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Abstract

Physical experiments can characterize the elastic response of granular materials in terms of macro-
scopic state-variables, namely volume (packing) fraction and stress, while the microstructure is not
accessible and thus neglected. Here, by means of numerical simulations, we analyze dense, friction-
less, granular assemblies with the final goal to relate the elastic moduli to the fabric state, i.e., to
micro-structural averaged contact network features as contact number density and anisotropy.

The particle samples are first isotropically compressed and later quasi-statically sheared under
constant volume (undrained conditions). From various static, relaxed configurations at different
shear strains, now infinitesimal strain steps are applied to “measure” the effective elastic response; we
quantify the strain needed so that plasticity in the sample develops as soon as contact and structure
rearrangements happen. Because of the anisotropy induced by shear, volumetric and deviatoric
stresses and strains are cross-coupled via a single anisotropy modulus, which is proportional to the
product of deviatoric fabric and bulk modulus (i.e. the isotropic fabric). Interestingly, the shear
modulus of the material depends also on the actual stress state, along with the contact configuration
anisotropy.

Finally, a constitutive model based on incremental evolution equations for stress and fabric is
introduced. By using the previously measured dependence of the stiffness tensor (elastic moduli) on
the microstructure, the theory is able to predict with good agreement the evolution of pressure, shear
stress and deviatoric fabric (anisotropy) for an independent undrained cyclic shear test, including the
response to reversal of strain.

Keywords: Anisotropy, shear, calibration, prediction, PARDEM.

1 Introduction

Granular materials behave differently from usual solids or fluids and show peculiar mechanical properties
like dilatancy, history dependence, ratcheting and anisotropy [24, 25, 28, 30, 39, 40, 60, 70, 75, 76, 87].
The behavior of these materials is highly non-linear and involves plasticity also for very small strain due
to rearrangements of the elementary particles [4, 15, 22]. The concept of an initial purely elastic regime
(small strain) for granular assemblies is an issue still under debate in the mechanical and geotechnical
communities. On the other hand, approaches that neglect the effect of elastic stored energy, i.e., all the
work done by the internal forces is dissipated, are also questionable. Features visible in experiments, like
wave propagation, can hardly be described without considering an elastic regime. In a general picture,
both the deformations at contact and the irrecoverable rearrangements of the grains sum up to the total
strain. The former represents the elastic, reversible contribution to the behavior of the material. That
is, for very small strain the response of a finite granular system in static equilibrium can be assumed to
be linearly elastic [20, 42, 59, 70], as long as no irreversible rearrangements take place.

Despite these arguments and the long-standing debate, basic features of the physics of granular elas-
ticity are currently unresolved, like the determination of a proper set of state variables to describe the
effective moduli. Physical experiments carried out on sand and glass beads show that wave propagation
in the aggregate depends upon the stress state and the volume fraction [19, 32, 36, 42, 80, 83]. Recent
works [1, 28, 36, 43, 87] show that along with the macroscopic properties (stress and volume fraction)
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[19, 36, 86], also the fabric [10, 47, 61, 70, 87] plays a crucial role, as it characterizes, on average, the
geometric arrangement of contacts. Due to preparation and loading path, the microstructure of granular
aggregates is often far from isotropic and this is at the origin of interesting features in those materials.
The mechanical behavior of anisotropic soils is a topic of current interest for both experimental and
theoretical investigations. As one example, extensive experimental work of anisotropy has been carried
out on laboratory-prepared (by careful ‘raining’ or bedding) sand specimens [81, 84]. These and other
studies show that the sample deformation characteristics depends highly on the orientation of the bedding
plane with respect to the principal stress and strain axes [19, 43, 61, 82–84] On the other hand, when the
material is sheared, anisotropy in the contact network develops, as related to the opening and closing of
contacts, restructuring, and the creation and destruction of force-chains, affecting the material response.
[3, 42, 77, 80, 87].

Most standard constitutive models, involving elasticity and/or plasticity have been applied to describe
the incremental behavior of (an)isotropic granular solids - sometimes with success, but typically only in
a limited range of parameters. In the majority of the models, the stress increment is related to the
actual stress state of the granular system and its density. This is the case for hypoplasticity [23, 36],
where a single non-linear tensorial equation relates the Jaumann stress-rate with strain-rate and stress
tensors. Only few theories after the pioneer work by Cowin [12], consider explicitly the influence of the
micro-mechanic structure on the elastic stiffness, plastic flow-rule or noncoaxiality of stress and strain, see
[7, 8, 13, 57, 58, 75, 76] and references therein. The evolution of microstructure due to deformations is an
essential part of a constitutive model for granular matter because it stores the information how different
paths have affected the mechanical state of the system. In this sense, fabric is a tensorial history variable.
When included in the formulation, the effect of structure is often described by a fixed fabric tensor normal
to the bedding plane of deposited sands [13, 45, 76, 81]. Recently Li & Dafalias [46] have proposed a new
framework (rather than a specific constitutive model) by reconsidering the classical steady state theory
by Roscoe et al. [67], with a fabric tensor evolving towards a properly defined steady state value. This is
supported by experimental [84] and extensive numerical works [28, 30, 47, 77, 87]. In a similar fashion,
the anisotropy model proposed in [48, 51] postulates the split of isotropic and deviatoric stress, strain
and fabric and includes the microstructure as a variable, whose behavior is described by an evolution
equation independent of stress. Refs. [30, 39] predicts uniaxial simulation results under this assumption
(independent evolution of stress and structure), where the simplified model well captures the qualitative
behavior.

In this work we use the Discrete Element Method (DEM) to study granular assemblies made of
polydisperse frictionless particles and focus on their elastic behavior. By isolating elasticity we aim to
distinguish the kinematics at the microscale that lead to either macroscopic elasticity or plasticity. We
analyze the role of microstructure, stress state and volume fraction on the evolution of the elastic moduli,
with the goal to characterize them in terms of a unique, limited set of variables. In order to calculate
the stiffness tensor, we apply small-strain probes to various equilibrium states along a volume conserving
(undrained) shear deformation path. In the case of a finite assembly of particles, in simulations, an
elastic regime can always be detected and the elastic stiffnesses can be measured by means of an actual,
very small, strain perturbation [50]. The purpose is to improve the understanding of elasticity in particle
systems and to guide further developments for new constitutive models. As an example, the relation
between moduli and fabric here is used in the anisotropic constitutive model, as proposed in [48, 51], to
predict the macroscopic behavior during a more general deformation path, involving also strain reversal.

This paper is organized as follows: The simulation method and parameters used and the averaging
definitions for scalar and tensorial quantities are given in section 2. The preparation test procedures,
and the results from the deviatoric simulation are explained in section 3. Section 4 is devoted to the
measurement of elastic moduli by means of small isotropic and deviatoric perturbations. There we present
the evolution of the moduli with strain and link them to fabric and stress. Finally, section 5 is devoted
to theory, where we relate the evolution of the microstructural anisotropy to that of stress and strain, as
proposed in Refs. [48, 51]. This displays the predictive quality of the model, calibrated only for isochoric,
uni-directional shear, when applied to an independent, cyclic shear test.

2 Numerical simulation

The Discrete Element Method (DEM) [2, 30, 47] helps to study the deformation behavior of particle
systems. At the basis of DEM are laws that relate the interaction force to the overlap (relative deforma-
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tion) of two particles. Neglecting tangential forces, if all normal forces fi acting on particle i, from all
sources, are known, the problem is reduced to the integration of Newton’s equations of motion for the
translational degrees of freedom:

d

dt
(mivi) = fi +mig, (1)

with the mass mi of particle i, its position ri, velocity vi (= ṙi) and the resultant force fi =
∑

c fi
c

acting on it due to contacts with other particles or with the walls, and the acceleration due to gravity, g
(which is neglected in this study). The force on particle i, from particle j, at contact c, has normal and
tangential components, but the latter are disregarded in this study to focus on frictionless packings.

For the sake of simplicity, the linear visco-elastic contact model for the normal component of force is
used,

fn = kδ + γδ̇, (2)

where k is the spring stiffness, γ is the contact viscosity parameter, δ = (di + dj) /2 − (ri − rj) · n̂ is
the overlap between two interacting species i and j with diameters di and dj , n̂ = (ri − rj) / |(ri − rj)|
and δ̇ is the relative velocity in the normal direction. In order to reduce dynamical effects and shorten
relaxation times, an artificial viscous background dissipation force fb = −γbvi proportional to the moving
velocity vi of particle i is added, resembling the damping due to a background medium, as e.g. a fluid.

The standard simulation parameters are, N = 9261(= 213) particles with average radius 〈r〉 = 1
[mm], density ρ = 2000 [kg/m3], elastic stiffness k = 108 [kg/s2], particle damping coefficient γ = 1
[kg/s], background dissipation γb = 0.1 [kg/s]. Note that the polydispersity of the system is quantified
by the width (w = rmax/rmin = 3) of a uniform size distribution [24], where rmax and rmin are the radii
of the biggest and smallest particles respectively.

