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ABSTRACT: The influence of the micromechanics on the response of stress and fabric on strain is an essential
part of a constitutive model for granular matter, because it contains the information of how different deformation
paths (history) affect the actual mechanical state of the system. Here, we study a granular aggregate that is first
isotropically compressed and then subjected to large axisymmetric strain extension at constant volume. At various
axial strain amplitudes, we determine the stress and fabric incremental response envelopes that result from the
application of strain-probes with identical total magnitude but different contribution of isotropic relative to devi-
atoric strain (which span an orthogonal two-dimensional subset in “strain-space”, in which the “direction-angle”
defines the relative magnitude of the two contributions). For very small strain increments the fabric response is
null in shear direction, i.e. the structure does not change and the elastic stress-response is probed. Larger strain
are associated with rearrangements of contacts probing the combined plastic stress- and fabric-response. With
increasing shear-induced anisotropy, the centers, inclinations and the thickness of the response envelopes in the
stress-space change, involving the maximum and minimum stiffness.

1 INTRODUCTION

Granular materials behave differently from usual
solids or fluids and show peculiar mechanical prop-
erties like dilatancy, history dependence, ratcheting
and anisotropy, see (de Gennes 1999) and references
therein. The behavior of these materials is highly
non-linear and involves plasticity also for very small
strain due to rearrangements of the elementary parti-
cles (Goddard 1990, Sibille 2009, Bardet 1994, Kumar
2014). The concept of an initial purely elastic regime
(small strain) for granular assemblies is an issue still
under debate in the mechanical and geotechnical com-
munities (Einav 2012). Recent works (Ezaoui 2009,
Zhao 2013, La Ragione 2012) show that along with
the macroscopic properties (stress and volume frac-
tion) also the structure, quantified by the fabric tensor
(Luding 2005) plays a crucial role, as it characterizes,
on average, the geometric arrangement of contacts. In
particular, when the material is sheared, anisotropy in
the contact network develops, as related to the opening
and closing of contacts, restructuring, and the creation
and destruction of force-chains. The anisotropic state
is at the origin of interesting observations on wave
propagation in sheared granular media.

In this work we use the Discrete Element Method

(DEM) to study frictionless, anisotropic granular as-
semblies and focus on their elastic and elasto-plastic
behavior. In order to investigate the evolution of the in-
cremental response as a function of the loading direc-
tion, we perform so-called strain probing tests along
an axisymmetric deformation path, resembling what
happens in physical experiments (Muir Wood 2006).
The directional-dependent data are collected in stress
and fabric response envelopes as defined in (Gud-
heus 1979) in the case of both small (elastic) and big
(elasto-plastic) probes. In the case of a finite assem-
bly of particles, in simulations, a finite elastic regime
can always be detected and the elastic stiffnesses can
be measured by means of an actual, very small, strain
perturbation (Magnanimo 2008). By isolating elas-
ticity we aim to identify the kinematics at the mi-
croscale that lead to either macroscopic elasticity or
plasticity. The final goal is to improve the understand-
ing of anisotropic elasticity in particle systems and to
guide further developments for new constitutive mod-
els based on microstructure informations.

2 NUMERICAL SIMULATION

The Discrete Element Method (DEM) (Luding 2005)
helps to better understand in detail the deformation be-



havior of particle systems. At the basis of DEM are
force laws that relate the interaction force to the over-
lap of two particles. Neglecting tangential forces, if all
normal forces fi acting on particle i, from all sources,
are known, the problem is reduced to the integration of
Newton’s equations of motion for the translational de-
grees of freedom: d

dt (mivi) = fi +mig, with the mass
mi of particle i, its position ri, velocity vi (= ṙi) and
the resultant force fi =

∑
c fi

c acting on it due to con-
tacts with other particles or with the walls, and the ac-
celeration due to gravity, g (which is neglected in this
study).

2.1 Contact model

For the sake of simplicity, the linear visco-elastic
contact model for the normal component of force
is used. The simplest normal contact force model
is given by fn = kδ + γδ̇, where k is the spring
stiffness, γ is the contact viscosity parameter, δ =
(di + dj)/2− (ri − rj) .n̂ is the overlap between two
interacting species i and j with diameters di and dj ,
n̂ = (ri − rj)/ |(ri − rj)| and δ̇ is the relative velocity
in the normal direction. In order to reduce dynamical
effects and shorten relaxation times, an artificial vis-
cous background dissipation force fb = −γbvi propor-
tional to the moving velocity vi of particle i is added,
resembling the damping due to a background medium,
as e.g. a fluid.

