(2):259–264, 2002.
[45] M. Satake. Proc., IUTAM Symp. on Deformation and

Failure of Granular materials, Delft, The Netherlands.
1982.

[46] J. Schwedes. Gran. Mat., 5(1):1–43, 2003.
[47] M. R. Shaebani, M. Madadi, S. Luding, and D. E. Wolf.

Phys. Rev. E, 85(1), 2012.
[48] L. E. Silbert, D. Ertas, G. S. Grest, T. C. Halsey, and

D. Levine. Phys. Rev. E, 65(3, Part 1):051302, 2002.
[49] S. E. Silbert, G. S. Grest, and J. W. Landry. Phy. Rev.



24

E., 66:061303(6 Part 1), 2002.
[50] L. Staron and F. Radjai. Phys. Rev. E., 72:041308:1–5,

2005.
[51] L. Staron, F. Radjai, and J. Vilotte. J. Stat. Mech.,

2006(07):P07014:1–15, 2006.
[52] A. S. J. Suiker and N. A. Fleck. J. Appl. Mech., 71:350–

358, 2004.
[53] C. Thornton and S. J. Anthony. Phil. Trans. Roy.

Soc. Lond.: Ser. A: Math., Phys. and Eng. Sci.,
356(1747):2763–2782, 1998.

[54] C. Thornton and L. Zhang. Phil. Mag., 86(21-22):3425–
3452, 2006.

[55] R. Tykhoniuk, J. Tomas, S. Luding, M. Kappl, L. Heim,
and H. J. Butt. Chem. Eng. Sci., 62(11):2843–2864, 2007.

[56] M. van Hecke. J. Phys. Cond. Mat., 22:033101(3), 2009.
[57] K. Walton. J. Mech. and Phys. Sol., 35(2):213–226, 1987.
[58] T. Weinhart, R. Hartkamp, A. R. Thornton, and S. Lud-

ing. Phys. of Fluids, 25:070605(7), 2013.
[59] T. Weinhart, A. R. Thornton, S. Luding, and

O. Bokhove. Gran. Mat., 14(2):289–294, 2012.
[60] C. M. Wensrich, E. H. Kisi, J. F. Zhang, and O. Kirstein.

Gran. Mat., 14(6):671–680, 2012.
[61] H. Zetzener and J. Schwedes. 6th Intl. Conf. on Handling

and Transportation, pages 51–55, 1998.
[62] J. Zhang, T. Majmudar, A. Tordesillas, and

R. Behringer. Gran. Mat., 12(2):159–172, 2010.
[63] An alternative way to enforce the sign convention is to

multiply the deviatoric stress Eq. (14) by the sign of the
difference between the eigenvalue of the main compres-
sive direction and the average in the other two fixed direc-
tions as given for fabric in Eq. (19). This leads to positive
and negative sdev, which should take care of the strain
reversal [26].

[64] An alternative to the ∆θ sin θ normalization is a discrete
formulation cos θf − cos θi where θi = θ−∆θ/2 and θf =
θ +∆θ/2.