The average time time scale is determined when two averaged size particle (with ravg = 〈r〉 = 1) with

mass mavg = ρ
(
4πr3avg/3

)
= 8.377 [µg] interact, and is given as tc,avg = π/

√
k/m′

avg − (γ/
(
2m′

avg

)
)2

=0.6431 [µs], where m′
avg = mavg/2 is the reduced mass, with restitution coefficient

eavg = exp
(
−γtc,avg/

(
2m′

avg

))
= 0.926. The fastest response time scale in the system is determined

when two smallest particle with mass msmall = ρ
(
4πr3min/3

)
= 1.047 [µg] interact, and is given as

tc,small = π/
√

k/m′
small − (γ/ (2m′

small))
2 = 0.2279 [µs], where m′

small = msmall/2 is the reduced mass,
with restitution coefficient esmall = exp (−γtc,small/ (2m

′
small)) = 0.804.

2.1 Coordination number and fraction of rattlers

In order to link the macroscopic load carried by the sample with the active microscopic contact network,
all particles that do not contribute to the force network are excluded. Frictionless particles with less than
4 contacts are thus ‘rattlers’, since they cannot be mechanically stable and hence do not contribute to
the contact or force network [24, 30, 39]. The classical definition of coordination number is C = M/N ,
where M is the total number of contacts and N = 9261 is the total number of particles. The corrected
coordination number is C∗ = M4/N4, where, M4 is the total number of contacts of the N4 particles with
at least 4 contacts. Moreover, we introduce here the reduced number of contacts Mp

4 , where contacts
related to rattlers are excluded twice, as they do not contribute to the stability of both the rattler and
the particle in contact with it. Hence, Mp

4 = M4 − M1 − M2 − M3 = M − 2 (M1 +M2 +M3), where
M1, M2 and M3 are total number of contacts of particles with only 1, 2 and 3 contacts respectively.
This leads to a modification in the definition of the corrected coordination number is C∗

p = Mp
4 /N4.

The fraction of rattlers is φr = (N −N4) /N , hence, C = C∗ (1− φr). The total volume of particles

is
∑N

P=1 VP = 4πN〈r3〉, where 〈r3〉/3 is the third moment of the size distribution [24, 39] and volume

fraction is defined as ν = (1/V )
∑N

P=1 VP , where V is the volume of the periodic system.

2.2 Macroscopic (tensorial) quantities

Here, we focus on defining averaged tensorial macroscopic quantities – including strain-, stress- and fabric
(structure) tensors – that provide information about the state of the packing and reveal interesting bulk
features.
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By speaking about the strain-rate tensor Ė, we refer to the external strain that we apply to the
sample. The isotropic part of the infinitesimal strain tensor εv [24, 30, 39] is defined as:

δεv = −ε̇vdt = −δεxx + δεyy + δεzz
3

= −1

3
tr(δE) = −1

3
tr(Ė)dt, (3)

where εαα= ε̇ααdt with αα = xx, yy and zz are the diagonal components of the tensor in the Cartesian
x− y − z reference system. The trace integral of 3εv is denoted as the volumetric strain εv, the true or
logarithmic strain, i.e., the volume change of the system, relative to the initial reference volume, V0.

On the other hand, from DEM simulations, one can measure the ‘static’ stress in the system [9] as

σσσ = (1/V )
∑
c∈V

lc ⊗ f c, (4)

average over all the contacts in the volume V of the dyadic products between the contact force f c and
the branch vector lc, where the contribution of the kinetic fluctuation energy has been neglected [30, 47].
The isotropic component of the stress is the pressure P = tr(σσσ)/3.

In order to characterize the geometry/structure of the static aggregate at microscopic level, we will
measure the fabric tensor, defined as

F =
1

V

∑
P∈V

V P
∑
c∈P

nc ⊗ nc, (5)

where V P is the volume relative to particle P, which lies inside the averaging volume V , and nc is
the normal unit branch-vector pointing from center of particle P to contact c [40, 47, 86]. We want to
highlight that a different, convention for the fabric tensor involves only the orientation of contacts as
follows [61, 69, 87]:

Fo =
1

Nc

∑
c∈Nc

nc ⊗ nc (6)

where Nc is the total number of contacts in the system. An approximated relationship between Eqs. (5)
and (6) can be derived as:

Fo ≈ 3F

tr(F)
, (7)

with tr(Fo) = 1. This relation is exactly equal for monodisperse assemblies but largely deviates for
assemblies with high polydispersity (see further discussion in section 3). The difference also becomes more
significant when the jamming volume fraction [52, 79] is approached. In the following, when not explicitly
stated, we will refer to Eq. (5), since we combine the effects of volume fraction and number/orientation
of contacts, both relevant quantities when the elastic moduli are considered [24].

In a large volume with a given distribution of particle radii, the relation between the isotropic fabric,
i.e., the trace of F, is proportional to the volume fraction ν and the coordination number C Refs.
[24, 30, 39] as

Fv = tr(F) = g3νC = g3νC
∗ (1− φr) , (8)

where C, C∗ and φr have been introduced in previous section 2.1 and g3 ≈ 1.22 for polydispersity w = 3,
being only a weighted, non-dimensional moments of the size distribution [24, 39, 71].

2.3 Isotropic and Deviatoric parts

We choose here to describe each symmetric second order tensor Q, in terms of its isotropic part (first
invariant) and the second

J2 =
1

2

[
(QD

1 )2 + (QD
2 )2 + (QD

3 )2
]

and third
J3 = det(QD) = QD

1 QD
2 QD

3 ,

invariants of the deviator, withQD
1 , QD

2 andQD
3 eigenvalues of the deviatoric tensorQD = Q−(tr(Q)/3)I.

We use the following definition (of the Euclidean or Frobenious norm) to quantify with a single scalar
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the magnitude of the deviatoric part [39, 40] of Q:

Qdev = Fsgn (Q)
√
2J2 = Fsgn (Q)

√
(Qxx −Qyy)

2
+ (Qyy −Qzz)

2
+ (Qzz −Qzz)

2
+ 6

(
Q2

xy +Q2
yz +Q2

zx

)
3

,

(9)
where Qxx, Qyy and Qzz are its diagonal, and Qxy, Qyz and Qzx its off-diagonal components and the
deviators εdev, σdev and Fdev refer to strain E, stress σσσ and fabric F, respectively. Fsgn (Q) is the sign
function that relates the tensorial quantity to be measured, Q, with the reference-tensor that describes
the (strain- or stress-controlled) path applied to the sample, H0:

Fsgn (Q) = sgn (H0 : Q) .

For a given, complex deformation path, the reference tensor H0 must be chosen in a convenient way, in
order to take into account both the actual loading path and/or the previous deformation history of the
sample. In the special case of undrained shear test, as introduced later in section 3, we use as reference
H0 = −Ė = (−1, 1, 0), where only the diagonal values are given, so that Fsgn simplifies to

Fsgn (Q) = sgn (Qyy −Qxx) ,

with x−wall expanding, y−wall compressing and z−wall non-mobile [39]. We want to point out here that,
during a deformation, the response of stress σσσ and fabric F is opposite in sign to applied strain rate Ė.
Unless mentioned explicitly, we will be using a sign convention for strain (isotropic δεv = −(1/3)tr(δE)
and deviatoric δεdev = −δEdev), such that consistently a positive strain increment leads to a positive
stress and fabric response.

Finally we note that in this work, we will use k∗ = k/ (2〈r〉) to non-dimensionalize pressure P and
deviatoric stress σdev to give P ∗ and σ∗

dev, respectively, and will be referring to deviatoric stress as shear
stress. 1

3 Volume conserving (undrained) biaxial shear test

In this section, we first describe the sample preparation procedure and then the details of the numerical
shear test.

The initial configuration is such that spherical particles are randomly generated, with low volume
fraction and rather large random velocities in a periodic 3D box, such that they have sufficient space and
time to exchange places and to randomize themselves. This granular gas is then compressed isotropically,
to a target volume fraction ν0 = 0.640, sightly below the isotropic jamming volume fraction [30, 39, 52]
νc ≈ 0.658 and then relaxed to allow the particles to fully dissipate their potential energy [30, 39]. 2 The
relaxed state is then compressed (loading) isotropically from ν0 to a higher volume fraction of ν = 0.82,
and de-compressed back (unloading) to ν0 [30, 39].

The preparation procedure, as described above provides many different initial configurations with
volume fractions νi, each one in mechanical equilibrium. Starting from various νi chosen from the
unloading branch [30, 39], the samples are then sheared keeping the total volume constant, that is with
a strain-rate tensor

Ė = ε̇dev

 −1 0 0
0 +1 0
0 0 0

 , (10)

where ε̇dev = 28.39 [µs−1] is the strain-rate (compression > 0) amplitude applied to the moving x− and
y−walls, while the third z−wall is stationary. Our shear test, where the total volume is conserved during

1It is important to point out that the rattlers are excluded in defining the (corrected) coordination number C∗. However
dynamic rattler particles with 1 ≤ Mp ≤ 3 contacts are included in the definitions of fabric and stress. We verified that
during shear deformation, the maximum contribution in deviatoric stress due to rattlers is 0.03%, while in the case of
deviatoric fabric the contribution rises to 0.5%. This is not surprising since only contacting particles contribute to the
definitions of both stress and fabric and dynamic rattlers have a smaller weight for stress than for fabric, see Eq. (5). Note
also that the number of rattlers decreases with increasing size of the particles [39].