The standard simulation parameters are, N =
9261(= 213) particles with average radius 〈r〉 = 1
[mm], density ρ = 2000 [kg/m3], elastic stiffness k =
108 [kg/s2], particle damping coefficient γ = 1 [kg/s],
background dissipation γb = 0.1 [kg/s]. Note that the
polydispersity of the system is quantified by the width
(w = rmax/rmin = 3) of a uniform size distribution,
where rmax and rmin are the radii of the biggest and
smallest particles respectively. For details about other
time scales present in the system, see (Imole 2013, Ku-
mar 2014).

2.2 Macroscopic (tensorial) quantities

Here, we define averaged tensorial macroscopic quan-
tities – including strain-, stress- and fabric (structure)
tensors – that provide information about the state of
the packing and reveal interesting bulk features.

By speaking about the strain-rate tensor Ė, we re-
fer to the external strain that we apply to the sam-
ple. The isotropic part of the infinitesimal strain tensor
εv is defined as: εv = ε̇vdt = − (εxx + εyy + εzz)/3 =
tr(−E)/3 = tr(−Ėdt)/3, where εαα= ε̇ααdt with αα =
xx, yy and zz as the diagonal components of the ten-
sor in the Cartesian x− y − z reference system. The
trace integral of 3εv is denoted as εv, the true or log-
arithmic volumetric strain, i.e., the volume change of
the system, relative to the initial reference volume, V0.

On the other hand, from DEM simulations, one can
measure the ‘static’ stress in the system as

σ = (1/V )
∑
c∈V

lc ⊗ f c, (1)

averaged over all the contacts in the volume V of the
dyadic products between the contact force f c and the
branch vector lc, where the contribution of the kinetic
fluctuation energy has been neglected (Luding 2005,
Imole 2013). The isotropic component of the stress is
the pressure P = tr(σ)/3.

In order to characterize the geometry/structure of
the static aggregate at microscopic level, we measure
the fabric tensor, defined as

F =
1

V

∑
P∈V

V P ∑
c∈P

nc ⊗ nc, (2)

where V P is the particle volume for particle P , which
lies inside the averaging volume V , and nc is the nor-
mal unit branch-vector pointing from center of particle
P to contact c (Luding 2005, Kumar 2014).

We choose here to describe each symmetric second
order tensor Q, in terms of its isotropic part (first in-
variant) and the second J2 and third J3 invariants of the
deviator: J2 = 1

2

[
(QD

1 )
2 + (QD

2 )
2 + (QD

3 )
2
]

and J3 =

det(QD) =QD
1 Q

D
2 Q

D
3 , with QD

1 ,Q
D
2 and QD

3 eigenval-
ues of the deviatoric tensor QD = Q− (1/3)tr(Q)I.
The deviatoric part is described with a single scalar
quantity by using the second invariant of the deviatoric
tensor, Qdev = ±

√
2J2, where the sign relates to either

axial compression (+) or extension (−), and the devia-
tors εdev, σdev and Fdev refer to strain −E, stress σ and
fabric F respectively (Kumar 2014). Note that in this
work we use k∗ = k/ (2〈r〉) to non-dimensionalize the
stress, i.e. σ∗ = σ/k∗.

3 VOLUME CONSERVING (UNDRAINED)
AXISYMMETRIC TEST

In this section, we first describe the preparation proce-
dure and then the details of the numerical shear test.

The initial configuration is such that spherical par-
ticles are randomly generated, with low volume frac-
tion and rather large random velocities in a periodic
3D box, such that they have sufficient space and time
to exchange places and to randomize themselves. This
granular gas is then compressed isotropically, to a
target volume fraction ν0 = 0.640, sightly below the
isotropic jamming volume fraction νc ≈ 0.658 and the
system is let to relax toward equilibrium (Imole 2013,
Kumar 2014). The relaxed state is further compressed
(loading) isotropically from ν0 to a higher volume frac-
tion of νmax = 0.82 (Imole 2013, Kumar 2014). We
take this isotropic sample at νmax and shear the sam-
ple keeping the total volume constant, by applying the
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Figure 1: Evolution of (a) stress and (b) fabric components with
applied shear strain −εdev in the case of undrained axisymmetric
deformation path at volume fraction ν = 0.82. The correspond-
ing points represent the states chosen along the shear path at
−εdev = 0.006,0.021,0.043,0.068 and 0.32, where small strain
perturbations probes are applied.

strain-rate tensor

Ė = ε̇dev

 1 0 0
0 −1/2 0
0 0 −1/2

 , (3)

where x− is the axial extension direction and ε̇dev =
28.39 [µs−1] the strain-rate (compression < 0) am-
plitude applied to the walls. Our volume conserving
shear test, resembles the undrained triaxial test typical
in geotechnical practice (Zhao 2013).

The evolution of the components of (non-
dimensional) stress σ∗ during shear, is shown in
Fig. 1(a), as function of the deviatoric strain −εdev.
The tensile stress σ∗

xx first decreases and then slightly
increases with applied strain, while the compressive
components σ∗

yy and σ∗
zz, increase (due to compres-

sion) until an asymptote is reached. A similar behavior
is observed for fabric in Fig. 1(b), with Fxx decreasing
and Fyy, Fzz increasing with strain.

4 RESPONSE ENVELOPE

We now want to study the evolution of the incre-
mental behavior during shear as function of the load-
ing direction. We choose five different initial states
along the deviatoric path in Fig. 1, the first one be-
ing near isotropic and last one highly anisotropic, and
apply sufficient relaxation, so that the granular as-
semblies dissipate the kinetic energy they had during
the original shearing path, even though it was very
small. Further on we probe the samples, by apply-
ing small strain perturbations and measuring the in-
cremental (stress and fabric) responses (Magnanimo
2008, Kumar 2014). For each state we apply several
perturbations that have identical magnitude ||δε|| =√
(δεxx)2 + (δεyy)2 + (δεzz)2 and point in different di-

rections of the strain space

δĖdt = ||δε||

 sinθ 0 0
0 1√

2
cosθ 0

0 0 1√
2
cosθ

 , (4)

where θ ∈ [0°,360°] is the between the strain incre-
ment vector and the horizontal axis. Because the main
path is deviatoric axisymmetric, Eq. (1), we apply in-
cremental strains that resemble that type of symmetry
for each θ.
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Figure 2: (a) Location of points of isotropic extension and com-
pression (I.C. & I.E. 35° & 125° respectively - red line), uniax-
ial extension and compression (U.C. & U.E. 90° & 270° respec-
tively) and deviatoric extension and compression (D.C. & D.E.
125° & 305° respectively - blue line) on the Rendulic plane of
strain.

The response of the granular assembly is depicted
by using the so-called incremental stress response en-
velope, defined as the image in the stress rate space of
the unit sphere in the strain rate space (Gudheus 1979,
Bardet 1994, Muir Wood 2006, Calvetti 2003, Alonso-
Marroquı́n 2005). In the specific case of axisymmet-
ric loading, the number of independent components of
strain (and stress) reduces to two: the strain probes de-
fine a circle in the Rendulic plane of strain increments
δεxx :

√
2δεyy ≡ sinθ : cosθ, and the response enve-

lope can be visualized in the incremental stress plane
δσ∗

xx :
√
2δσ∗

yy (Wu 2000, Calvetti 2003). It is easy to
show that an incremental linear behavior leads to an
ellipse centered at the origin of the stress increment
plane (Gudheus 1979). The distance of a point on the
response envelope to the center of the ellipse charac-
terizes the stiffness corresponding to a given direction
of strain (directional stiffness) (Wu 2000), that is the
envelope of stress provides a visual indication of the
stiffness characteristics of the material. Any deviation
from this kind of response, such as shift of the cen-
ter of the envelope from the origin, strongly suggests
some form of incremental non-linearity.