2Note that the jamming volume fraction is given for a uniform radius distribution for polydispersity w = 3. The results
will be different if the distribution is different, e.g., when uniform surface or volume distributions are used. See Ref. [39] for
a detailed discussion on the evolution of jamming volume fractions with polydispersity for a uniform radius distribution.
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deformation, resembles the undrained test typical in geotechnical practice [87]. The chosen deviatoric
path is on the one hand similar to the pure shear situation, and on the other hand allows for simulation
of the biaxial element test [56, 66] (with two walls static, while four walls are moving, in contrast to
the more difficult isotropic compression, where all the six walls are moving). Pure shear is here used to
identify constant volume deviatoric loading with principal strain axis keeping the same orientation as the
geometry (cuboidal) of the system for the whole experiment. In this case, there is no rotation (vorticity)
of the principal strain (rate) axis and no distortion/rotation of the sample due to shear deformation.
Different types of volume conserving deviatoric deformations can be applied to shear the system, but
very similar behavior has been observed [30], in terms of shear stress.

3.1 Evolution of stress

The evolution of non-dimensional pressure P ∗ with deviatoric strain εdev is presented in Fig. 1(a) during
undrained shear tests for some exemplary volume fraction. For frictionless systems analyzed here, only
a slight variation of the pressure is observed at the beginning of the test, due to the development of
anisotropy in the sample, after which P ∗ remains constant.3 Both the (small) initial pressure change and
the final saturation value vary with the vicinity of ν to the jamming volume fraction νc. Interestingly,
depending on the volume fraction, some of the samples show increase of the pressure (dilatancy) with
respect to the initial value and some other decrease (compactancy), as shown in Fig. 1. This supports
the idea of a certain threshold value νpd = 0.79, as shown in Fig. 2(a), where the pressure of the system
changes behavior, similarly to the switch between volumetric dilation and contraction visible in triaxial
tests.

The evolution of the (non-dimensional) shear stress σ∗
dev during shear, as function of the deviatoric

strain εdev, is shown in Fig. 1(b), for the same simulations as in Fig. 1(a). The stress grows with applied
strain until an asymptote (of maximum stress anisotropy) is reached where it remains fairly constant –
with slight fluctuations around the maximum σ∗

dev [10]. The growth rate and the asymptote of σ∗
dev, both

increase with ν.
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Figure 1: Evolution of non-dimensional (a) pressure P ∗ and (b) shear stress σ∗
dev along the main strain

path for the pure shear deformation mode for five different volume fractions, as given in the inset.

3.2 Evolution of fabric

Complementary to stress, in this subsection we study the evolution of the microstructure in the sample
during the volume conserving shear test. Fig. 3(a) shows that the isotropic fabric Fv behaves in a very
similar fashion as P ∗, with a slight increase/decrease at the beginning, followed by saturation stage,
whose value increases continuously with ν. Fig. 2(b) shows that the difference between the initial value

3We observe a much more pronounced change in pressure when friction is included in the calculation, in agreement with
other studies, see e.g. [28]. These data are not shown here and are subject of ongoing research.
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Figure 2: Difference between the final and initial values in (a) non-dimensional pressure P ∗ and (b)
isotropic fabric Fv for the pure shear deformation mode for different volume fractions. Red ‘�’ represents
the change in bulk modulus, as derived in section 4.3. Dashed lines in the plots represent the crossover
when these quantities change sign.

of Fv and its saturation value, changes sign when a certain volume fraction, νFd = 0.755, is reached. Note
that νFd 6= νpd , that further confirms the independent evolution of FFF and σσσ.

From Eq. (8) Fv is proportional to the product of volume fraction ν, that remains unchanged during
deviatoric deformations, and coordination number C, that varies only slightly for sheared frictionless
systems [30]. Note that as C = C∗ (1− φr), knowing the (empirical) relations of C∗ and φr with volume
fraction, as presented in Refs. [30, 39], we can fully describe the isotropic fabric state. In this study, we
assume Fv to stay constant during the shear test. This assumption will be used later in section 5 for the
prediction of a cyclic shear test. However, the small changes in Fv or P ∗ can be associated to a (small)
change in the jamming volume fraction [41].

The evolution of the deviatoric fabric, Fdev, as function of the deviatoric strain is shown in Fig. 3(b)
during shear for five different volume fractions. It builds up from different random small initial values (due
to the initial anisotropy in the sample that develops during preparation) and reaches different maxima.
The deviatoric fabric builds up faster at lower volume fractions but the maximal values are higher for
smaller volume fractions, qualitatively opposite to the evolution of σ∗

dev [10]. As mentioned in section 2.2
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Figure 3: Evolution of (a) isotropic fabric Fv and (b) deviatoric fabric Fdev along the main strain path
for the pure shear deformation mode for five different volume fractions, as given in the inset.

the validity of Eq. (7), that relates the two different definitions of fabric depends on polydispersity. In
order to check the relation, in Fig. 4 the evolution of the three eigenvalues of the fabric tensor is plotted,
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for both definitions, Eqs. (5) and (6), during the volume conserving shear test, for three different values
of polydispersity w =1, 2 and 3. For all polydispersities, the chosen volume fraction ν = 0.685 is close
to the jamming points, that slightly varies with w [39]. The difference between the definitions of fabric
becomes higher for higher polydispersity w = 3, as in Eq. (6) the contribution of each particle is weighted
to its surface area, whereas in Eq. (5) it is weighted by the volume. Only for the monodisperse case,
the relation is exact, as can be seen in Fig. 4(a). The differences are considerable for w = 2 and w = 3,
for both compressive and tensile direction, while the non-mobile direction is not affected. Note that the
difference of the two fabrics will be smaller for denser systems.
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Figure 4: Evolution of the eigen-values of the fabric tensors (directions shown in the inset), during shear
deformation at volume fraction ν = 0.685, for the fabric definition defined in Eq. (6) (smaller symbols)
and the relation presented in Eq. (7) (large symbols), for three cases of polydispersity (a) w = 1, i.e.,
monodisperse (b) w = 2 and (c) w = 3 (present work).

4 Elastic moduli

In this section, we focus on the evolution of the elastic properties of the material and neglect the plastic
contribution to the granular behavior, that will be superimposed to the present analysis later in section
5. We first describe the numerical procedure to measure the elastic moduli of the anisotropic aggregate,
and later we analyze the data and their relation with stress and fabric.

4.1 Numerical probes
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Figure 5: Evolution of (a) non-dimensional shear stress σ∗
dev and (b) deviatoric fabric Fdev, along the

main strain path εdev for the pure shear deformation mode, for volume fraction ν = 0.706. The red ‘•’
symbols in (a – b) are the chosen states, which are first relaxed (blue ‘�’ symbols in (a) and (b)) and
then used as initial configurations for the purely isotropic 3δεv and purely deviatoric δεdev perturbations.
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In a general framework, a possible description for the incremental, elastic behavior of an anisotropic
material is [

δP ∗

δσ∗
dev

]
=

[
B A1

A2 Goct

] [
3δεv
δεdev

]
, (11)

where the isotropic and deviatoric components of stress have been isolated and are expressed as functions
of εv and εdev via a non-dimensional stiffness matrix [26] (by multiplying the moduli with k∗, the real
stiffnesses can be extracted). B is the classical bulk modulus, and Goct the octahedral shear modulus. The
anisotropy moduli A1 and A2 provide a cross coupling between the two parts (isotropic and deviatoric)
of stress and strain increments. Eq.(11) provides a partial description for the evolving stress and stiffness
of a sheared material, as it applies to a triaxial-box configuration (with eigensystem coincident with
the axes of the box), where no shear strain/stress are measured and stress and moduli are assumed
to be collinear. Moreover, the increase of stress and stiffness in the out-of-plane direction (z-direction
here) due to the non-planar (triaxial) stress state associated with a the plane deformation mode, is not
independently accounted for. These are rather hidden in the expression for deviatoric stress as proposed in
Eq.(9) and used in Eq.(11). However, we have chosen this representation, since advantages are obtained
by investigating the elasticity of a granular material (e.g. soil), not through its resistance to direct
stresses expressed by Young’s modulus and Poisson’s ratio, but rather in terms of (purely volumetric and
deviatoric) stress-response to volume and shape changes, as described by the bulk modulus B and the
octahedral shell modulus Goct. This aspect will be further addressed in section 5, where Eq.(11) will be
included in the theoretical model.