In figure 2 we give an example of the procedure and
plot the strain circle, the stress response envelopes for
the nearly isotropic configuration at −εdev = 0.006 and
in the steady state configuration at −εdev = 0.32, all of
them in the respective Rendulic planes. In Fig. 2 the
special directions of purely isotropic, uniaxial, purely
deviatoric volume conserving perturbations are high-
lighted. The same points are then located in the cor-
responding stress envelopes in Figs. 3(a)–3(e). Special
features of the two envelopes can be detected. When a
purely volumetric perturbation is applied, the stress re-
sponse in Fig. 3(a) is, as expected, purely isotropic and
corresponds to the major axis of the ellipse, such axis
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Figure 3: Evolution of the elastic stress response envelope with deviatoric strain applied to the sample, starting from nearly isotropic
configuration to highly anisotropic state. Configurations (a)-(e) correspond to deviatoric strain −εdev = 0.006,0.021,0.043,0.068,0.32
respectively. The applied strain increment is small, δε < 10−4 and the response elastic. Points corresponds to the special directions, as
shown in Fig. 2.
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Figure 4: Evolution of the elastic fabric response envelope from the same configurations as in Fig. 3.
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Figure 5: Evolution of the elasto-plastic stress response envelope from the same configurations as in Fig. 3, with higher strain increment
δε > 10−3 and response plastic.
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Figure 6: Evolution of the elasto-plastic fabric response envelope from the same configurations as in Fig. 5.

being a measure of the bulk modulus of the material.
On the other hand, a purely deviatoric perturbation has
its image on the minor axis of the stress envelope, that
provides then a representation of the shear modulus.
This also explains the very narrow shape of the our el-
lipses: as our numerical probe experiments are carried
out with zero contact friction, we detect very small (but
non-zero) shear moduli.

When looking to figure 3(e), the images of both
isotropic and deviatoric strain increments do not lie
anymore on the axes of the ellipse, but they are rather
in an off-axes location. This is due to the anisotropy
in the system. In fact, when a volumetric strain is
applied to an anisotropic configuration, along with
the volumetric stress response (bulk modulus) also
a shear stress response develops. The corresponding
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Figure 7: Evolution of inclination of the response envelope of
(a) stress and (b) fabric relative to the isotropic packing response
with deviatoric strain. The red horizontal line represents isotropic
compression (I.C. 35°) in the strain space. Evolution of the (c)
the major axis and (d) minor axis of the elliptical stress response
envelope relative to the isotropic packing response with devia-
toric strain (undrained axisymmetric path). Open and solid sym-
bols represent elastic (Fig. 3) and plastic (Fig. 5) response respec-
tively. The stress response envelopes are fitted with ellipses, while
the fabric response envelopes are fitted with straight lines to ex-
tract the inclination. Points corresponding to the configurations in
Figs. 3(e), 4(e), 5(e) and 6(e) are omitted.

stress vector can be decomposed in two components
along the major and minor axes directions, that give a
measure of the bulk modulus and the cross-coupling
anisotropic stiffness, respectively (Kumar 2014). Fi-
nally we highlight that, in any isotropic/anisotropic
configuration, the major and minor axis of the ellipse
depict the magnitude and direction (in stress- or fabric-
space), i.e the composition of the response, of maxi-
mum and minimum stiffness of the system.

We extend this type of analysis and, together with
the stress response envelope, we plot the fabric re-
sponse envelope to study the incremental fabric re-
sponse due to a given strain increment and relate it to
the stress behavior (Thornton 2010, Zhao 2013). An
interesting question concerns the elastic range in gran-
ular materials and the allowed amplitude of the applied
perturbation such the response remains elastic (Sibille
2009, Froiio 2010, Calvetti 2003). We use the response
envelopes of stress and fabric to address this topic.

4.1 Results: Elastic regime

In figures 3 and 4 we report the resulting envelopes
of stress and fabric for the whole set of samples
at −εdev = 0.006,0.021,0.043,0.068 and 0.32. Figs.

3(a)–3(e) show that, as long as ||δε|| < 10−4, the re-
sponse envelope saves the elliptical shape along the
whole axisymmetric path with the ellipse centered at a
the origin of the stress increment plane, meaning that
we are looking at the incremental linear elastic be-
havior of the isotropic/anisotropic configurations. As
anisotropy develops, the characteristics of the stress
envelope change. Such modifications are reported in
figures 7(a) and 7(c)–7(d), together with data for the
elasto-plastic range, that will be discussed in the next
session. The inclination of the major axis systemati-
cally decreases (Fig. 7(a)), that is the main path is in-
ducing a rotation of the direction of maximum (elastic)
stiffness. Figs. 7(c)–7(d) shows the change in magni-
tude of the major and minor axes of the elliptical en-
velope, as fitted from Fig. 3, with respect to the ini-
tial values. The major axis remains almost the same
while the minor axis shrinks with increasing −εdev.
This is associated with the volume conserving defor-
mation path, that leads to a reduction of the shear stiff-
ness with respect to initial near isotropic state, while
the bulk stiffness stays fairly constant (Kumar 2014).

When looking at the fabric response envelope in
Fig. 4, we observe that the elastic regime, is associ-
ated with a linear fabric change in the isotropic and al-
most zero in the deviatoric direction and for any state
(from initial-isotropic to anisotropic). However, as the
sample becomes more anisotropic, the fabric envelope
slightly tilts, see Fig. 7(b), as the direction of maxi-
mum fabric change deviates from the composition of
strain, but in a direction opposite to stress (Weinhart
2013, Thornton 2010).

4.2 Results: Elasto-plastic regime

As further step, in figures 5 and 6, we plot the stress
and fabric response envelopes related to larger strain
increment amplitude, ||δε|| > 10−3. In this case the
magnitude of each vector in the stress response enve-
lope represents the directional elasto-plastic stiffness
of the material (rather than the elastic stiffness) for the
associated loading direction and strain increment. Fig.
7(a) shows that the major principal axis θσ rotates with
increasing anisotropy, with angles very close to those
measured in the elastic case. In Figs. 7(c) and 7(d) we
report changes of the dimension the axis of the fitted
elliptical response, with much bigger fluctuation with
respect to the elastic data. The length of the minor axis
(elasto-plastic shear stiffness) reduces – faster than the
purely elastic case, while the major axis remains al-
most unchanged, like in the purely elastic range. In the
final steady state, the data collapse on a unique line,
shifted with respect to the center of the stress space,
meaning that the plastic shear stiffness (minor axis)
drops to zero as expected. While the inclination of the
ellipse depends solely on the elastic contribution, the
shift in figure 5(e) is an indication of incremental non-
linearity, as predicted for rate-type constitutive models



(Wu 2000). Please notice that, for the sake of clarity,
points corresponding to the steady state configuration
are omitted in Fig. 7.

Finally, we look at the fabric response in Fig. 6 for
large strain ||δε|| > 10−3. While no rearrangements
have been observed in figure 4 (elastic regime), we
depict a finite value of fabric change in this regime,
associated with plasticity (Kumar 2014). Besides the
fluctuations, θF seems first to increase with increas-
ing anisotropy and finally saturate around 35° in the
steady state, corresponding to the isotropic compres-
sion in the strain space. From comparison of Figs. 4(e)
and 6(e) we learn that two situations are always asso-
ciated with zero fabric change, the elastic regime and
any steady state (Kumar 2014). Similarly to the incre-
mental stress in figure 5, the center of the line in figure
6(e) shows a displacement with respect to the center
of the space. The inclination of the elasto-plastic fab-
ric envelope is reported in Fig. 7(b), but no clear trend
about the orientation of the maximum fabric-change
direction can be inferred.

5 CONCLUSIONS

We have studied the small strain behavior of granular
materials, by building stress and fabric response en-
velopes for isotropic and anisotropic samples. From
our analysis, we obtain indications about the change
in the orientational stiffness of the material and the tilt
in the direction of maximum stiffness with increasing
anisotropy. We are able to distinguish between elastic
and elasto-plastic regimes, where stress and structure
responses are qualitatively different. The anisotropy of
the sample affects the tilt of the response envelope,
due to the cross-coupling of the isotropic and devia-
toric terms. Our study provides a fundament for the
development and validation of constitutive models in-
volving fabric evolution, which is the next topic to be
addressed. Extension of the work to more general de-
formation paths (including also plane-strain) and the
analysis of the dependence on the initial volume frac-
tion is in progress. Adding more realistic material be-
havior like friction is another step to come closer to
real geomaterials, however, the present data provide
the frictionless limit as reference case.
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