To study the evolution of the effective moduli during shear, we choose different initial states (forty)
as shown in Fig. 5, and apply sufficient relaxation, so that the granular assemblies dissipate the kinetic
energy accumulated during the original shearing path. When the states along the shear path are relaxed,
a much higher drop is visible in σ∗

dev rather than in Fdev, see Fig. 5. This shows that the contact network
remains almost intact and Fdev does not change; on the other hand, the average particle overlap is more
sensitive to the relaxation stage and decreases, leading to a finite drop in σ∗

dev. Then we perform a
small strain perturbation to these relaxed anisotropic states, i.e., we probe the samples, and measure
the incremental stress response [40, 50]. Finally, the elastic moduli are calculated as the ratio between
the measured increment in stress and the applied strain. We can obtain all the different moduli in Eq.
(11), by applying an incremental pure volumetric or pure deviatoric strain and measuring the incremental
volumetric or shear stress response:

B =
δP ∗

3δεv

∣∣∣∣
δεdev=0

, A1 =
δP ∗

δεdev

∣∣∣∣
δεv=0

,

A2 =
δσ∗

dev

3δεv

∣∣∣∣
δεdev=0

, Goct =
δσ∗

dev

δεdev

∣∣∣∣
δεv=0

. (12)

Also for this part of the numerical experiment, the system is allowed to relax after the incremental strain
is applied, that is the stress is measured after relaxation [50, 52] Since the numerical probe experiments
are carried out with zero contact friction, we are measuring the resistance of the frictionless material
[40], where only normal forces are involved. The first big question concerns the amplitude of the applied
perturbation to get the elastic response [6, 21, 72].

4.2 How small is small?

In this section, we discuss the amplitude of the perturbations applied to measure the elastic stress response
of the granular material. Also, we will discuss the results for larger amplitudes and the threshold between
elastic and plastic regimes.

4.2.1 Effect of isotropic perturbations 3δεv

Figs. 6 (column 1 and 2) show the changes in non-dimensional pressure δP ∗, non-dimensional shear
stress δσ∗

dev, isotropic fabric δFv and deviatoric fabric δFdev for different amplitudes of the isotropic
perturbation 3δεv, applied to two relaxed states that have been sheared until εdev = 0.0065 (nearly
isotropic configuration: column 1) and εdev = 0.31 (steady state configuration: column 2) respectively.
The data correspond the the shear test with ν = 0.706. The linear elastic response is also plotted (red
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solid curve) in the whole strain range, as derived from the incremental behavior at very small strain, to
give an idea of the deviation form elasticity when strain increases.

δP ∗ initially increases linearly and smoothly with 3δεv, in agreement with the prediction of linear
elasticity. Also the difference between the two initial states (near isotropic and steady state as shown
in Figs. 6(a) and 6(b), respectively) is minimal, meaning that the bulk modulus B (slope of δP ∗ with
3δεv in the elastic regime) is almost constant. This is not surprising, as we expect B to be dependent
on isotropic quantities that, which stay mostly unchanged during the shear deformation, as discussed
in section 4.3. δσ∗

dev behaves similar as δP ∗ for small strain, but shows several sharp drops for large
strain. These correspond to sudden changes in the coordination number δC∗ (see Fig. 7(a–b)), due to
rearrangements in the system during the probe. For the nearly isotropic state (Fig. 6(e)), the ratio of
δσ∗

dev with 3δεv in the linear elasticity regime, i.e. A2, is small when compared with the steady state
(Fig. 6(f)). This clearly tells that A2 evolves during the shear deformation for a given volume fraction,
and must be linked with deviatoric quantities.

δFv increases with 3δεv, with more fluctuations compared to δP ∗, for both states considered here,
εdev = 0.0065 (nearly isotropic state, Fig. 6(i)) and εdev = 0.31 (steady state, Fig. 6(j)). Moreover,
the prediction using Eq. (8) for Fv, matches the dataset very well. Fdev does not change (δFdev = 0)
with increasing 3δεv, until the first rearrangement in structure occurs (see Figs. 7(c–d)). After this
δFdev starts to decrease with increasing amplitude 3δεv, faster in the steady state (Fig. 6(m)) than in
the near isotropic state, see Fig. 6(n). We note here that, when a non-incremental volumetric strain
(3δεv > 10−4) is applied, the system moves from a volume-conserving to a new non-volume-conserving
deformation path. As this system is already anisotropic, this leads to a decrease (δFdev < 0) in deviatoric
fabric Fdev, opposite to the increase (δσdev > 0) in deviatoric stress, see Figs. 6(e) and 6(f), higher in the
steady state (Fig. 6(n)) than in the nearly isotropic state (Fig. 6(m)). The last observation suggests that
the distance between the volume conserving and non-volume conserving configurations increases with
εdev.

Hence, during isotropic compression (increasing 3δεv) of a pre-sheared (anisotropic) state, both the
pressure P ∗ and shear stress σ∗

dev increase, with pressure increasing much faster leading to a decrease in
deviatoric stress ratio sdev = σ∗

dev/P
∗. The deviatoric fabric Fdev also decreases with isotropic compres-

sion of a pre-sheared state, and the decrease is initially faster than the exponential decay of Fdev (see
section 5 below) with volume fraction ν, as seen in Fig. 6(n). This decrease in Fdev becomes slower for
large strain, as also seen in Fig. 6(m). These observations are consistent with the findings of Imole et
al. [30], where the authors noticed a decreasing steady state deviatoric fabric and deviatoric stress ratio
with the increasing volume fraction, or εv.

4.2.2 Effect of deviatoric perturbations δεdev

Figs. 6(column 3 and 4) show the changes in the same quantities as before for different amplitudes of
the deviatoric perturbation δεdev, applied to a relaxed state with volume fraction ν = 0.706 that has
been sheared until εdev = 0.0065 (nearly isotropic configuration: column 3) and εdev = 0.31 (steady state
configuration: column 4).

δP ∗ increase linearly with δεdev (the slope in the elastic regime is A1), with A1 much smaller for the
nearly isotropic state (Fig. 6(c)) than for the steady state (Fig. 6(d)). This shows that A1 evolves during
the shear deformations, like A2, for a given volume fraction, and must be linked with the deviatoric state
of the system. Moreover, after large deformation, both states show drops in δP ∗, which can be linked to
the particle rearrangements at large deformation (see Fig. 7(c–d)). A non-linear, irregular behavior shows
up for δεdev > 10−4, with δP ∗ positive in case of loose sample (present sample) and negative for dense
samples (data not shown), in agreement with the observations in Fig. 2(a). δσ∗

dev also increases linearly
with δεdev, with Goct (slope of the line) slightly higher for the near isotropic state (Fig. 6(g)) than for the
steady state (Fig. 6(h)). Again, similar to δP ∗, δσ∗

dev shows drops after large deformations, which can
be linked to the particle rearrangements at large deformation (see Fig. 7(c–d)). In the steady state, the
incremental stresses (δP ∗ and δσ∗

dev) increase linearly for very small strain, as the relaxed configuration,
starting point for the probes, has lower stress than the main deviatoric path (see Fig. 5(a)) and the
system tends to regain the ”missed” stress, when the shear restarts. After the first elastic response, δP ∗

and δσ∗
dev fluctuate around zero for larger amplitudes (Figs. 6(d) and 6(h)), as no change in stress is

expected with increasing deviatoric strain in the steady state.
δFv stays mostly zero when small δεdev is applied for both near isotropic and steady state config-
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urations (Figs. 6(k) and 6(l)). With increasing strain amplitude, δFv increases in the case of a loose
sample close to the isotropic state (Fig. 6(k)), and decreases for denser samples (data not shown), in
agreement with the behavior in Fig. 2(b). In Fig. 6(o), δFdev for the nearly isotropic state, stays zero
for δεdev < 10−4, when no rearrangements happen and the behavior is elastic, while it reaches a positive
finite value for larger amplitude (that coincides with the slope of the curve in Fig. 3(b)). This finite value
increases with increasing anisotropy (or deviatoric strain state) until it reaches zero in the steady state,
where no variation of deviatoric fabric is expected with further applied deviatoric strain (see Fig. 6(p)).
When compared to the model predictions in Ref. [30], the simulation data for Fdev well match with the
theoretical line, where Fdev increases due to shear for the near isotropic state, and does not change for
the steady state simulation.

4.2.3 Discussion and comparison

Since we are interested in measuring the pure elastic response of the material, we take care that no
rearrangements happen in the system during the numerical probe, that is 3δεv and δεdev are applied only
up to 10−4 (with very slow wall movement rate ∼ 10−6,i.e., smaller than for the main large shear strain
preparation experiment). Looking at Fig. 6, we note that much bigger drops appear in the deviatoric
response when the isotropic perturbation is applied. Vice-versa, the fluctuations/drops are much larger
in pressure rather than in shear stress, when we deal with deviatoric perturbations. It is worthwhile to
mention here that we have tested our method by applying strain perturbations in opposite directions i.e.,
3δεv and −3δεv, δεdev and −δεdev. This does not lead to any difference in the elastic response, as long
as we stay in the limit of elastic perturbations.

We test the rearrangements argument in Fig. 8, by plotting the calculated bulk modulus B and
octahedral shear modulus Goct against the amplitude of the applied isotropic 3δεv and deviatoric δεdev
strain, respectively, for states at εdev = 0.0065 and 0.31 (nearly isotropic and steady state configurations,
respectively) of the main deviatoric experiment. Both B and Goct stay practically constant for small
amplitudes and we can assume the regime to be linear elastic [10]. At 3δεv ' 10−4, the first change in
the number of contacts happens (Fig. 7(a–b)) and B starts to increases non-linearly. Similarly, when
εdev ' 10−4, the first change in the number of contacts happens (Fig. 7(c–d)) and Goct starts to decay.
It is interesting to notice that for both B and Goct, the elastic regime shrinks when the main deviatoric
strain εdev increases (Fig. 8) and, also, when the volume fraction reduces, going towards the jamming
volume fraction (data not shown). A similar modulus may be plotted for fabric as δFdev/δεdev that, due
to the finite size of the system, would be identically zero, until the first rearrangement occurs (see Fig.
6).

We further check the elasticity of the probe by reversing the incremental strain. We plot the stress
responses to volumetric/deviatoric strain in Fig. 9 and compare loading and unloading probes for different
volume fractions (ν = 0.706 and 0.812) and amplitudes. Looking at Figs. 6, 7 and 9 together, three regimes
seem to appear. The first one for very small strain (< 5.10−6), due to the finite size of the system, is
characterized by no opening and closing of contacts, and shows perfect reversibility of the data, i.e.,
elasticity in Figs. 9(a–d). The second regime in Figs. 9(e–h) shows some weakly irreversible behavior,
but only for the smallest volume fraction and a mixed perturbation mode, see the sample at ν = 0.706
in Fig. 9(f); we associate this behavior to minor contact changes, as visible in Figs. 6 and 7, but no
large scale rearrangements occur. Finally, the third regime, for perturbations two orders of magnitude
higher (> 10−4), a residual strain after reversal shows up for both volume fractions and all types of
perturbations, see Figs. 9(i–l), proving also that plasticity is much more pronounced in the deviatoric
modes than in isotropic ones. We claim that small drops are related to local (weak, almost reversible)
re-structuring, while in the last case, the whole system (or big portion of it) is involved in the collapse of
the structure, with a more pronounced effect for samples close to the jamming volume fraction [35, 49].

For granular materials, the strain can not be split in elastic and plastic contributions by “trivially”
referring to the residual deformation like in classical solids: as soon as we are out of the elastic range,
rearrangements happen during loading and (even though less probably) during unloading, and most likely
no original particle position is recovered. Finally, we note that the results shown here are valid for finite-
size systems; for much larger (real) samples of much smaller particles, we expect the first elastic regime
to reduce to much smaller strains. The boundary between the second and third regime is an issue for
further research [68].
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Figure 6: (Rows) Change of non-dimensional pressure δP ∗, non-dimensional shear stress δσ∗
dev, isotropic

fabric δFv and deviatoric fabric δFdev versus strain amplitude. Column 1 and 2 represent purely isotropic
while column 3 and 4 represent deviatoric perturbation experiments. The perturbation is applied to the
state corresponding to εdev = 0.0065 (nearly isotropic configuration: column 1 and 3) and εdev = 0.31
(steady state configuration: column 2 and 4) of the main deviatoric experiment with volume fraction
ν = 0.706. Note that the x-axis is log-scale, with inset plots in linear scale. The red line passing through
the dataset in (a-j) represents a linear fit in the elastic regime for 3δεv; δεdev < 10−4. The analytical
predictions for the elastic range from our results section 4.3 in Eqs. (13)–(17) are plotted as green line in
(a–h). The green line in (i) and (j) represents Fv = g3νC calculated using Eq. (8), when subtracted from
its initial value. The dashed horizontal line in (k)–(p) represents zero. The green line in (m) and (n)
represent the evolution of change in deviatoric fabric δFdev in critical state using parameters from Table
3 of Ref. [30], with the assumption that the new state after volumetric deformation is also in critical
state. The green line in (o) and (p) represents Eq. (18) from Ref. [30] when subtracted from its initial
value F 0

dev = 0.03 for (o) and F 0
dev = 0.113 for (p), with the growth rate βF = 39 and Fmax

dev = 0.12.

4.3 Evolution of the moduli

Using the four packings at different νi, we next determine which variables affect the incremental response
of the aggregates at different deviatoric strains along the main path. In order to understand the role
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Figure 7: Change of the coordination number δC∗ = δ (M4/N4) (black ‘•’ curve) and the modified
coordination number δC∗

p = δ (Mp
4 /N4) (red ‘*’ curve), defined in section 2, versus strain amplitude during

purely (a–b) isotropic and (c–d) deviatoric perturbation experiments (corresponding plots as in Fig. 6).
The perturbation is applied to the state corresponding to εdev = 0.0065 (nearly isotropic configuration:
(a) and (c)) and εdev = 0.31 (steady state configuration: (b) and (d)) of the main deviatoric experiment
with volume fraction ν = 0.706. Note that the x-axis is on log-scale, with inset plots in linear scale.
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Figure 8: Evolution of (a) bulk modulus B and (b) octahedral shear modulus Goct with the respective
applied isotropic 3δεv and deviatoric δεdev strain amplitudes for a state corresponding to εdev = 0.0065
(nearly isotropic configuration: green ‘�’) and εdev = 0.31 (steady state configuration: blue ‘•’) of the
main deviatoric experiment with volume fraction ν = 0.706. Corresponding dashed horizontal lines
represents the initial values of B and Goct.

of the microstructure, i.e., the fabric tensor F, the volumetric and deviatoric components, Fv and Fdev,
are considered. We postulate that the incremental response of the granular material can be uniquely
predicted, once its fabric state (along with the stress state) is known, irrespective of the path that the
system experienced to reach that state. In this sense the fabric tensor can be referred to as a state
variable.

4.3.1 Bulk modulus B

In Fig. 10(a), we plot the incremental non-dimensional pressure δP ∗ against the amplitude of the applied
isotropic perturbation 3δεv for one volume fraction, ν = 0.706, and various initial anisotropic configu-
rations. The slope of each line is the bulk modulus of that state. It practically remains unchanged for
different states and suggests that B is constant for a given volume fraction.

In Fig. 10(b), we plot the variation of the bulk modulus B, with the isotropic fabric Fv for packings
with different volume fractions νi. B increases systematically when the five different reference configura-
tions are compared, and it is related to the value of Fv constant at a given νi [24, 40, 70]. As expected
B is a purely volumetric quantity and varies with changes in the isotropic contact network. The inset
in Fig. 10(b) shows that the bulk modulus remains almost constant with applied shear during a single
deviatoric experiment [40], behaving qualitatively similar to pressure P ∗ and isotropic fabric Fv, see Figs.
1(a) and 3(a) respectively. That is, the contact orientation anisotropy, Fdev, which changes during the
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Figure 9: Evolution of non-dimensional pressure P ∗, non-dimensional shear stress σ∗
dev during small (a –

d), medium (e–h), and large (i – l) perturbations in the loading (symbols) and then unloading (solid lines)
direction. Red ‘+’ represents loading and the green line represents unloading for ν = 0.812. Similarly,
blue ‘*’ represents loading and the black line represents unloading for ν = 0.706. The deformation is
applied to the state corresponding to εdev = 0.31 (steady state configuration) of the main deviatoric
experiment.

main deviatoric deformation path (see Fig. 3(b)) does not affect it. In agreement with observations on the
volumetric fabric in section 3.2, also B shows a slight increase/decrease in the first part of the deviatoric
path, more pronounced for loose samples, as clearly seen in Fig. 2(b). The trend of B slightly deviates
from Fv in the low strain regime, while the dependence is well captured in the steady state, after large
strain. The relation between bulk modulus and fabric was given in Ref. [24] as:

B =
δP ∗

3δεv

∣∣∣∣
δεdev=0

=
p0Fv

g3νc

[
1− 2γp (−εv) + (−εv) (1− γp (−εv))

∂lnFv

∂ (−εv)

]
, (13)

where p0, γp and the jamming volume fraction νc are fit parameters presented in Table 1.5 g3 ≈ 1.22 is
dependent on the particle size distribution as presented in Refs. [24, 30, 39], see section 2. For a given
volume fraction, the above relation only requires the knowledge of the isotropic fabric Fv = g3νC =
g3νC

∗ (1− φr), where the empirical relations for C∗(ν) and φr(ν) are taken from Refs. [30, 39], see
section 2. The numerical data show good agreement with the theoretical prediction presented in [24] and
reported in Fig. 10(b). The minimum Fv is obtained at the jamming volume fraction, with νc = 0.658,
C∗ = 6, and φr = φc = 0.13, leading to Fmin

v = 4.2. At the jamming transition, we can extrapolate a
finite value of the bulk modulus Bmin = 0.22, while it suddenly drops to zero below νc [14, 31, 55, 62–
65, 85]. The discontinuity of B is related to the discontinuity in Fv, that jumps form zero to a finite
value in νc due to equilibrium requirements.

5Note that νc for the same particulate system was reported as 0.66 for isotropic deformation in Ref. [24], as 0.6646 for
isotropic and 0.658 for shear deformation in Ref. [30]. We use a similar νc = 0.658 here, which, however, is dependent on
history of the sample and on the deformation mode. The small deviations of B from Eq. (13) can be attributed to a (small)
variation of νc, however, this is beyond the focus of this paper.
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Figure 10: (a) Evolution of change in non-dimensional pressure δP ∗ during purely isotropic perturbations
3δεv for different states for volume fraction ν = 0.706 along the main path as shown in the inset. (b)
Evolution of the bulk modulus B as scaled with isotropic fabric Fv for five different volume fraction
as shown in the inset. The solid line passing through the data represents Eq. (13). The dashed lines
represent the initial and steady state data, as given in the legend.

Modulus Fit parameter

Bulk modulus B p0 = 0.0425, γp ≈ 0.2, νc = 0.658

First anisotropy modulus A1 aI = 1± 0.01

Second anisotropy modulus A2 aII = 1± 0.02

Octahedral shear modulus Goct gI = 130± 3

Table 1: Summary of fit parameters extracted from the small perturbation results in Eqs. (13), (14),
(15), and (17).

4.3.2 Anisotropy moduli A1 and A2

In Fig. 11(a), we plot the non-dimensional pressure increment δP ∗ against the strain amplitude, when
the material is subjected to small deviatoric perturbations δεdev, to measure the first anisotropy modulus
A1 as defined in Eq. (12), in given anisotropic configurations, as in Fig. 10(a). Since the material is
in an anisotropic state, an increment in deviatoric strain leads to a change in volumetric stress, along
with shear stress. The slope of the curves, A1, increases with the previous shear strain the system has
experienced, going from small values in the initial isotropic configuration, to an asymptotic limit.

We are interested in the ratio A1/B. In this ratio, the dependence of isotropic fabric Fv cancels
out, all that remains is a pure dependence on Fdev. In Fig. 11(b), we plot the variation of A1/B, with
Fdev for packings with different volume fractions νi as shown in the inset. Besides the fluctuations,
the data collapse on a unique curve irrespective of volume fraction and pressure, that is, once a state
has been achieved, a measurement of the overall anisotropy modulus is associated with a unique Fdev.
An increasing trend of A1/B with the fabric shows up. As the deviatoric fabric decreases with volume
fraction (see Fig. 3(b)), this leads to lower values of the scaled anisotropy modulus for denser systems.
In conclusion, we have a linear relation between for the first anisotropy modulus A1:

A1 =
δP ∗

δεdev

∣∣∣∣
δεv=0

= aIBFdev, (14)

where B is the bulk modulus, Fdev is the deviatoric part of fabric, and aI ≈ 0.66 is a fit parameter
presented in Table 1.

In Fig. 12(a) we plot the stress response of the material δσ∗
dev to isotropic perturbation 3δεv, for the
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Figure 11: (a) Evolution of change in non-dimensional pressure δP ∗ during purely deviatoric perturbations
δεdev for different states for volume fraction ν = 0.706 along the main path as shown in the inset. The
arrow indicates the direction of increasing strain states during main deviatoric experiments. (b) Evolution
of the ratio of first anisotropy modulus with bulk modulus A1/B as function of the deviatoric fabric Fdev

for five different volume fractions as shown in the inset. The solid line passing through the data represents
Eq. (14) divided by B.
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Figure 12: (a) Evolution of change in non-dimensional shear stress δσ∗
dev during purely isotropic pertur-

bations 3δεv for different states for volume fraction ν = 0.706 along the main path as shown in the inset.
The arrow indicates the direction of increasing strains during main deviatoric experiments. (b) Evolution
of the ratio of second anisotropy modulus with bulk modulus A2/B as scaled with the deviatoric fabric
Fdev for five different volume fraction as shown in the inset. The solid line passing through the data
represents Eq. (15) divided by B.

same anisotropic initial configurations as in Fig. 10(a), to measure the second anisotropy modulus A2 as
defined in Eq. (12). Similarly to A1, the slope of the elastic curves, i.e., A2, increases with the previous
shear strain the system has felt, starting form zero until an asymptotic limit is reached. In Fig. 12(b),
we plot the variation of A2/B, with Fdev for different volume fractions νi as shown in the inset. Data
show a very similar trend to what observed in Fig. 11(b) and besides the fluctuations, a collapse of data
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is observed.6 Again we can relate A2 to deviatoric fabric as:

A2 =
δσ∗

dev

3δεv

∣∣∣∣
δεdev=0

= aIIBFdev. (15)

The equality between the two fitting constants aI ≈ aII ≈ 1 (see Table 1), states the symmetry of the
stiffness matrix in Eq. (11).

Eq. 14 and 15 provides an interesting, novel way to back-calculate the deviatoric structure in a granular
sample via Fdev = A/B, where A and B can be inferred from wave propagation experiments, while the
direct measurement of fabric is still an open issue [29, 34, 36, 74].

4.3.3 Octahedral shear modulus Goct

In Fig. 13(a), we plot the shear stress response δσ∗
dev of the material when the initial configurations in

Fig. 10(a) are subjected to small deviatoric perturbations δεdev. The octahedral shear modulus Goct is
then measured, as defined in Eq. (12). The slope of the curves for different initial configurations slightly
decreases with the deviatoric state of the system, and saturates for high deformation εdev, when the
steady state is reached. Fig. 13(b) shows the variation of Goct against shear strain εdev. G

oct starts from
a finite value in the initial configuration, related to the isotropic contact network, and slightly decreases
with increasing strain, with different rates for different volume fractions. The behavior of Goct differs
from that observed for the bulk modulus in the inset of Fig. 10(b): the shear resistance consistently
decreases with shear strain and no transition between initial decrease/increase is observed, meaning that
a factor other than Fv influences the change of Goct during the deviatoric path. Similarly to what done
for A1 and A2, we look at the ratio of the shear modulus with the bulk modulus Goct/B plotted against
the isotropic fabric Fv in Fig. 13(c). The ratio increases with increasing Fv, with higher values in the
initial state than in the steady state (data are averaged over shear strain εdev ≤ 0.0065 to get the initial
value and in the steady state to get the final one). The isotropic ratio (Goct/B)ini increases with Fv,
following the power law:

(
Goct/B

)
ini

=
(
Goct/B

)
max

[
1− exp

(
Fv − Fmin

v

Fα
v

)]
, (16)

where (Goct/B)max ∼ 0.51 represents the maximum value of ratio Goct/B for large Fv (or volume
fraction), Fmin

v ∼ 4.2 is the volumetric fabric at the jamming transition, presented in section 4.3.1,
Fα
v ∼ 1.9 is the rate of growth of (Goct/B)ini, when the numerical data is extrapolated to the jamming

transition, where (Goct/B)ini = 0. This is in agreement with previous studies that find an upper limit
equal 0.5 for the ratio between the shear and bulk moduli [18, 38, 50, 73]. In the limit of high Fv,
the granular assembly becomes highly coordinated and practically follows the affine approximation that
predicts a constant value for the ratio Goct/B [78]. Here, a qualitatively similar behavior is observed for
the values in the steady state, approaching a saturation ratio lower than the isotropic one.

Next, in Fig. 13(d), we subtract the initial value (Goct/B)ini from Goct/B and assume that Fv does
not change during the deviatoric deformation. Interesting, we find that in this case the deviatoric mi-
crostructure alone is not able to capture the variation of the modulus along the shear path, but both
stress σσσ and fabric F seem to influence the incremental shear response, in agreement with findings in [87].
We relate the decrease of Goct to the deviatoric components of stress and fabric via:

Goct =
δσ∗

dev

δεdev

∣∣∣∣
δεv=0

= B

[(
Goct

B

)
ini

− gIσ
∗
devFdev

]
. (17)

where σ∗
dev is the non-dimensional shear stress, Fdev is the deviatoric fabric and gI ≈ 86 is a fit parameter

reported in Table 1. Two contributions of the fabric to the shear stiffness can be recognized – isotropic
and deviatoric. The overall contribution is multiplicative proportional to B, due to the isotropic contact
network, changing very little with deviatoric strain. In the bracket, the first term gives the resistance of
the material in the initial isotropic configuration, whereas the second part only depends on the deviatoric
(state) variables and characterizes the evolution of the shear modulus with deviatoric strain. That is,

6A large data scatter is present in both figures Figs. 11(b) and 12(b), which increases for increasing deviatoric fabric
Fdev. This is possibly due to other factors that may contribute to the evolution of the anisotropy moduli that are not
considered in the present work.
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Figure 13: (a) Change in shear stress δσ∗
dev versus strain amplitude during purely deviatoric perturbations

δεdev for different states, with volume fraction ν = 0.706, along the main path as shown in the inset.
(b) Evolution of octahedral shear modulus Goct along the main deviatoric path εdev for five different
volume fractions as shown in the inset. The corresponding lines passing through the data represents Eq.
(17). (c) Evolution of ratio of octahedral shear modulus and bulk modulus, i.e., Goct/B with isotropic
fabric Fv, together with the averaged values at the initial (near isotropic state averaged over shear strain
εdev ≤ 0.0065) and the steady state (averaged dataset in the steady state), as given in the legend. Note
that the difference between initial and steady state increases with denser systems. The solid orange line
passing through the isotropic dataset represents Eq. (16). (d) Evolution of the ratio of octahedral shear
modulus and bulk modulus when its initial value, i.e., Goct/B − (Goct/B)ini is subtracted, plotted using
Eq. (17), for five different volume fractions as shown in the inset.

given the initial isotropic configuration, the corresponding Goct is known [16, 50, 78]; on the other hand,
the deviation from isotropic to anisotropic network of such configuration uniquely defines the reduction
in the shear stiffness. The joint invariant of deviatoric stress and fabric σ∗

devFdev as proposed in [77, 87],
able to capture the evolution of the ratio of the elastic moduli along the whole undrained path, not only
in the steady state, as seen in Fig. 13(d). 7 No more relation with volumetric quantities needs to be
considered, as the evolution of σ∗

devFdev depends on the volume fraction of the sample νi.
Note that when Goct is plotted against Eq. (17) in Fig. 13(c), a deviation from the fitting law is

observed for each volume fraction, showing that extra correction terms might be needed for a more

7Such a split between isotropic and deviatoric fabric influence applies to this specific deformation path, where the volume
is conserved. Additional terms may enter when non volume-conserving deformation paths are considered. A very similar
behavior is observed when the definition in Eq. (6) is employed for the deviatoric fabric.
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accurate description. This is neglected in this preliminary work. It is interesting to point out that the
isotropic fabric has different effects in case of the anisotropy moduli A1, A2 and Goct, as in the former
two cases Fv, through B, is multiplied to Fdev and contributes to the growth of the moduli from zero to
the asymptotic values, while in the latter case Fv defines mostly the initial values of Goct via the bulk
modulus, but does not affect the further decrease.

In the next section, we use the evolution equation for the fabric as predicted from Eq. (8), and the
relations between the elastic moduli and the stress and fabric, to predict an independent deformation
experiment, namely the cyclic shear deformation, i.e., reverse shear after a large deviatoric strain.

5 Prediction of undrained cyclic shear test

In this section, the constitutive model is presented, involving the elastic moduli measured and calibrated
in section 4, and the plastic response of the material under large strain. The model is then used to predict
the material response under cyclic shear, involving reversal.
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Figure 14: Evolution of (a) pressure P ∗, (b) stress σ∗
dev, (c) normalized stress sdev, and (d) deviatoric

fabric Fdev with shear strain εdev during cyclic shear at constant volume ν = 0.711, starting from an
initial isotropic configuration. The values of smax

dev , Fmax
dev and βF for ν = 0.711 are 0.167, 0.124 and 40.04

respectively, taken directly from the relations proposed in Refs. [30, 39]. The red ‘•’ data points are the
DEM simulation data over which the calibration of moduli was done, while the green ‘∗’ data points
represents unloading (reversal) and re-loading. The solid line is the prediction of the DEM observations
using Eqs. (18).
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5.1 Calibration: Constitutive Model with Anisotropy

We introduce here a constitutive model as proposed in Refs. [30, 37, 39, 48, 51], extended to three
dimensions, that takes into account the evolution of fabric, independently of stress:

δP ∗ = B3δεv +ASσδεdev,

δσ∗
dev = A3δεv +GoctSσδεdev,

δFdev = βF sign (δεdev)F
max
dev SF δεdev. (18)

In its simple, reduced form, the model involves only three moduli B, A and Goct, defined in the previous
section in Eqs. (13) - (17). Due to A, the model provides a cross coupling between the two types of stress
and strain in the model, namely the isotropic stress P ∗ and shear stress σ∗

dev reacting to both isotropic
(εv) and deviatoric (εdev) strains. Fdev evolves differently from stress, as the rate of change with deviatoric
strain can be (and in many cases is) different than the respective rate for the shear stress evolution. Note
that additional terms (cross coupling of fabric with strain) might be needed for the incremental evolution
of δFdev in Eqs. (18), due to the observations from Fig. 6(n), where Fdev and Fv change also with εv and
εdev, respectively. However, both cross terms appear to be more activated in the highly anisotropic state,
with values of the out-of-plane fabric considerably smaller than out-of-plane stress - but this has to be
confirmed by other deformation paths also, i.e., we claim that some features are related to the specific
deformation path proposed here. If a dependence between stiffness and fabric similar to what proposed in
Eq.(14) and (15) is assumed, previous arguments also lead to the conclusion that the out-of-plane stiffness
terms developing during plane strain and neglected in Eq.(11) must be small compared to B,A and G.
As a conclusion, for the sake of simplicity, both evolution of cross-coupling fabric terms and out-of-plane
stiffness are neglected in the present work, and postponed to future investigations, for the description of
arbitrary deformation paths. The use of non-frictional particles is another possible reason for the simplest
model to work astonishingly well - so the general model is expected to show all contributions for arbitrary
deformation, in the presence of friction.

Sσ = S/SI
σ, with S = (1 − sdev/s

max
dev ) is a measure of the stress isotropy with normalized shear

stress ratio sdev = σ∗
dev/P

∗, and SI
σ is the initial stress isotropy at the start of a new deformation

direction and/or after relaxation. 1 − Sσ is the measure for the probability of plastic events. Similarly,
SF = (1 − Fdev/F

max
dev )/SI

F is the fabric isotropy, and SI
F is the initial fabric isotropy at the start of a

new deformation direction and/or after relaxation. smax
dev and Fmax

dev represent the maximum (saturation)
values of normalized shear stress ratio sdev and deviatoric fabric Fdev, respectively, and βF is the rate of
change in Fdev at smaller strains (as shown in Fig. 3(b)).

It is worthwhile to point out that the definitions of Sσ and SF are different to those used in Refs.
[48, 51], as both Sσ and SF are now scaled by the initial reference value and can take values between
0 and 1. Due to Sσ and SF , the incremental response of the material is purely elastic, after relaxation
or at strain reversal, with the elastic moduli evolving, as given by Eqs. (13) – (17), as functions of the
momentary stress and structure states. At reversal, the probability for plastic deformation drops to
zero and plastic events – as related to the approach to steady state – only occur after relatively large
strain, that is the reversal stiffness is not affected. Due to Sσ and SF , the incremental response of the
material in the large-strain steady state (S = 0) becomes elastic (S = 1), just when the strain is reverted,
or after relaxation (which is allowed before the probes). Due to the dependence of the elastic moduli
on the stress/fabric state, the model involves non-linear elasticity in its present form (without contact
non-linearities), while plasticity due to rearrangements is entirely associated to Sσ. On the other hand,
the equation that describes the evolution of fabric is “purely plastic”, as there is no change in fabric
(δFv = 0), in the elastic regime, when no contact opening/closing and no multi-particle rearrangement
happens.8 Thus the rate βF is associated to changes of structure with deviatoric (shear) strain amplitude
(not rate); changes are becoming more and more probably in the steady state.

Now, we can predict an independent experiment, by using Eqs. (18), and the relations for the four
moduli B, A and Goct with microscopic quantities given by Eqs. (13) – (17) with the numerical scaling

8We want to point out here the difference between the non-linear elasticity built up along the main deviatoric path
and the incremental elasticity, related to the small perturbations. Lets select two states A-B along the deviatoric path as
indicated by points in Fig. 5, the incremental measured elastic response (moduli) is different between states A and B as
it depends on stress and fabric, that is the stiffness matrix in Eq. (11), varies non-linearly with εdev. On the other hand,
when the incremental strain δεdev is applied to each state (e.g., A or B), the incremental response is linearly elastic (by
definition of incremental) and becomes plastic for high δεdev, as rearrangements happen and the moduli in that given state
go from elastic to plastic.
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factors from Table 1 (starting from B, we can calculate the other moduli using the ratio). Moreover, four
other parameters smax

dev , Fmax
dev and βF are needed to fully solve the coupled Eqs. (18). The dependence of

smax
dev , Fmax

dev and βF on volume fraction ν, is well described by the exponential decay relation proposed in
Refs. [30, 39], where constant values, as given in Fig. 14 are used, as the volume is conserved during the
cyclic shear test, as discussed next.

5.2 Prediction: (Undrained) cyclic shear test

We choose an initial isotropic configuration, with volume fraction ν = 0.711 and apply deviatoric (vol-
ume conserving) shear for one cycle: loading, unloading and final re-loading, to recover the initial box
configuration. Fig. 14 shows the evolution of pressure P ∗, shear stress σ∗

dev, shear stress ratio sdev and
deviatoric fabric Fdev with deviatoric shear strain εdev for one cycle, compared with the prediction using
Eqs. (18). Since the initial configuration is isotropic, the shear stress σ∗

dev and Fdev start from zero and
approach saturation values (with fluctuations) at large strains. During reversal, both drop with a soft
response from their respective saturation value and decrease with unloading strain, crossing their zero
values at different strain levels, and finally reach their steady state with negative signs. This supports
the need of independent descriptions for the evolution of stress and fabric. Finally, re-loading is applied
to reach the initial box configuration.

The qualitative behavior of pressure P ∗ is similar in simulations and model, going from a finite
initial value to saturation with much less pronounced variations, since the deformation path is volume
conserving. It is also interesting that the final state after the complete cycle, which corresponds to the
initial box configuration, is highly anisotropic (non-zero stress σ∗

dev and deviatoric fabric Fdev).
Both, the shear stress σ∗

dev and deviatoric fabric Fdev, as well as their soft responses during strain
reversal are well predicted by the model. P ∗ increases during loading εdev by ∼ 9% and saturates at large
strains. After reversal, P ∗ drops because of opening and release of contacts and then increases again
with unloading strain. Although P ∗ is not quantitatively predicted by Eqs. (18), the qualitative behavior
is captured by the model, which requires a correction as proposed by Krijgsman and Luding [37]. The
concept of a history dependent jamming point, introduced by Kumar et al. [41], is capable of capturing
the behavior of P ∗ quantitatively, however, this goes beyond the scope of this study.

Eqs. (18) provide a set of equations able to describe the volumetric/deviatoric behavior of a granular
assembly, in terms of stress and fabric. Once the initial state and the deformation path are defined,
the evolution of isotropic fabric can be determined (using the coordination number and the fraction of
rattlers) along the deformation path. The knowledge of isotropic and deviatoric fabric and the incremental
relations in Eqs. (18) allow for the definitions of the moduli at each incremental step. Given also the
probabilities for the plastic events (1− Sσ and 1− SF ), the coupled system can be solved. That is, the
characterization of the initial state is the information needed to fully describe the behavior of the material
along a general deformation path, defined in terms of strain, since the incremental evolution equations
for both stress and structure are given.

In the case of granular matter, the concept of a (homogeneous) material point in a continuum model
is debated and many studies have been devoted to the introduction of a length scale in the constitutive
model, starting from the Cosserat brothers, see [11, 44, 53] among others. Here we limit ourselves and state
that a finite-size system is always needed, in order to calibrate any continuum model. That is, any model
interpretation works only between the upper/lower bounds of infinite system and particle scale. When a
finite-size system is considered an elastic range can always be detected, such that rearrangements happen
(see section 4.2) with negligible(tiny) probability for very small strain, and an elasto-plastic framework
could then make sense. Here, we introduce a local rate-type model in Eqs. (18), and identify elasticity
as the unique initial, static, configuration, from which the (incrementally irreversible) evolution of stress
and structure follows. Our choice is to reduce elasticity to a “punctual range”, as plastic deformations
(which include irreversible opening/closing of contacts by large scale rearrangements) will dominate for
large deformations. Dynamics and kinetic fluctuations, leading to relaxation, are not considered here,
but also needs to be taken into account, see e.g., [33].

6 Summary and Outlook

In a triaxial box, the four elastic moduli that describe the incremental, elastic constitutive behavior of an
anisotropic granular material in terms of volumetric/deviatoric components, namely the bulk modulus B,
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the two anisotropic moduli A1, A2 and the octahedral shear modulus Goct, can be measured by applying
small strain perturbations to relaxed states that previously experienced a large strain, volume conserving
(undrained) shear path. A connection between the macroscopic elastic response and the micromechanics is
established, by considering both stress and fabric tensors, σσσ and F, respectively. While the bulk modulus
B depends on the isotropic contact network Fv, the deviatoric component of the fabric tensor Fdev is the
fundamental state variable needed to properly model the ratios between the (cross-coupling) anisotropic
and bulk moduli. When the deviatoric stress and strain are appropriately scaled (normalized), we find
that the moduli reduce to three relevant ones, i.e. A = A1 = A2 = aFdevB. The anisotropy moduli are
related to both deviatoric and isotropic fabric, as the whole contact network determines how the system
will react to a perturbation. Surprisingly, when the shear resistance Goct is considered, both the contact
network and the deviatoric stress determine the incremental behavior of the assembly. When the initial
response is subtracted, the residual ratio Goct/B − (Goct/B)ini scales with the deviatoric state of the
system, through the product σ∗

devFdev. For strain amplitude larger than 10−4, rearrangements in the
sample take place and the behavior deviates from elastic (reversible). The effect of increasing amplitude
of isotropic/deviatoric strain perturbations on isotropic/deviatoric stress and fabric is investigated, in
the case of nearly isotropic states and steady states at various different densities. For very small strain,
the initial (linear) elastic regime, visible in the stress response, is associated to zero change in fabric.
For higher strain amplitude applied to nearly isotropic state, plasticity comes into the play, and the
incremental stress-strain relation deviates from linear as soon as the contact network changes. In the case
of steady state, deviatoric strain can only induce fluctuations around the saturation value for both stress
and fabric. Large volumetric strain induce substantial modifications, as the sample previously subjected
only to volume-conserving deformation, experiences now large volume changes. In the limit of large
strain, the tangential moduli of the stress-strain and fabric-strain curves (see Fig. 5) are recovered. The
relation between particle rearrangements and macro-scale plasticity is a present object of investigation,
as well as the transition between local/global plastic regimes. As first important result, thanks to the
independent study on elasticity, our study provides a new way to indirectly characterize the granular
structure. Once the moduli in a given isotropic/anisotropic configuration, have been measured through
wave propagation experiments, they can be uniquely associated with the internal fabric. However, we do
not expect the proportionality to remain constant for different materials.

As further step, a simple constitutive model is introduced that involves anisotropy, as proposed in
Refs. [48, 51]. The non-linear elastic behavior is established and the irreversible/ plastic contribution
is introduced via empirical probabilities for plastic events, that require more research and theoretical
support. The dependence of the model parameters on volume fraction and polydispersity has been
analyzed in previous extensive work [30, 39]. Here, by using the new relations for the elastic moduli,
we are able to integrate the increments at each state along a generic deformation path. Hence we can
predict the evolution of pressure, shear stress and fabric for large strain, and also at and after reversal.
The method is first calibrated and then applied to a volume conserving (undrained) shear cycle. When
the prediction is compared with numerical simulations, quantitative agreement is found for the deviatoric
field variables. The most notable feature of soft but different reversal responses of shear stress and fabric
is well captured; the pressure response amplitude is underestimated by the present model.

This study concerns a seemingly unrealistic material of spheres without friction and interacting with
linear contact forces to exclude effects that are due to contact non-linearity, friction and/or non-sphericity.
This allows to unravel the peculiar interplay of stress with microstructure. However, the work should be
extended to more realistic cases involving particle shape, friction, and non-linear contact behavior. We
expect that friction will not completely change qualitatively the observed relations between stiffness and
fabric state, but possibly will add new effects to be explored in the future; the deviatoric fabric and the
moduli are expected to change quantitatively when tangential forces are included. On the other hand,
non-linearity at contacts will introduce an extra pressure-dependence for the moduli, as already shown
by many authors (see e.g. [7, 16, 50, 78] in the case of Hertzian interactions). Speculating about the
effects of shape goes beyond the scope of this study. A similar analysis is already in progress to check the
influence of polydispersity on the relation between elastic stiffness and microstructure, as polydispersity
affects the contact network, the structure, and the orientation of contacts [24, 25, 39].

Future work will focus on the extension of our small perturbation approach to elasto-plasticity, by
using concepts like e.g. the Gudehus response envelope [27, 54]. Other theoretical approaches involve ideas
proposed by Einav [17], or by Jiang and Liu [33], for which our results can provide a microscopically based
calibration of parameters, but details are not discussed here. The information obtained for the pure elastic
range can then be used to decouple the plastic contribution, associated with rearrangements, and to study
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the flow rule. The validation of the present analysis with experimental data is another important goal.
Nevertheless the issue of measuring fabric from laboratory experiments is far from solved, even though
big advances have been made in recent years using photoelasticity, and microtomography CT-scans
[5, 29, 34, 74]. A partial validation is anyway possible when measuring the residual dependence of the
elastic response from variables other than stress and porosity [19], by means of acoustic measurements
[36]. The behavior after more than one cycle deserves further investigation, from both simulational
and theoretical points of view, to detect features like creep, liquefaction and ratcheting, analyzed in
preliminary works [51] with constant elastic moduli and for many cycles [41]. Finally, a general tensor
formulation that allows for highly different orientations of strain rate, stress and fabric is an open issue
but can be inspired by the works of Thornton [77] and Zhao & Guo [87].
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cussions. Critical comments and reviews from O. I. Imole, M. B. Wojtkowski, F. Göncü, J. Ooi and
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